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Solenoid Focusing
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Hamiltonian in Cylindrical Coordinates

Hamiltonian of charged particle with charge g and mass m

Hz=cA/m2c? + (Py- gAY + (Py- gAY + (P, - gA) + qU

Relationship  between Cartesian and
cylindrical coordinates:

x=rcos@, y=rsinf, z =2

P, =Py cosO+ P, sin0

Po =71 (-Px sin@ + Py cos0)

Relationship between cylindrical and Cartesian coordinates. P, =P,

Hamiltonian of particle motion in cylindrical coordinates:

H=c o7 + - gaoP + (P, gAY + (P~ gAY +qU
Hamilton’s equations in cylindrical coordinates read

dt 0P dt 0Py d JP;

dPr _ _OH  dpy _ OH g4p. _ OH

dt or> dt 00 > dt 0z
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Equation of Motion in Cylindrical Coordinates

Equations for particle position are

dr _ Pr- qA;

& my

99~ 1 Lo ga,
&t myr r

dz _ Pz - qA:

& my

Instead of canonical momentum, it 1S more common to use
mechanical momentum, components:

pr=mydr=p, - g,
dt

pe:m’}/rdezl)e_qu
dar r

pZ:m}/d—Z:Pz—qu
dt
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Equation of Motions in Cylindrical Coordinates

Equations of motion 1n cylindrical coordinates are

dr _ Pr do _ Po dz _ Pz
a my a myr dar my
dp, _ pé
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Dynamics in Axial-Symmetric Magnetic Field

An area of special interest in beam dynamics is an axially-
symmetric static field, Egy= 0, Bp= 0, which is common in
beam transport. In this case, all partial derivatives over the
azimuth angle are equal to zero, 3/00 =0, and the canonical
angular momentum is a constant of motion:

Po=myr* do . r gAp = const
i (1.87)

Equation of radial particle motion in axial-symmetric field:

r+ r— £

2
9E B, P@2 9B qE
+r] —% | ——L
mcy m2]/2r3 2my
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Magnetic Field and Vector-Potential

Vector potential of axial-symmetric magnetic field has only azimuthal

component. Actually, components of magnetic field d/9d6=0 are
expressed through vector potential as

_ 1 a(rAQ magn )
Cr  or
B =— aAG magn
r aZ

From equation for B, azimuthal component of vector-potential is
expressed via flux of magnetic field through circular area of radius r as:

1 r
A, =— | B.dS
2ﬂr0
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Dynamics in Axial-Symmetric Magnetic Field

The angular component of the vector — potential is given by

.
27r
where Y¥is the magnetic flux
“r
V= B,2rr dr
Jo '

Substitution of Eq. (1.88) into Eq. (1.87) gives:

Pdoy 4 ¥

dt 2mmy

= const
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Busch’s Theorem

If we denote the initial conditions as é(,, o, Yo, EQ. (1.90) can be rewritten as

rP0—r9 =——1 _(p_w )
2rmy

, (1.91)

which is known as Busch's theorem. It states that change in angular

momentum of a particle in a static magnetic field

is defined by the change in

magnetic flux comprised by the particle trajectory.

Busch's theorem can be represented as

é= Peo -y,
m,}/r2 ’

(1.93)

where w, is the Larmor frequency of particle oscillations in a longitudinal

magnetic field
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Particle Trajectories in Magnetic Field

On Busch’s theorem for particle in axial-
symmetric magnetic field.
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Vector-Potential in Cartesian Coordinates

Consider the beam propagating in a focusing channel with longitudinal magnetic
field B, = B(z). This field can be created by solenoids or permanent magnets. Like
in quadrupole channel, we assume that all particles have the same value of
longitudinal velocity 8, which is not affected by variation of magnetic field.
Vector potential has only azimuthal field component:

“r

A@ magn=L BZ?Z'I/"dr' — fﬂ

2mr | 2 . (2.210)

Components of vector potential in Cartesian coordinates are:

Ay magn =-Ag magn sinf =- B)zi, (2.211)

Ay magn =A9 magn C'OSQ= BEX . (2.212)
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Hamiltonian in Longitudinal Magnetic Field

Hamiltonian of particle motion in presence of longitudinal magnetic field is
given by

K=c \/ M4 (P B)) + (Py- gBYY +(Po-qB 0 +qUs. (2.213)

