Phase Stability Principle : Stable and Unstable Phases

RF phase of synchronous particle
is selected to be when the field is
increasing in time. Earlier particle
receive smaller energy kick than
the synchronous one and will be
slowing down with respect to
synchronous particle. Particles,
which arrive later to accelerating
gap, receive larger energy gain,
and will run down the synchronous
particle. When non-equilibrium
particles exchange their positions,
this process is repeated for new
particles setup, which results in
stable longitudinal  oscillations
around synchronous particle. While
synchronous particle monotonically
increases it's energy, other particle
perform oscillation around
synchronous particle, and also
increase  their energy. Such
principle is called resonance
principle of particle acceleration.
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Discovery of Phase Stability Principle (Autophasing)

Vladimir losifovich Veksler Edwin McMillan

Vladimir Veksler (1944) at the Lebedev Institute of Physics and
later Edwin McMillan (1945) at the University of California,
Berkeley, independently discover the principle of phase stability, a

_ cornerstone of modern accelerators.
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Beam Bunching: Analogy with Traffic

Continuous traffic Bunched car traffic created by a traffic light
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Standing Wave as a Combination of Traveling Waves

E
E cos(k z)cos(wt) = E[cos(a)t —kz) + cos(wt+kz)]
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Equivalent Traveling Wave

L/2

Increment of energy of arbitrary particle in RF gap AW =g J Eg (z, 1) cos(wt)dz

—L/2

The RF phase at the time of arrival of

. o . . . 0t(z2)=Q+kz
arbitrary particle in point with coordinate z &)=tk

Standing wave can be represented as combination of traveling waves:

2 1 2 2
Zcos( ﬂLmZ)cos(a)t) = EZcos(a)t — nmz) + — ZCOS(O)I + anZ)

m=1 m=1
traveling waves travellng waves in
in z — direction opposite direction

Only m = 1 harmonic of traveling

waves propagating in z-direction L2 1 cos 1
contributes to energy gain of j 008(271'2 — 2rmz +@)dz :{ ¢, m
particle. In general case m =n _in L L 0, m# 1
(where L = nfBA). n
2wz 2mmg
j cos( + +@)dz =10
—-L/2 L L

~
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Equivalent Traveling Wave (cont.)

27r

Increment of energy of arbitrary particle in RF gap AW =qE, LTI, ([37) Cos @

Taking into account equation for increment of
particle energy dW/ dz = qE (z,1,t) , the equivalent
accelerating traveling wave is

Amplitude of equivalent traveling wave L=ET

Electromagnetic field of equivalent traveling wave

k
E =EI (-
E —
B,=-Plg; k&
C

~
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Longitudinal Dynamics in Equivalent Traveling Wave

dz
Traveling wave propagates with velocity B.c= —
QO [ dz
Integration of this equation l=—+4+ | —
g q o 1B
4

gives the phase of particle with respect to traveling wave ¢=wr— jkz dz
2
B.(2)A

Phase velocity of traveling wave (velocity of synchronous do = wdt — kde =0

where wave number is k_(z)

particle) is determined by condition ¢ = const:
0,
P
- - d dt *
For arbitrary particle: 49 _ o——k
dZ dZ d(D B 2T l_ 1 )
dz A B B.(2)
Longitudinal equations of motion of arbitrary particle AW
——=gEcosQ
dz

~
1% Los Alamos



Longitudinal Dynamics in Equivalent Traveling Wave

Dependence fB,(z) is determined by geometry of dp 2r 1 1
accelerating structure. For synchronous particle 8 = B4(z). dz A E_ B (z))
Synchronous phase has negative value with respect to W ’
peak of the field. —= gE cos

Z

Phase of particle with f > S, becomes more negative, and such particle is slowing
down with respect to synchronous particle. Correspondingly, particle with f < f; is
accelerating with respect to synchronous particle. Therefore, particles perform
oscillations around synchronous particle. Synchronous phase is established
inevitably in a channel with certain dependence pf,z) and certain value of
accelerating field E (autophasing principle):

1 dw,
CoOSQp =———
*qE dz
dW. 2.3 AP,
where change of energy of synchronous particle =mc Py E

With variation of field £, synchronous phase is changing, and particles start
oscillate around new synchronous phase. Therefore, synchronous phase is entirely
determined by the accelerating channel.

