\\ ¢
V4
Accelerator Beam
Dynamics on James Amundson

Multicore and GPU ~and
Qiming Lu

Systems Fermilab

Synergia: A comprehensive
accelerator beam dynamics package

http://web.fnal.gov/sites/synergia/SitePages/Synergia%20Home.aspx

2t Fermilab

Accelerator Simulation Group
James Amundson, Paul Lebrun, Qiming Lu, Alex Macridin, Leo
Michelotti, Chong Shik Park, (Panagiotis Spentzouris) and Eric Stern

The ComPASS Project

High Performance Computing for Accelerator Design

and Optimization
https://sharepoint.fnal.gov/sites/compass/SitePages/Home.aspx

Funded by DOE SCIDAC

http://web.fnal.gov/sites/synergia/SitePages/Synergia%20Home.aspx
https://sharepoint.fnal.gov/sites/compass/SitePages/Home.aspx

* Accelerator beam dynamics
* Parallel scaling in Synergia
* Why we need to move on

* A GPU implementation

* Early MIC results

* Toward a next-generation Synergia

* Existing and planned * 50-1000 steps/revolution

accelerators * Internal and external fields
* 1,000s of elements » External field calculations
 10s of types of elements trivially parallelizable
* 1,000s to 1,000,000s of * Internal field calculations
revolutions require PIC

* 1-1000s of bunches of 0(10") « Minimal bunch/field structure

particles

25000
20000
15000
10000

5000

0.09

'0'%.04 -0.03 -0.02 -0.01 000 001 002 003 0.060IAGROEED00

* Challenge: beam dynamics simulations are big problems
require many small solves

- Typically 64° — 128° grids (2e5 — 2e6 degrees of freedom)
- Need to do many time steps (1e5 to 1e8)

* Typical pure-PIC scaling applies to scaling with respect to grid
size
- Including decomposing particles by grid location
- In beam dynamics, external fields can cause particles to move over
many grid cells in a single step

« Communication required to maintain decomposition and load balance

- Point-to-point communication
- Complicated for both programmer and end-user
* Change in physical parameters can change communication time by x100

* First step: eliminate particle decomposition

— Requires collective communication

* But not point-to-point

* Collectives are typically highly optimized
— Simpler for programmer and end-user

charge

field
broadcast

 Second (breakthrough!) step: redundant field solves

— Field solves are a fixed size problem
— More calculation, less communication
- Allows scaling in number of particles and/or bunches

— Can use arbitrary unit size, but one node is usually best

charge
deposition
field
solve
":’:’:’:" field
. {’)‘?\\ . _broadcast

Time to Solution (s)

led

1e3

le2

1el

1e0

Scaling results on ALCF machines: Mira (BG/Q) and Intrepid (BG/P)

Number of Particles (in Million)
1 2 4 8 16 32 64 128 256

Weak scaling from

18 o _— -

] -3 |deal -I M to 256M
. 14 —&— Actual
g © particles
8 10 1
g o 128 to 32,768 cores
6 4
4 4
2
-6~ Propagate Tetal {acual) 01 :
- Propagate Total (ideal)
Caollective Ops. 128 256 512 1k 2k 4k 8k 16k 32k
Indepandant Ops.
~+— Charge Deposition Numb:ér?égores
30 6|4 1|28 bu21|":6 5:||.2 10|24
MNumber of Cores 25F 1
64 to 1024 bunches
Single-bunch strong scaling from 200
z 8192 to 131,072
16 to 16,384 cores gw
cores
32x32x1024 grid, 105M particles 1o 10
Up to over 10
5_
=—a jdeal .
e—e actual part|C|eS
0 81|92 1621384 32|768 6511':36 131|072

BG/P (Intrepid) cores

* Synergia runs on a wide variety of platforms

ODROID-U3
(ARM A9)

Linux clusters

laptops and desktops Blue Gene

* Interesting and useful beam dynamics cover a
tremendous range of computing requirements

— All of the platforms on the previous slide are useful
- We typically emphasize the extraordinarily large
* QOur specialty

* We target all end users, including those who
are not experts in cluster- or supercomputing

* The future of supercomputing
* The future of desktop computing

* | anticipate a new class of target hardware:
single box with a few GPUs and/or MICs

— Cheaper to obtain and maintain than a Linux
cluster

— Easiler to use

e Shared memory Is back!
- Some things get easier, some harder

* Charge deposition in shared memory systems
Is the key challenge

* Multi-level parallelism very compatible with our
communication avoidance approach

One macro particle contributes up to 8 grid
cells in a 3D regular grid E ﬁ

Collaborative updating in shared memory
» needs proper synchronization or critical
region protection

T3 T4 Tn
ﬂ l

MGrallal Fediidion Each thread has a duplicated spatial grid, and
charges will be deposited to that grid only

Tt 2
Parallel reduction among all n-copy of spatial grids

Sort particles into their corresponding
cells using parallel bucket sort

Grid cells

List of particles

Deposit based on color-coded cells in an
interleaved pattern (red-black)

Time to Solution (s)

20 1

—
o

o S~ O O N

OpenMP results

—&— Distributed Deposition
—6— Interleaved Deposition

2 4 8 16
Number of Threads

Just charge deposition

32

Propagate time (s)

600

500

100

GPU results

Comparison of CPUs and GPUs

596s

EEO0OOOME

Xeon X5550
Wilson Cluster
Tesla C1060 x1
Tesla C1060 x4
Kepler K20 x1
Kepler K20 x4

Full (toy) simulation

* One selling point for Intel MIC architecture: cores are
similar to traditional Intel architecture — major
changes may not be necessary...