Taking into account that, P;>¢qBUs/c and repeating all derivations,
resulted in Eq. (2.27), the Hamiltonian becomes
(Px+ @B (Py- qB XY
H= 2 4 2 +qu
2my 2my y? (2.214)

In longitudinal magnetic field, the canonical - conjugate variables are
position and canonical momentum (x, P,), (y, P,), where

P, =px-qB)2i, (2.215)
Py =py +qB§. (2.216)
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Transformation to Larmor Frame

Emittances of the beam have to be defined at the phase planes of canonical variables (x,
P.), (v, P,), in contrast with quadrupole channel, where canonical variables are (x, p,), (y,
p,). Hamiltonian, Eq. (2.214), contains cross term (xP, - yP,). Equations of motion in
longitudinal magnetic field are coupled: equation in x -direction depends on P, and that in
y - direction depend on P,. To avoid coupling, let us make a canonical transformation to

new variables x, Py, y, Pyaccording to generating function

F,(x,P,,y,P,,1)=(xP, +yP,)cos8(2) + (xP,— yP)sinb(z)  6()=]w,(2)d (2.217)

B . . .
where o, (z) = qzz(z) is the Larmor frequency. Transformation from old variables to new
my

variables are given by

X =Xxcos6 —ysinf, (2.218)

y =xsin6+ ycosf, (2.219)

f’x = P, cos6 — P sin0, (2.220)

f’y = P, cos+ P, sin6. (2.221)
13
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KV Envelope Equation in Larmor Frame

oF> -
ot
ﬁZ EZ (
~ L'y + + )
H= +myop 27 y +qb (2.222)
2my 2 %

Hamiltonian, Eq. (2.222), is similar to that for quadrupole channel, Eq. (2.96).
Analysis resulted in KV envelope equations, can be applied here as well. Because
of the axial symmetry of the beam propagating in magnetic field, there will be
only one envelope equation instead of two in quadrupole channel. Repeating the
same derivations, which resulted in Eqgs. (2.146), (2.147), we can obtain KV

envelope equation for round beam in Larmor frame:
~2

R -2 k(z)l?-% =0 (2.223)
R I.B7°R
2
where k(z) = (18Q) (2.224)

2mc By
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4D Ellipsoid in Larmor Frame
In KV distribution, particles occupy surface of four-dimensional ellipsoid:

AA A A2 AA /\'2 A2 AN /\'2
Fx,x,yy)= VoX +20o0xX +Bo X +Yoy +200yy +Boy -Fo=0, (2.225)

Here parameters 3, and 7, are ellipse parameters, not the particle velocity and energy.
Projections of the distribution at every phase plane are uniformly populated ellipses:

/\ /\/\' /\'2 ~
}/Ox2 +200xx +Bx =3 (2.226)
A 2 A A N 2 A
Yoy~ +200yy +fy =3 (2.227)
where F=_Px (2.228)
my B.c
A ﬁy
y = (2.229)
myB. c
15
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4D Ellipsoid in Laboratory Frame

Substitution of Egs. (2.218) - (2.221) into Eg. (2.225) gives for the boundary of
the four-dimensional ellipsoid occupied by the beam in laboratory frame:

F(x,x,y,y)=Yox*+20xx +f x'2+1/oy 24200y y +f0 y % F, =0 (2.230)

Boundaries of projections of the four-dimensional beam ellipsoid and of their
projections at phase planes are the same both in laboratory frame, and in
Larmor frame. From Egs. (2.218) - (2.221), transformation of phase space
elements and area element in real space are

dxd P, =dxdP; (2.231)
dy dPy=dydP,, (2.232)
dxdy=dxdy. (2.233)
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KV Envelope Equation in Laboratory Frame

Therefore, distribution of particles within projections in both frames are also the
same, and uniformly populated ellipses in Larmor frame remain the uniformly
populated in laboratory frame. Finally, beam emittance and beam radius are the

same in both frames, > =3, R=R. Therefore, we can write KV envelope equation
in the l[aboratory frame as well:

2 2 2
d§+a)L(z2)R_93_ 21 __¢
dz” (o) R I.R(By)

Typical particle trajectories in magnetic field with beam
space charge (from G. Brewer, 1967). 17
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Beam Equilibrium in Magnetic Field

Important case is the beam transport in a constant magnetic field B(z) = B, which
is a uniform focusing structure. Matched beam corresponds to transport with
constant envelope, R' =0:

-1363 2mc ﬁ’y ‘ IC ﬁ3y3Re B . (2.235)

where R, is the equilibrium beam radius. Acceptance of the channel, A, and
normalized acceptance, €., are obtained from Eq. (2.235) taking the value of
beam current /| = 0, and equilibrium beam radius equal to aperture of the
channel, R, = a:

2 2
_ a Ba
A=wr g =1

(2.236)

4

2mc

Let us note, that normalize acceptance of the channel with constant longitudinal magnetic
field is energy - independent. In the equilibrium, beam envelope does not perform any
oscillations and beam occupies the smallest possible area. From Eq. (2.235), the required
magnetic field to keep in equilibrium the beam with radius R,, emittance 3, and current |,

IS
B=2mc[3]/ (1)24. 21
QRe Re IC ﬁ3y3 . (2.237)

18
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Maximum Transported Beam Current in Uniform Magnetic Field

Taking R. = a, and expressing explicitly the value of beam current from the last
equation gives for maximum transported beam current:
2

B 2
Inax =2 (By) 2y (1-25). (2.239)
2 2mc A?
Equation (2.239) can be re-written as
2 2
Inax =1 (By) Echy (1- €7 | (2.240)
2 4 gch2
[#£0,5< A
rl
e
Be

Matched beam in uniform magnetic field for zero current

mode, and for space charge dominated mode.

19
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Brillouin Flow

Important specific case is the equilibrium of the beam with negligible emittance > =
0, which is called the Brillouin flow:

BR, =2\5% 4 /ﬁ | (2.241)

As far as beam with zero emittance cannot be achieved when particle source is
inserted in magnetic field, Brillouin flow is realized for the beam born outside

magnetic field. If particles are born with zero beam emittance, the transverse

mechanical momentum of all particles at the source are equal to zero. Due to
conservation of azimuthal canonical particle momentum, all particles obtain

azimuthal rotation after entering magnetic field

B, r
2

pe=-(d ) or 0=-w; | (2.242)

20
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Oscillations Around Equilibrium Radius

Realistic beams usually are not in equilibrium with focusing magnetic field. Consider small
deviation of beam radius from equilibrium condition, R = R, + x, where x << R,. In this case

1.1¢.5 LzL(l_g,i
R R, ( Re)’ R3 R3 R, (2.243)
Then, envelope equation becomes

dzl_i 1- é &2 ) 21 1_6 _
dz? Re?a( 3Re)+(ﬂc)(Re+§) Icﬁ3}’3Re( Re) O. (2.245)

Taking into account equilibrium condition, Eq (2.235), the equation for small deviation of
the beam from equilibrium is

d*& 2 w2 21
+32 E+ (B &+ =0
dz>2 R : Be s L ﬁ373Rez S . (2.246)

Beam equilibrium condition, Eq. (2.235), can be written as

3 :(wL)2 1

Rj ﬁC 1+ b (2.247)
where b is the dimensionless beam brightness:
p=_2 LRez
(B)/)3 I 52 - (2.248)

21
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Oscillations Around Equilibrium Radius (cont.)

Last term in Eq. (2.246) can be also expressed through parameter b:

2
2 s

Substitution of Egs. (2.247), (2.249) into Eqg. (2.246) gives for small derivation:

d*S . 5 @122 +b
=54+ 2 L) (&t =0
dz? (ﬁc) (1 + b)é : (2.250)
Solution of Eq. (2.250) can be written as
_ 2+ by OL
é—éo COS (N/ 2 (1 N b) . 7+ .PO). (2.251)

From Eq. (2.251) it follows that in emittance-dominated regime, » — 0, envelope oscillates
with double Larmor frequency:

E=¢, cos (2ﬂz+ Y,)

c , (2.252)

while in space-charge dominated regime, b — ©, frequency of oscillation is V2 smaller:

- [2)5
5= o €S (@,BC e 'PO). (2.253)

> 22
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Required Transverse Focusing in Presence of RF field

Hamiltonian of particle motion in RF P*+ P, ? rr , Q7 sing U,
field with solenoid focusing M=y Ty @i 0 ey
Transverse oscillation frequency in ) , Q° sing
presence of RF field Q =0, ————
2 sin@,
2 2 2
Envelope equation d’R 2 + 2, R— 21 =0
dz* R (Bey I(By)R
d’R 2 2
Beam equilibrium condition g ==0 £ : > - — 21 =
< (Be) R’ 1.(BY)R,
2
E) 21
=Py 2
R~ R 1.(By)
2mefy |3 21 gEA_singp R
Required magnetic field B = \/ (—) + +7( (=)
R 'R LB me By A
® Los Alamos ”
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Beam Transport in Periodic Structure of Axial-Symmetric Lenses