~
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Oscillations Around Synchronous Particle

Equations of longitudinal motion in

t li ' kr
raveling wave near axis 1 &y
Y

Longitudinal momentum deviation from
synchronous particle

Deviation from synchronous particle

Phase of particle in traveling wave:

Equations of particle motion
around synchronous particle

df _dz dz

i a Ao
ap=—<L
v* me

~
1% Los Alamos

dp.

= gFE cos
It q ¢
dz p,
dt my
Pe=DP,— Dy
C=2-2

p=wt—k(z,+5)=@,—kC

d
% = gE[cos(, —k .()—cose,]

dg _ P;
dt my’




Hamiltonian of Longitudinal Oscillations

2

Equations of motion around synchronous P: ,
particle can be derived from Hamiltonian H = 2my’ T I [sin(p, —k.C)+kGcosy,]
d, 0H dp; _ JH

Hamiltonian equations of motion:

dt dp, dt aC

Hamiltonian describes particle oscillations around synchronous particle,
where parameters vy, E, k, depend on longitudinal position. Let us assume
that parameters y, E, k,, are changing slowly during particle oscillations.
Hamiltonian with constant values of y, E, k,, is a constant of motion. Actually,
in this case:

dH _JH  0H dg A oH dp; _OH 0H OH JH

=0
di o ol di dp, di L 9p, op, o

Time-independent Hamiltonian coincides with particle energy (kinetic +
potential). Equation dH /dt =0 expresees conservation of energy in isolated
system (conservative approximation). In this case, we get equation for
phase space trajectory p, = p,(C) as equation

H(C,p;)= const
@ Los Alamos



Hamiltonian of Longitudinal Oscillations in (AW, y)

Another pair of canonical variables: yw=¢ - ¢@,, AW =W,— W
Phase deviation from synchronous particle Y= _kzg
Inverse energy deviation from synchronous particle: AW = —ﬁCp;

Hamiltonian of energy-phase oscillations around synchronous particle:

AW)? .
Equations of motions:
X = gEBelcosg, —cos(g, +y)
dy AW

= Q)
dr - myBc’

~
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Accelerating Field, Potential Function, and Separatrix

E cos ¢
1 [ |
]
|
E cos ¢l L1

74|32cp51'(Ps | :'(Ps \/‘P Potential function:
- | {
|
I

E .
V(y)= qk—[sm(gos +)— Y cos,]

|
N TN
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\/ V/; Y= - ¢
._,/ Separatrix of longitudinal phase space
- : oscillations including acceleration.
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Equation of Separatrix

Derivative of potential function determines two dVv gE
extremum points: stable point @ =0 y = I [cos(@, +y)—cosp,[=0
unstable point ¢ = -2¢.. v :
To be stable, potential function must have d*v(0) gE
minimum in extremum point ¢ = 0 , or the u’ = —k—sm(ps >0
second derivative hast to be positive v z
Stability condition sin ¢, <0 ¢, <0
Hamiltonian, corresponding to separatrix H qE[ . N ]
_ B _ oy =——[—SI@ +2¢0 cosp,
Hsep_H(pg_O’l//__z(ps) b kz
Equation for separatrix P’

¢

2my

7t qu [sin(@ . +y)-wcos@ +sing -2¢ cosp =0

<

~
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Phase Width of Separatrix

Phase length of separatrix ®,

is determined from separatrix sin(@, +y)—ycosQ, +sin@, —2¢ cosp =0

equation assuming p.=0

Equation has two roots y, = -2¢,, and y,. Width of separatrix is ®,= w,+ 2 /¢,/

Substitution w, = ®,- 2 /p,/ into upper equation gives expression for determination
of phase width of separatrix:

