\\ ¢
V4
Accelerator Beam
Dynamics on James Amundson

Multicore and GPU ~and
Qiming Lu

Systems Fermilab



Synergia: A comprehensive
accelerator beam dynamics package

http://web.fnal.gov/sites/synergia/SitePages/Synergia%20Home.aspx

2t Fermilab

Accelerator Simulation Group
James Amundson, Paul Lebrun, Qiming Lu, Alex Macridin, Leo
Michelotti, Chong Shik Park, (Panagiotis Spentzouris) and Eric Stern

The ComPASS Project

High Performance Computing for Accelerator Design

and Optimization
https://sharepoint.fnal.gov/sites/compass/SitePages/Home.aspx

Funded by DOE SCIDAC


http://web.fnal.gov/sites/synergia/SitePages/Synergia%20Home.aspx
https://sharepoint.fnal.gov/sites/compass/SitePages/Home.aspx

* Accelerator beam dynamics
* Parallel scaling in Synergia
* Why we need to move on

* A GPU implementation

* Early MIC results

* Toward a next-generation Synergia



* Existing and planned * 50-1000 steps/revolution

accelerators * Internal and external fields
* 1,000s of elements » External field calculations
 10s of types of elements trivially parallelizable
* 1,000s to 1,000,000s of * Internal field calculations
revolutions require PIC

* 1-1000s of bunches of 0(10") « Minimal bunch/field structure

particles
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* Challenge: beam dynamics simulations are big problems
require many small solves

- Typically 64° — 128° grids (2e5 — 2e6 degrees of freedom)
- Need to do many time steps (1e5 to 1e8)

* Typical pure-PIC scaling applies to scaling with respect to grid
size
- Including decomposing particles by grid location
- In beam dynamics, external fields can cause particles to move over
many grid cells in a single step

« Communication required to maintain decomposition and load balance

- Point-to-point communication
- Complicated for both programmer and end-user
* Change in physical parameters can change communication time by x100



* First step: eliminate particle decomposition

— Requires collective communication

* But not point-to-point

* Collectives are typically highly optimized
— Simpler for programmer and end-user
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 Second (breakthrough!) step: redundant field solves

— Field solves are a fixed size problem
— More calculation, less communication
- Allows scaling in number of particles and/or bunches

— Can use arbitrary unit size, but one node is usually best
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Scaling results on ALCF machines: Mira (BG/Q) and Intrepid (BG/P)
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* Synergia runs on a wide variety of platforms

ODROID-U3
(ARM A9)

Linux clusters

laptops and desktops Blue Gene



* Interesting and useful beam dynamics cover a
tremendous range of computing requirements

— All of the platforms on the previous slide are useful
- We typically emphasize the extraordinarily large
* QOur specialty

* We target all end users, including those who
are not experts in cluster- or supercomputing



* The future of supercomputing
* The future of desktop computing

* | anticipate a new class of target hardware:
single box with a few GPUs and/or MICs

— Cheaper to obtain and maintain than a Linux
cluster

— Easiler to use



e Shared memory Is back!
- Some things get easier, some harder

* Charge deposition in shared memory systems
Is the key challenge

* Multi-level parallelism very compatible with our
communication avoidance approach



One macro particle contributes up to 8 grid
cells in a 3D regular grid E ﬁ

Collaborative updating in shared memory
» needs proper synchronization or critical
region protection
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MGrallal Fediidion Each thread has a duplicated spatial grid, and
charges will be deposited to that grid only
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Parallel reduction among all n-copy of spatial grids




Sort particles into their corresponding
cells using parallel bucket sort

Grid cells

List of particles

Deposit based on color-coded cells in an
interleaved pattern (red-black)



Time to Solution (s)

20 1

—
o

o S~ O O N

OpenMP results

—&— Distributed Deposition
—6— Interleaved Deposition

2 4 8 16
Number of Threads

Just charge deposition

32

Propagate time (s)

600

500

100

GPU results

Comparison of CPUs and GPUs

596s

EEO0OOOME

Xeon X5550
Wilson Cluster
Tesla C1060 x1
Tesla C1060 x4
Kepler K20 x1
Kepler K20 x4

Full (toy) simulation




* One selling point for Intel MIC architecture: cores are
similar to traditional Intel architecture — major
changes may not be necessary...

MIC pure OpenMP
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* Need to take advantage of MIC SIMD

» Early criticism of GPU “speedups”: What if you spent the same effort
optimizing your non-GPU code?