Periodic axial-symmetric magnetic field is often used in focusing of particle
beams. Most existing ion Low Energy Beam Transport lines are based on
solenoid focusing. Modern accelerator projects utilize superconducting solenoids
in combination with superconducting accelerating cavities for acceleration of
high-intensity particle beams. 02— 1

TIPS
o lFxl 1/.
T
ARRARARARE

[/S“—>

Particle trajectory and matched beam envelope
in a periodic thin lens array (Reiser, 1994).

=~ 24
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Coupled Equations of Motion

Equations of motion of a single particle in Cartesian
coordinates

From divB=0 connection between radial and
longitudinal magnetic field components:

Component of magnetic field in Cartesian coordinates:

Equations of motion in Cartesian coordinates:

Where K(z) is the rigidity if solenoid:

'\
1 Los Alamos |
< Y. Batygin - USPAS 2021

dp, p .

P =q(——B, - L B))
dt my my

d

&ZQ(_ Ly Bz+ pZ

dt my my

__rdB

' 2 dz

_ XdBZ B = Xde
x__i dz g 2 dz

x"-2Ky'-yK'=0

y'+2Kx'+xK'=0

gB.(2) _ 0, (2)

Kiz)= 2meBy  cf

25



Linear Transfer Matrix of Solenoid

Transverse particle motion in magnetic field is coupled

o . . w=x+1iy
between x - and y - directions. Introducing new variable

the system of two equations of motion can be written as
w"'+ 2IKw'+iK'w=0

Introduce new variable (change to rotation system of w=we
coordinates)

New equation of motion in rotation system S K25 =0

=)
—
=>
Q
_/

( .
Transfer matrix in (x ) cosf sinf/K 0 0

rotation system of coordinates ! —sinfK  cosf 0 0 N

>
!

0 0 cosB sin@/ K Yo

J 0 0 —sinBK  cosf Yo /
where angle g = gp \ J

<> <>

26
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Matrix Method for Periodic Structure of Axial-
Symmetric Lenses

: : >
I S I A
>
Periodic structure of focusing solenoids.

The transformation matrix in a rotating frame through a period of the
structure between centers of solenoids

cosg Qsing 1 cosQ Qsing COS@—LQSiHQ 25in6+lcoszg
2 6 2 2 6 2 2D 0 2
—gsing cosg 0 1 —gsing cosg - —gsin9+l(£)2 sinzg cos@—LBSinB
2 D 2 2 2 2D
: : : : , qB D
Rotational angle of particle trajectory in a solenoid 0=
2mce Py
27
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Phase Advance and Beta-Function

From the matrices, the value of betatron tune shift per period, Y, , is determined by

cos U, =cosf—0sinb

$S-D

. Adopting the expansions cos&§=1-&"/2+&" /24 and

sin€ =&-&"/6, the value of betatron tune shift per period reads:

A

1—— n-L 243 .

2 S D

(1.4)

Thus, the maximum and minimum values of the beta-function Buagmn = M, /SIN YL,

in the channel are given by:

More info: Y.B., Nuclear
Instruments and
Methods in Physics
Research A 772 (2015)
93-102

~
1% Los Alamos

J— 2 1
(S—D)cosO _8=D) 0 sin @ +D8m9
[))min = .
sin U,
Scos? 91— 2120 12
B = 2 S 0 /2)
max Sin‘LLO
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Periodic Envelopes and Acceptance of the Channel

Equations for beta-functions determine the maximum R, =B, > and minimum

R.in =+/Pmnd matched envelope of the beam with unnormalized emittance, 3  and

negligible beam current, / = 0. Acceptance of the channel with aperture radius, a, 1s
given by A=a’/f,,,:

A a’sinil,
Scos’ Q[l— 2(1— tan9/2)]
2 S (0/2)
R’nax
Rmin|

> 29
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Focal Length of a Thin Solenoid

Assume that canonical momentum of particle before entering the lens is P, =0,

which corresponds to incident particle without initial rotation. Paraxial particle
equation of particle motion is then given by

" B, 2
r+r(9222) =o. (2.254)
2my

If the length of the lens is short with respect to focal length, particle position might
be considered unchanged within the lens, while slope of particle trajectory is
changed. Integration of Eq. (2.254) gives for slope of particle trajectory

where focal length f of short magnetic lens is achieved by integration of Eq. (2.254):