. 360: G AL I T L T ll :
(I)s — SN (I)s 388 —_— | | | | -
121Q.|= 270 :
l1-cos®, o0 240 f
3 210 i ]
~ 180F / : ]
= 150 | 5 .
For small values of synchronous 120 | :
phase, tg@. =@ sin® ~® — D’ /6 o S RN
d =1 (1)2 /2 i i SO { I - I :
cosP =]1—-D; phase width of separatrix g e L
(I)S = 3‘€05‘ q)s (deg)
Phase width of separatrix as a
function of synchronous phase.
Therefore, ¥, = @ Y P

‘5 Los Alamos Y. Batygin - USPAS 2021 64
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Longitudinal Oscillations Around Synchronous

Equation for longitudinal oscillations
around synchronous particle

At the separatrix k, (= 2¢;,,
frequency is zero:

cos(¢p, —k.)—cosp, =0

Vs
Longitudinal oscillations T
in RF field with ¢4 =- 90°
(Courtesy of Larry
Rybarcyk).

~
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Acceleration and Oscillations Around
Synchronous Particle

>

Particle Momentum

Linear Accelerator

‘@ Los Alamos Y. Batygin - USPAS 2021
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Frequency of Linear Small Amplitude Oscillations

2
d 2{: — qu [cos (@5 - k;{) - coss]
dt my-

Equation for longitudinal oscillations

For small amplitude oscillations cos(p, —k.{)=cosp, + k. sing,

& Z_; (qu !Slngos\
dt’ my”>

)6=0

Frequency of small amplitude linear oscillations

my”> 0

0o \/quZ|sing0S

9 B qgEA |SingDS
A\ me? 27By°

At the separatrix k.(=2¢,, frequency is zero: cos(p, —k.§)—cos@, =

AAAAAAAAAAAAAAAAAA



Hamiltonian of Linear Small Amplitude Oscillations

From Hamiltonian of longitudinal oscillations

2
p E
CS_i_C] [
2my

H = sin(, —k.8)+k.{coso, ]

Z

expanding trigonometric function

sin(p, —k.C)=sing, —k.{cos@, — sin ¢

S

(k8) .
2

Hamiltonian of small linear oscillations:

2

2
H = pC 3 +mj/3Q2C—
2my 2
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Phase Advance of Longitudinal Oscillations

Equation of linear longitudinal oscillations

Change variable z = ¢t

Solution of equation of longitudinal
oscillations

Let S to be a period of focusing structure.
Phase advance of longitudinal oscillations
per focusing period

Phase advance of longitudinal
oscillations per accelerating period

For Alvarez structure L, = A, for m— mode structures L, = SA/2

~
1% Los Alamos

g
- —>+Q°¢=0
d’f Q ,,
dZ2+(ﬁc) 6 =0
=0, COS(Q—Z+l//0)
Bc
Q gEA |Sln(0s
Mo = e \/2”(mc 5 G
Q gEA Jsing| L
=—1I =,[2 :
Hoa =0 \/ﬂ( )W (m)




Phase Advance Including Drift Space

B1 B2 B3
/S VVVVV VAVAVAAAY VEAVEVEVEAVEY
[
a re—»
L
>
Synchronous phase ¢ = q)ref .
Phase advance of longitudinal oscillations U = zn(qEﬂ,)|sm(pS (La )
In single tank o mc*” By’ " BA
Effective accelerating gradient E=E—=«
L+
Effective phase advance of longitudinal oscillations
per accelerating period L
_ gEA_ L |sing| L +1 1
= |27 < > = 1+ —
i, \/ G T gy Cp )=

~
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Longitudinal Acceptance

Longitudinal acceptance is a phase space area of stable oscillations available for
the beam (area of separatrix). Let us determine longitudinal acceptance using
elliptical approximation to separatrix.