» Work toward unified production code

— Leverage optimization efforts for all architectures

communication
avoidance

memory X X
offloading

SIMD X X X O



» Study emittance growth over 100,000
revolutions in GSI SIS18 accelerator

- Effects of statistical noise appear to be important
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emittance growth in the GSI SIS18

— 262144 particles, 64* grid
— 1048576 particles, 64* grid
— 4M particles, 64° grid
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1 7,100,000 steps
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29,779,558,400,000 particle-steps

| 1,238,158,540,800,000 calls to “drift”

1 Yes, that's over a quadrillion



 External field calculations (including drift) in Synergia provided by
CHEF

- C++, predates Synergia by over a decade

— Designed for deep analysis of single-particle physics

— The genius: the same code propagates particle coordinates and
polynomials in particle coordinates

* Non-linear map analysis

- Synergia has to convert each of its particles to a CHEF particle (and back)
each half step

* 60 trillion conversions each way

- This overhead is our “abstraction penalty”
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* Use SIMD instructions to work on 2, 4 or 8 particles at once

* Different C++ implementations on different platforms

- Intel/AMD: vectorclass

* http://www.agner.org/optimize/#vectorclass
* Great!

- MIC: mic/micvec.h
* Provided by Intel
* Not quite great
- Blue Gene: vector4double extension

* Provided by IBM
* Type and functions, no operator overloading
* Painful, write-only

* Efficiency requires transpose of particle data
- Boost MultiArray simply takes a flag


http://www.agner.org/optimize/#vectorclass

SIMD speedup
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Abstraction penalty reduction, SIMD, magic factor

overall speedup
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* Accelerator beam dynamics leads to specialized PIC
calculations

- With a wide range of problem sizes

* Current Synergia has excellent scaling characteristics on
traditional architectures

* Working toward a production version of Synergia for new
generation

- Leveraging optimization efforts across platforms

— Optimizing systems large, small and in-between






* Intel12: dual-socket, six-core Intel Westmere
 AMD32: quad-socket, eight-core AMD Opteron
e MIC: Intel Xeon Phi 5110P



template <typename T>
inline void drift_unit(T& x, T& y, T& cdt, T& xp, T& yp, T& dpop,
double length, double reference_momentum, double m,
double reference_time) {
T inv_npz = invsqgrt((dpop + 1.0) * (dpop + 1.0) - Xxp * Xp - yp * yp);
T Ixpr = xp * length * inv_npz;
T lypr = yp * length * inv_npz;
T D = sqrt(Ixpr * Ixpr + length * length + lypr * lypr);
T p = dpop * reference_momentum + reference_momentum;
TE=sqrt(p*p+m*m);
Theta=p/E;
X += Ixpr;
y += lypr;
cdt += D / beta - reference_time;

}

// T can be double, Vec2d (SSE) , Vec4d (AVX), F64vec8 (~AVX512)
// T can also be (CHEF) Particle::Component or
//  JetParticle::Component (polynomial calculation)



inline void drift_unit(vector4double& x, vector4ddouble& y, vector4double& cdt,
vector4double& xp, vector4double& yp, vector4ddouble& dpop,
vector4double const& length, vector4double const& reference_momentum,
vectorddouble const& m, vector4double const& reference_time) {
vector4double one = {1,1,1,1};
vectorddouble inv_npz = rsqrtd4(
vec_sub(
vec_sub(
vec_mul(vec_add(one, dpop),
vec_add(one, dpop)),
vec_mul(xp,xp)), vec_mul(yp,yp)));
vectorddouble Ixpr = vec_mul(vec_mul(length, xp), inv_npz);
vectorddouble lypr = vec_mul(vec_mul(length, yp), inv_npz);
vectorddouble D = sqrtd4(vec_add(vec_add(vec_mul(length,length),
vec_mul(Ixpr,Ixpr)), vec_mul(lypr, lypr)));
vectorddouble p = vec_add(reference_momentum,
vec_mul(reference_momentum, dpop));
vector4double E = sqrtd4(vec_add(vec_mul(p,p), vec_mul(m,m)));
vector4double beta = vec_swdiv_nochk(p, E);
x = vec_add(x,Ixpr);
y = vec_add(y,lypr);
cdt = vec_add(cdt, vec_sub(vec_swdiv_nochk(D, beta),reference_time));
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