- 00

2
i 5 | Bo (2.255)

With approximation of the field distribution in magnetic lens by “step” function
with constant value of magnetic field B, within the lens of length D, the focal length
is
4 mc
f= T ﬁ}/)Z

(
P D gB
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Thin Lens Analysis of Periodic Focusing Circle Lenses

Focal length of thin
solenoid lens

Transformation matrix
between lens centers:

Phase advance per
period

~
1% Los Alamos

f f f
A
\ 4
>
2 3 4
D 4 mc
f— 2: ( ﬁ,}/)Z
60° D ¢B,
1 0 1 0 1—i
MMM, =| 1 [ IS ] 1 . 2t
oy N Ty P LS
foaf
2
H, my, +my S _ |5
cosu =1- = —1—— n = |—
Fo 2 2 2f f
31
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Thin Lens Analysis of Periodic Focusing Circle Lenses

_ B m, S
Max value of beta-function max . max =
SIN AL, sin L,
S S S
S 1 O S _ﬁ 5(2—5)
Transformation matrix MM M = L3 L Lo
between drift centers 2 2 0 1 f 0 1 —% —%
S S S u,
m12 — __ o
H : .= L= 1__ ﬂmin - . 1 )
Min value of beta-function B sin (L Bin sin (L 4f) sin 1, 4
32
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Acceptance and Stability Criteria

Acceptance of the channel

Maximum acceptance

Single particle stability criteria:

r/S—-»

-0.2—

04—

0.2

a a’
A:B Az?sin‘uo
a 4 S=2f
A =— =— cosu, =0 =
max S uO 2 HO
0<S<4f i>l
cos,u0|Sl S05 ¢ 2

-0.4

z/S—»

Figure 3.25. Particle trajectory and beam envelope in a periodic thin-lens array with focal length
f = 0.2465, slightly below the stability threshold (£ = 0.255). The particle motion is unstable in

this case.
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Matching of the Beam with Negligible Current

. 35 4Ly
Max beam radius R =VBua® R = S R =38 [—S8 "

max i B
4(S) 1

For max acceptance S = 2f

Row _ f5
R .

min

z/S

Matched beam with zero current in periodic structure of axial-symmetric lenses.

34
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Dynamics of Space-Charge Dominated Beam in Periodic
Solenoid Structure

dZR 32 2 21 2
. + ;R - (Bey” _ 20c” _
Envelope Equation dr? R ICR,373

D 21 . #mnD 21
Fourier Expansion of Magnetic Field Bz(z)=B§[§+—2—sm( L )cos( iz

y | S S

)]

Envelope Equation with Expansion of Magnetic Field

d’R R ¢gB ,~>1 . 7mnD 2nnfct. RD gB 3 Be)y  2Ic
R B @By Liin L cos 220ty KD 4B,y [ OP) | 2H
dt 2r my” ‘on S S 4S5 my R [ RBy

D

< 4
Bo

: : -
« S z
35
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Averaged Beam Envelope

According to the averaging method, such motion can be approximated by
combination of slow variable R....(t) and small amplitude fast oscillations &(?):

R()=R,, ()+E(@) (3.7)

Averaging method gives the same value for betatron tune shift as matrix
method. Equation for slow envelope variable

dZR 32 2 P2
aver 4 Iuo R _ — O
dZ2 R 3 SZ aver R (318)

Fast oscillation component of the beam envelope is determined by

q E(Raver) 02 S 2 ; D <
5(2) my wlz CoOS W, aver 271_3 (D) Sln( g )COS( S) (320)
36
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Matched Beam in Periodic Channel

Finally, solution of envelope equation can be expressed as

2
()1 + ﬁmaxcos2n§) V= i (%)%in(ﬂ%)

max 271_3

R(z)=R

aver

(3.21)

Matched beam corresponds to constant value of average beam envelope

R, (2)= Raver and can be determined from envelope equation assuming

Rc”zver (Z) = O :
Eaver = I_?aver (O)\/bo + V1+ bo2 (322)

where R,,.(0) is the matched average beam size with negligible space charge,

— EIN)
R, 0)= |—
I (3.23)

1 I (I_eaver (O)

and b, is the space charge parameter: B (By)’ I 3

)2

37
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Maximum Beam Current

The minimum and maximum matched beam envelope in presence of space charge
forces are given by:

Rmax/min = Raver (1 * ﬁmax) (325)

Maximum beam current is achieved when maximum beam size is equal to aperture of

the channel R... =@, which is determined from Egs. (3.22) - (3.25) as

38
= /— b, +\1+b. (1+
a uo \/ (0] (4] ( vmax) (3.26)

For negligible beam intensity, b, = 0, Eqg. (3.26) determines the beam with maximum
possible emittance (acceptance of the channel) approximated by envelope equation
3:A€I’ZV:

AenvS

a= (I+v

max) (3.27)

o

2
a’y,

Envelope approximation to acceptance of the channel oy = >
SI+v,,.)