The half - width of

p(;sep B
separatrix in momentum -
sep X i u P, ~2B 3 L2 I (0} e
is determined from Y [\

: . mc w g0 ]
separatrix equation s Pesepr |
assuming  =0: I e
—Csep Csep

2 2
_ P 32 C
Hamiltonian H = 2m}/3 +my L2 7 Elliptical approximation of
separatrix

is constant along elliptical trajectory.

2 2
Maximal value of  at ellipse is  my’Q’ S = Pgsep3 or £ = 2@ 19
2 2my P 0 180,

Taking approximation tgp =@ +¢@’ /3

1 Q, Effective length (2§S6p):4 o 0. ~4

?,

?,
- N i ® =27 ~
tgp. /3| of separatrix seff 5 w0 =\

~
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Longitudinal Acceptance (cont.)

Area of separatrix ellipse is 7 {,,, (p,.,/ mc) Phase space area of acceptance is
determined as a product of ellipse semi-axis:

_Csep psep__)‘ﬁz 3( (- b, )
180,

The value of wis not included in the value of acceptance, but is included in units of
acceptance (mm radian), or, more often (w cm mrad).

2
Using approximation {__9s _ 95 , normalized longitudinal acceptance
gp, 3

2 Q
=B () el
RY/4 0]

Often longitudinal acceptance and beam emittance are determined in phase plane
(@ - s, W-W,) in units (T keV deg).

o G
Relationship between phase and longitudinal coordinate Ap =360 ﬁ)L
and between energy and momentum
. o . AW = mcz,B(—
Transformation of longitudinal phase space area in me
different units: 360°
& |7 keV -degl=¢_ . [7-m-rad] mc’[keV ]
Alm]

~
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Longitudinal Acceptance: Example

0.95 Accelerating gradient E=E, T 1.6 MV/m
0l S ' Synchronous phase ¢, -26°
. z: Wavelength, A 1.49 m
s Energy 750 keV
0.75
0.70
- Velocity, 3 0.04
0.60 Longitudinal frequency:
0.55

-206.00 -116.00 -26k.oo 64:00 154.00 O l| -
ase e E Sln
phase [deg] e |4 - ¢S3 =0.0665
LANL DTL Acceptance (red) @ mc” 2mfy

DTL Longitudinal acceptance:

2 Q
e =2 B A=) =71710  nmrad =1.62 & MeV deg
7 o 1gg,
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Unnormalized Longitudinal Beam Emittance

Longitudinal oscillations:

d¢
dz

le

G ma ac _
dz

Unnormalized longitudinal emittance of matched beam:

"Q Los Alaomos Y. Batygin - USPAS 2021

AAAAAAAAAAAAAAAAAA

e
0 (E) =0

C =G max COS(Q—Z+W0)

Bc
Q

. Q
_Cmax N Sln(_ Z + l//0 )

Be c
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Normalized Longitudinal Beam Emittance

dg
dp _ P —, = Afe) > d(fe)
mc mc Q
 y> = 1 dp
max d _ 1
< P v mc
di _d(Be)_ 1 dp
s S T
p max Q max Q
=l Y= 27T(C—)(—)7 :
mc C A
Normalized longitudinal emittance of matched beam:
(@) > Q
e.=Pro=0 v = 2n(%)(5)y3
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Adiabatic Damping of Longitudinal Oscillations

Previous analysis was performed in conservative approximation assuming
accelerator parameters are constant along the machine. Consider now effect of
acceleration on longitudinal oscillations. Equations of motion for small oscillations
around synchronous particle.