MIC pure OpenMP

64 MIC' 4_25; | | | | MIC pure MPI

threads

32 MIC

threads. 2.95x

16 MIC

threads - 1.88x
1 MIC |
thread

1 CPU
thread - 1.00x| I I | | I
0 100 200 300 400 500 600 700 800
time (s)

* Need to take advantage of MIC SIMD

» Early criticism of GPU “speedups”: What if you spent the same effort
optimizing your non-GPU code?

» Work toward unified production code

— Leverage optimization efforts for all architectures

communication
avoidance

memory X X
offloading

SIMD X X X O

» Study emittance growth over 100,000
revolutions in GSI SIS18 accelerator

- Effects of statistical noise appear to be important

2.2
20F
18
?
< 16}
U.IH
1.4}

1.2

1.0

emittance growth in the GSI SIS18

— 262144 particles, 64* grid
— 1048576 particles, 64* grid
— 4M particles, 64° grid

1 | | 1
0 20 40 60 80
time (1000s of turns)

100

71 steps/turn

1 7,100,000 steps
1 4,194,304 particles

29,779,558,400,000 particle-steps

| 1,238,158,540,800,000 calls to “drift”

1 Yes, that's over a quadrillion

 External field calculations (including drift) in Synergia provided by
CHEF

- C++, predates Synergia by over a decade

— Designed for deep analysis of single-particle physics

— The genius: the same code propagates particle coordinates and
polynomials in particle coordinates

* Non-linear map analysis

- Synergia has to convert each of its particles to a CHEF particle (and back)
each half step

* 60 trillion conversions each way

- This overhead is our “abstraction penalty”

abstraction penalty

BG/Q

AMD32

Intell?2

Intel i5 B abstract |4
B optimized
| | | |
0.000 0.002 0.004 0.006 0.008 0.010

time (s)

* Use SIMD instructions to work on 2, 4 or 8 particles at once

* Different C++ implementations on different platforms

- Intel/AMD: vectorclass

* http://www.agner.org/optimize/#vectorclass
* Great!

- MIC: mic/micvec.h
* Provided by Intel
* Not quite great
- Blue Gene: vector4double extension

* Provided by IBM
* Type and functions, no operator overloading
* Painful, write-only

* Efficiency requires transpose of particle data
- Boost MultiArray simply takes a flag

http://www.agner.org/optimize/#vectorclass

SIMD speedup

BG/Q QPX

vMIC AVX512

AMD32 SSE

Intell2 SSE

Intel i5 SSE

Intel i5 AVX

2.59x

B double
B simd

0.000

|
0.001

|
0.002

|
0.003
time (s)

|
0.004

|
0.005

0.006

Abstraction penalty reduction, SIMD, magic factor

overall speedup

BG/Q QPX

vaIC AVX512

AMD32 SSE

Intel12 SSE

Intel i5 SSE

Intel i5 AVXISS 0 B original
B optimized
| | | |
0.000 0.002 0.004 0.006 0.008 0.010

time (s)

* Accelerator beam dynamics leads to specialized PIC
calculations

- With a wide range of problem sizes

* Current Synergia has excellent scaling characteristics on
traditional architectures

* Working toward a production version of Synergia for new
generation

- Leveraging optimization efforts across platforms

— Optimizing systems large, small and in-between

* Intel12: dual-socket, six-core Intel Westmere
 AMD32: quad-socket, eight-core AMD Opteron
e MIC: Intel Xeon Phi 5110P

template <typename T>
inline void drift_unit(T& x, T& y, T& cdt, T& xp, T& yp, T& dpop,
double length, double reference_momentum, double m,
double reference_time) {
T inv_npz = invsqgrt((dpop + 1.0) * (dpop + 1.0) - Xxp * Xp - yp * yp);
T Ixpr = xp * length * inv_npz;
T lypr = yp * length * inv_npz;
T D = sqrt(Ixpr * Ixpr + length * length + lypr * lypr);
T p = dpop * reference_momentum + reference_momentum;
TE=sqrt(p*p+m*m);
Theta=p/E;
X += Ixpr;
y += lypr;
cdt += D / beta - reference_time;

}

// T can be double, Vec2d (SSE) , Vec4d (AVX), F64vec8 (~AVX512)
// T can also be (CHEF) Particle::Component or
// JetParticle::Component (polynomial calculation)

inline void drift_unit(vector4double& x, vector4ddouble& y, vector4double& cdt,
vector4double& xp, vector4double& yp, vector4ddouble& dpop,
vector4double const& length, vector4double const& reference_momentum,
vectorddouble const& m, vector4double const& reference_time) {
vector4double one = {1,1,1,1};
vectorddouble inv_npz = rsqrtd4(
vec_sub(
vec_sub(
vec_mul(vec_add(one, dpop),
vec_add(one, dpop)),
vec_mul(xp,xp)), vec_mul(yp,yp)));
vectorddouble Ixpr = vec_mul(vec_mul(length, xp), inv_npz);
vectorddouble lypr = vec_mul(vec_mul(length, yp), inv_npz);
vectorddouble D = sqrtd4(vec_add(vec_add(vec_mul(length,length),
vec_mul(Ixpr,Ixpr)), vec_mul(lypr, lypr)));
vectorddouble p = vec_add(reference_momentum,
vec_mul(reference_momentum, dpop));
vector4double E = sqrtd4(vec_add(vec_mul(p,p), vec_mul(m,m)));
vector4double beta = vec_swdiv_nochk(p, E);
x = vec_add(x,Ixpr);
y = vec_add(y,lypr);
cdt = vec_add(cdt, vec_sub(vec_swdiv_nochk(D, beta),reference_time));

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