I 4,

The maximum beam current is: I =<

max 2 S

31 2 \2
A, (By)T1—( el

eny

38



Applicability of Smooth Approximation to Beam Dynamics

0030 T T T T T T 0030 » T . T T T T T T T
0.025-— 0.025
§ 0.020- :S: 0.020 |-
g 0.015} ~ 0.015p
oS : :
0010} i % oot0}
0.005- ! ] 0.005 |-
000 05 10 15 20 25 30 0005 70 15 20 25 = 30
u,(rad) u,(rad)
2.011073 T T T T T T T T T T
g 15107°F /,/" .
N : -
S 10109} 1 Minimum and maximum beam sizes in
7 periodic solenoid structure with D/S=0.034
= 50104 1 (solid line) solution from matrix analysis,
| | (dotted line) smooth approximation to beam
0.010 L s

00 05 10 15 20 25 30 envelope.
u,(rad)

Fig. 3. Minimum and maximum beam sizes in periodic solenoid structure with D/L = 0.034: (sol
line) solution from matrix analysis, (dotted line) smooth approximation to beam envelope.
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Maximum Transported Beam Current

Maximum beam current

3, R 12
: ; : I, =1.171 (By) ( S )
| | 8

, Beam slope after lens
On maximum current transported through the tube P

di: 4lhm 1( maX) 2Rmax
dz \I.(By) Ry S

=

min __

R 2:39

max

Required focal length f= S
4

z/S
Matched beam with maximum current in periodic structure of axial-symmetric lenses.
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Spherical Aberration

Distortion of particle trajectories after crossing magnetic
focusing lens with strong spherical aberration.

AAAAAAAAAAAAAAAAA Y. Batygin - USPAS 2021
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Higher-Order Components of Magnetic Field

Potential of axial-symmetric field i i
U paen(r2) =0, (2)— Zr2®;(z)+6—4 r4@f)4)(z)—....

Components of magnetic field oU (r,7)
B.(r,z) = ——"%—
0z
oU ,
B (r.z)=— magn (F'+2)
or

Magnetic field components can be
expressed through longitudinal field
component at the axis B(z)=-dO (z)/dz
as

oo 2 4

. 2n p(2n) " (1IV) _
= 2 (n') ( )" B (2)=B(2)- 4B (z)+64B (2)-...

o (- 1)n+1 ’" 2n+1 ey _ L _3 _
Z (n+1D(n!) 2 2 ZB(Z)+ 6B @
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Spherical Aberration (cont.)

Equation of motion in a magnetic field

Magnetic field along the structure

Field distribution

Change in slope of particle trajectory

T
r'=r,——(1+Cr?)
f

Spherical aberration coefficient | jB(z)B"(z)dz
C =——=

2 ]‘i B’ (2)dz

'\
1 Los Alamos |
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B
i () =0
2my

2

B.(r,2)=B(z)- %B"(z)

BO

B(z)= -
1+(=)"
(d) )
! q 2 2
'=r — B d
r'=r, r(2mcﬁ)/)_-[o ~dz




Focal Length of Solenoid

Focal length of solenoid is given by 1 = d( 9B, )2 T dg _
foo2meBy S (+¢)

From step-function approximation of the field 4 mcfBy .,
inside solenoid the focal length is /= D( gB, )

Effective length of solenoid

1d~157d, n=2,
= d/(Hée) :{F ~1.666d, n=4.
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Scherzer Theorem (1936)

Spherical aberrations are unavoidable if

- the lens fields are rotationally symmetric
- the electromagnetic fields are static

- there are no space charges

1 |mu"*‘1muunﬂmm ‘

L S

Fig.7. The Scherzer corrector, as
constructed in the 1950s (from
Seeliger,1951): Objective lens l
(O), stigmator (St), electrostatic !
cylinder lenses (Z), round lens

(R), octopoles (K).