2 2
Hamiltonian of linear oscillations H=—""—+my’Q’ &
2my 2
Along phase space trajectory H = const. Let us , ,
divide expression for Hamiltonian by H. Phase D¢ 4 4 _1
space trajectory is an ellipse Pé . giax B

1 / 2H
Semi-axis of ellipse Pt max = 2Hmy’ Conax = Q\ my’

The value of Hamiltonian, H, is the energy of particle oscillation around synchronous
particle. Product of semi-axis of ellipse, gives the value of phase space area
comprised by a particle performing linear longitudinal oscillations. Largest phase

space trajectory comprises longitudinal beam emittance: H

. p ¢ max
Sz - Cmax _
mc mc €

~
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Adiabatic Damping of Longitudinal Oscillations (cont.)

If parameters of accelerator are changing adiabatically along the channel, the
value of beam ellipse in phase space is conserved according to theorem of
adiabatic invariant. In this case, energy of particle oscillation around synchronous
particle, H , is proportional to frequency of longitudinal oscillation, £:

H~Q

Adiabatic change of parameters means that parameters are changing slowly
during one oscillation period of 2m/<2 .

The semi-axes of beam ellipse are changing as
EC 1 3
— 4 max g Q
— ﬁ/ }/3 0 ~ 7/3/2 R pfnc =L CZ ~ 73/291/2

~
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Adiabatic Damping of Longitudinal Oscillations (cont.)

Many accelerators are designed keeping the constant values of equivalent
traveling wave, E, and synchronous phase ¢.. In this case, longitudinal oscillation
frequency drops as

Q ~ ﬂl/zl =
Semi-axes of beam ellipse at phase plane are changing as
Phase length of the bunch and relative momentum spread drop as
S \\

Ap 1 1 /\ ,
D IBS/4 1/4 " \ \/ \/ ;

~
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Adiabatic Phase Damping

Longitudinal Beam Phase Space AW A¢ = Constant

Beam Energy Spread AW = Constant x (By)”"*

Beam Phase Width A= COHSt?/zlt
(br)

P2

) 1)

(a) (b)

Figure 6.8 Phase damping of a longitudinal beam ellipse caused
by acceleration. The phase width of the beam decreases and the

‘5 Los Alamos energy width increasgscwhilgbhs sopal area remains constant.
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Acceleration in Sections with Constant 3

LANSCE high-energy linear accelerator.

Los Alamos Y. Batygin - USPAS 2021

NATIONAL LABORATORY

80



Acceleration in Sections with Constant 3 (cont.)

AW

%o

\;\

T
1
1

de Or

Accelerator structure with
constant length cell.

$g=—80°

Phase space trajectory in structure with
constant length cell.

Because cell lengths are equal, actual synchronous phase in each structure is
@, =-90°. Energy gain per tank (for 7T - structure):

BA

AW
cell 2

ref — quT COS(prefN

~
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Acceleration in Multiple Sections with Constant f3

(cont.)
B1 B2 B3
S VVVVV VAAVAVA AAY, FAVEAVEAVAVAY.
SN\ SN\NSN ANNNNN N NNNN
= e »
, B1< Bo<B3
>
A7
Effective synchronous phase iV o
1 dw. N - /
COs L == 3
¢eﬂecttve_s q E dZ ///
/_//747
Effective accelerating gradient: -
~ L
E=E—* £
L +1 (Solid line) variation of synchronous velocity along

multiple sections with constant 3, (dotted line)

averaged synchronous velocity.
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Acceleration in Multiple Sections with Constant 3

Dynamics in RF field of multiple Dynamics around
section with constant 8 synchronous particle

S > 2> »» ) )-)»)/‘)_)))’)
> >>»>“)m) >5 T T T T T T T T l
St — 31 0—3
. 2103
],
é )
E I T 11078
Q B D DD IOED B > > 2
s < , = |
S —>> D - o 0 { | RN
5 _ D> ») > T T 1 \ K% N
> D ZBPS T PO i —1-10 s A b
) = " I i
- —210-3 N N i
e \ /4
3103 a\\'—\\—_’ /
10 1 | I 2 1 1 1 1 1 1 1 | 1 1

—-60 -50 —40 -30 -20 -10 0 10 20 30 40
@s - ¢ (deg)

Phase in RF Field, ¢ (deg)
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Dynamics in Sections with 3, = 1

In accelerating sections with B, = 1 there is no synchronous particles.