LA
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Beam Emittance Growth due to Spherical Aberrations

2 2
Initial beam distribution: ;02 3+ xao R*=3
Transformation through the lens X=X,

X =x —2(1+C,x%)

Change variables (x, x) to action-angle variables (/, v) %\Eﬂ/ﬂ cos y

o +X) B =27 siny
f s

Beam ellipse distortion: T +T 2vsinycos’ y+T v cos’ y =1
where
2J 4
T - D= Ca R
£ 1>

46
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Beam Emittance Growth due to
Spherical Aberrations

_2’0 1 | 1 1 1 | 1 1 L 1 1 1 1 1 i _20 L | 1 1 L 1 1 1 L 1 i 1 1 i
=20 =15 =1:.0 086 00 05 1040 15 20 -20 -15 10 -05 00 05 1.0 15 20
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Beam Emittance Growth due to Spherical Aberrations

Let us denote the increase of effective beam emittance as a square of
product of minimum and maximum values of T:

M — \/Tmax Tmin
3 .

(3.22)

Values Tmax, Tmin are determined numerically. Dependence of emittance
growth versus parameter v is presented at figure below. Dependence can
be approximated by the function:

C R*
M: 2 —_ o
S \/1+Kv ’ v R (3.23)

where parameter K = 0.4. Finally, effective beam emittance growth due to
spherical aberrations:

4
S _ 1+K(CaR y
) f ) (3.24)

'\
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Beam Emittance Growth due to Spherical Aberrations

1.5

Bcff/ P

Beam emittance growth after beam passing through axial-symmetric

lens as a function of parameter v: (sold line) Eq. (3.22), (dotted line)
approximation by Eq.(3.23).
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Emittance Growth due to Spherical Aberrations in Round Beam
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Expression for beam emittance growth due to spherical aberrations

eff

E C,R',
S —\/1+K( I )

was tested numerically for round beam with different particle
distributions. As a measure of effective beam emitance, the four-rms
beam emittance was used and 2-rms beam size was used as a measure

of beam radius:
R=2J<x*>

Simulations confirm, that dependence is valid for round beam as well,
while coefficient K depends on beam distribution (see Table ). Value of
coefficient K is mostly smaller than that determined above, except that
for Gaussian distribution.

=A< it ><x? > — < xx' >

Distribution Coeff.
K
KV 0.0556
Water Bag 0.114
Parabolic 0.164
Gaussian 0.541
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Redistribution of Beam Intensity due to Spherical Aberrations

Consider beam of particles parallel to the axis, entering lens. Particle radius after
lens is given by:

< 2
r=rll-—0+C_r )]
f

where z is a drift distance from the lens. To find the beam density redistribution,
let us take into account that the number of particles dN inside a thin ring (r, r + dr)
is kept constant during the drift of the beam at certain distance unless particle
trajectories cross each other. Hence, the particle density p(r) = dN/(2rtrdr) at any z

is connected with the initial density p(r,) by the equation p(r)dr? =p(ro)drs or:

p (o)
[1-7 (1 + Cord)]*+ N2-2127 Co[1-T (1 + Curd)]

pr)=
where 1 = z/f.
51

'\
1 Los Alamos |
< Y. Batygin - USPAS 2021



Redistribution of Beam Intensity due to Spherical Aberrations

1.5 L5
1E B g, I -
05 F—+& < N I e VY
SariE aimrs
>¢-. 0 = q 0E et '.i"
E 3 ol e
0.5 1% ¥ 0.5 F——=%
4 5 -l -1 E
y Finat raro‘n‘é 4 - 15 -1 05 0 05 1 15 15 <1 05 0 05 1 15
\ fFinal Rrofile X, cm X, cm
= 25 \ 3
~ -3 =
Qa \ g x10 x10”
15 2 0.2 = 02 ¢
} \ X g 0.5 E - 0IS E -
T nuiar Profife 1 E Initial-Profile ol E o1 E 45
05 E B - P Dtk - 005 E 2
:lll L.l LIS J Ll L | TR LA L Ml 0 -lll lll‘Lll’lll LAl IANSNEENE] 1 1 a- o.::- ax_ OE
0F 02%04+0,6708 =112 0 02040608 1 1.2141.61.8 0.05 F— -0.05 E
r, cm SAIRE 0.1 E—I=
3 E e
r,cm 015 E -0.15 f—~

(Left) conservation of beam profile in a

lens with linear focusing, and (right)
hollow beam formation on a lens with

strong nonlinear field.
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Beam cross sections and phase space
distribution before and after crossing the
lens with strong nonlinear field.
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Electrostatic Focusing

0 volts +V volts 0 volts
P'dt("\ — e ——— —

' Electric field lines

~ - Focus

\ | /
|
\

lon path

/ \
/ l ; T ————e ——
memmmm 0 volts +V volts 0 volts

fa)

/>”\ Field distribution and particle trajectories in
| : Einzel (equipotential lens).

(b)
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Potential of Axial-Symmetric Lens

Potential of axial-symmetric electrostatic lens is defined by Laplace’ s equation:

10 0oU. 9U (3.1
— -0
rar(r ar)+ dz° )
r o e (3.2)
Solution: U(Z,F)=U(Z)—ZU (Z)+6—4U (z)—mU (2)+... :

Field distribution inside each gap is given by near-axis approximation:

n —~(2n)
E0)=E@)- " E? @+ I EY (4 ...+ (DB oy (3.3)
4 64 nh) 2 '
' 3 .0 D" EP"™Y o
E (ro)=-TE @+ E™ (2)..+ 0 (3.4)
2 16 (n)(n-1H)! 2 '
54
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Particle Trajectory in Electrostatic Field

d’x ¢ 1 O, r J'E,
= x(——
dz?  mv = 2 0z "6 o7

~+....)

Equation of particle motion

Let us neglect the change of particle position in x - direction while crossing the gap. Change of
slope of particle trajectory at the entrance of the first gap is

a2 a2
3 2
A@xy, =1 9 1 dE; 4, r? d°E: goy=_9 E: , (.12 dEz)
dz Vz%m 2._00 dz 16._00 dz3 m 2\/1%1 8 E; dzz

where v;, 1s an effective particle velocity at the entrances of the gap, and the values of the field are
taken at the center of the gap. Analogously, the change of the slope of the particle trajectory at the
exit of the first gap 1s

A(@)Om—qL (1- r? 612451)
2 vnut 8 E dZ

where v,,, 1s an effective particle velocity at the exit of the first gap. Total change of slope of the
particle at the first gap 1s

2
A(@)= 4 E; x ( 1 1 )(1 - dlz)
dZ nflc2 2 Bozut Blzn 8E dZ
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Particle Trajectory in Electrostatic Field

To calculate term in brackets, let us approximate the field in the gap by function E E

d+a

where L is a half of an effective gap width L =

Z
dzE _2E0 [1_3(2)2]

<\213
[1+(L)]

The second derivative L = .
dz L

z/L

Approximation of the static field in the gap.
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Particle Trajectory in Electrostatic Field

2 2 2
r- d°E r
The term in bracket taken at the center of thegap: 1-— —=1+—
8E. dz 4L
Finally, the change of slope of particle trajectory at the gap is
dx qg E. 1 1 x>
A = < — 1+
RN AT

If the field in the gap accelerates particles, E,> 0, then S, > and change of slope of

particle trajectory is negative A(ﬂ) <0
dz

If the field in the gap decelerates particles, E,< 0, then B, < and change of slope

of particle trajectory is also negative

in

dx
A(—) <0
(dz)

The gap with electrostatic field focuses particles. Change of slope of particle
trajectory can be written via focal length f and aberration coefficient C,:
1
C, = >
(2L)

dx X
A—)=—=[1+C x"]

dzf 57
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Reduction of Effect of Spherical Aberration in Einzel Lens

3 2
= (£

Focal length: 1
f 8d l1+y

Ratio of potential
difference of the lens U x=UIW

to particle energy W

. . K Fio. 6.2—A short cylinder between two cylinders at a different potential forms & con-
Aberration coefficient C,=—3  verging lens whether the short cylinder is lower or higher in potential than the outer
(K = 4...30) R

| _ _ , Ar, —=Cr’=C (F+dr)’=C 73(1+3@)
n accelerating gap particles are focusing at aberration o o o Iz
the entrance of the lens. Therefore, in lens _ dr
with accelerating voltage increment of C,=C,(1+3—=)
particles radius is negative dr < 0, while in :
lens with decelerating voltage dr > 0. Aberration is stronger in decelerating
Coefficient of spherical aberration has to lens than in accelerating lens at the
be corrected taking into account same value of the focal length.
increment of particle radius inside the gap
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