Equation for change of particle momentum: % =qEcos@
Equation for change of particle phase @ =wt—k_z C;—(f = — 2Tﬂﬁc
Wave number for B = 1 k= 2w _ 21
O BA A
Introducing dimensionless momentum P, = ﬁ we can write:
dp,  gEA COS
do 2mmc’ (14 Py : )
1+ P,
> qgEA

Integration gives: |C =+/1+Dp, — D, +(277:mc2 )sing

where C is the constant of integration.

~
1% Los Alamos



1

Phase Space Trajectories for 3,

85
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Minimal Energy of Particles Accelerated in Wave with 8, = 1

gEA
2mmc’

Accelerated particles: P, = < C=( —)sing

gEA

2mwmc

If C >

- , P, is finite and particles are not accelerated until infinity

gEA
2mmc’

For accelerated particles (C <

Therefore boundary of acceleration is determined by € =

EA
q S (1=sing) =1+ p; - p,

Minimal value p, r, is determlned by ¢ =-7t/2, or Slngo = -1

gEA | Forindefinite acceleration of protons in wave with £ =5
1_4(27z:mc ) MV/m, A =1m, pymin = 294, or minimal kinetic energy
pgomin — qu Wmin= 275 Gev
4( 7)
27tme” Beams with lower energies can be accelerated in finite

length section with B,= 1 within -n/2 < ¢ < n/2.

~
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RF Cavities Tuning: Threshold Field

The increment of energy that the equilibrium particle receives during each
acceleration period is determined by the increase in the period length and,
therefore, is determined by the design od accelerator:

AW =eE TLcos@, = const

The threshold field at which the equilibrium phase is still real (cos ¢, =1) is
AW,
" eTL

Accelerating field must be E,zE,
E

. _ _th
Synchronous phase is COSQ, =——

The threshold field is determined through measurement of width of energy capture
region as a function of field in resonator. This is done by measurement of dependence
of accelerated beam current versus injection energy. The threshold field is determined
by extrapolating of the energy width of capture region to zero value.

~
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Phase Scans to Set the Phase and Amplitude of RF Linac

Beam Module N-1 Module N Absorber Collector
0 ) [ )
. ( J
o

Phase adjuster

Schematic of the phase scan measurement setup. At LANL linac
there are 4 absorber/collectors at 40, 70, 100, and 121 MeV.

Set amplitude

Set phase

-80.0 -60.0 -40.0 -20.0 00 20.0 40.0 600 800

Result of phase scan
1% Los Alamos Y. Batygin - USPAS 2021 88

NATIONAL LABORATORY



Phase Scans to Set the Phase and Amplitude of RF Linac

>

w

Energy gain of synchronous AWS = eEL COS(Q, = const N
particle per gap is constant

. \L T \L | i Y /Ti{ >
Decrease of accelerating |E ¥ —cosg, | - v —> &, =30 7 = \{/\Z’, . $
field results in decrease of

phase width of separatirx |E T—cos 0. L >0, T D, =30, T
(and vise versa)

0850 l -
| — :
—.._\ E, *1.50 Accelerated
\‘_—/ . X Bacw
:b——’% /’//Ec: c::: (perf:ent) 50k
0.800 / r_'_é '0‘75’ 21.65 L. FWHM
 #/Eq * 170 =]
4
/ ) 0 ¢,

/4 Accelerated beam as a function
7?/ . of beam phase
?/ AW

ARl
1N

0.650
-100 -80 -60 -40 =20 o 20 40 60 80 100
PHASE (degrees) .

Longitudinal acceptance of RF linac for 5
different average axial field amplitudes.

ENERGY (MeV)

: ’ L ctiiling,, p28°
L PP I it LLEFFFTE

L LEELH 7 P L

|

separatrix (rf ‘buckets’)
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Determination of Bunch Length Using Phase Scan

12 £ 2 1] PSlZl k¥
LB 810 usec
110 07-Aug-2013 17:36:22
Rel. Zero Phase=
100 e 232.1 deg
#/N NN 0seM001I02= -0, 84uA
% ;
o / Percent Phase
S L Trans  Spread
c /
2 / 50 5,7
@ f 60 7.0
E o« f 0 9.6
s | 80 12.1
L o - 0 182
A 05 21.3
o ;/‘.
S 4 iq
T i %
L h
m : \
& 4 a
20 .1:"; H
i .
J \
10 = 4 "
0 fopobarsd ko ':f ''''''''
K s s TS AR SR SN i 0

Relative Phase (deg)

LANL Phase Scan at the energy of 121 MeV.
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Delta-t Tuning Procedure

(A) 5 BPM1 (B) BPM2 (C)
AB . L

Accelerating Module é

RF Phase

Time-of-flight of the beam centroid from location A to B and from Ato C: 5, tsc

Change in t,g fsc values when accelerating module is switched from off to on are

Ly = tAB,oﬁ _tAB,on fe = tAC,Oﬁ B tAC,on
Deviation of values tg t; from design values:
D Ap, — A D AW AW
Aty =~ 3AB AW, — P Pa_ 13[ /;_ Bs]
me™(PY), 0 me” (By),  (BY);

D —-D AW AW
At =At,——2—L[—4_—b]
(By), (By);
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Delta-t Tune

wdl 666.2 a2y K 23-MAY~18 10:52:
). 40
ASF PSE DTS DT C
~4856 104 ) 0 31
0.30 1456 651 0.000 0.022
1456 641 ~0.003 0.003
1453 642 -0.004 0 4
1453 642 0.002 0.007
0.20 453 64 ). 00
1452 646 -0.007 0.000
: 646 ~0.008 ~0.004
1452 647 ~0.007 ~0.002
.40 1457 646 -0.003 0.008
- 1457 643 0.005 0.003
8 1457 643 -0.008% - 0,005
w
< 0.00
O
= ) .
() 1/A22 = ~0.009 ns/MeV
-0.10
0.20
.30
«0.40
-0.40 -0.30 -0.20 «0.10 0.00 0.10 0.20 0.30 0.40

DTB (NSEC)

Output of delta-t program displaying search of amplitude (ASP) and

phase (PSP) while minimizing values of (DTB) and (DTC).
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Delta-t Tuning Issues

Delta-t tuning procedure works well In linac phase advance of
only when particles perform significant longitudinal oscillation per
longitudinal oscillations within RF module drops as

tanks. If longitudinal oscillations are
“frozen”, then combination of Atg, At,
can be obtained with infinitely large
number of combinations of (E, @,).

B ‘singos
(BrY

‘Ltcuz

Phase Oscillations

T 1T 71 1 1 L A N N B 1.110
0.505 e N
> W=100 MeV W=382 MeV N
-] —— 1.105
\\\\\ 4
0.495 /
_— 1.100
—_— 7 >
z 0.490 —— = P
_—
0.485 = 1.095 \
‘\//
— |
0.480
\>
- : 1.090
|1 /
0.475 — /
|| -
o470 1 1 o 1 L L L L ] -&s\
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Phase Scans
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Phase scan: measurement of time of arrival of the beam to
downstream pickup loop versus RF phase of the accelerating
module.
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Measurement of Beam Energy by Difference in
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Beam RF phases measured at delta-t loops.
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Time-Of-Flight Measurement of Absolute Beam Energy
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Longitudinal Beam Emittance Measurement
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Measurement of Beam Energy Spread

High-dispersive part of 800 MeV beamline
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Bunch Shape Monitor
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Figure 1: General configuration of Bunch Shape Monitor
(1 —wire target, 2-input collimator, 3-deflector, 4-output
collimator, 5-electron collector).
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of CCL#1 and an equivalent phase ellipse.



