

U.S. Particle Accelerator School January 25 – February 19, 2021

VUV and X-ray Free-Electron Lasers

Optimization and Beam Shaping

Nicole Neveu,¹ Petr Anisimov,² Dinh C. Nguyen¹

¹ SLAC National Accelerator Laboratory

² Los Alamos National Laboratory

Photoinjector Optimization

Laser shaping:

Operations baseline:

- Gaussian longitudinal profile
- Uniform or truncated gaussian in transverse
 - Feng, et al.
 - Single pulse: 10-30 ps FWHM
- Radius options:
 - Determined by pre-defined/installed iris wheel with cut outs

	Running (Filter)			主國國
	ACF: 20.329 ps			
	· · · · ·	1		
Τe	emporal meas	uremen	t with cros	SS-
	rrolator in LC			
CC		LS-II las	erroom	
		nahri		
	S Glievich a Miar			
	and S. Droste			$\langle \rangle$

Parameter	Value
Charge	100 pC
Laser radius	0.5 mm
Laser FWHM	20 ps
Gun phase	Max energy gain
Gun phase Field on cathode	Max energy gain 20 MV/m
Gun phase Field on cathode Buncher	Max energy gain 20 MV/m on

Superconducting cryomodule

- SRF niobium cavities
- 8 cavities per cryomodule
 - Standing wave, 1.3 GHz
- Total 37 cryomodules
- Installation location decided based on design simulations w/ flattop profile in longitudinal

		— Thermal Shield			
	Fellin		Vacuum Vessel	Waveguide	Ð
	Beamline (Niobium) Cavity String	Helium Gas			
		Return Pipe (HGR	P) —		

Parameters	Value
Cavity phases	+/-40 deg
Cavity gradients (on axis)	32 MV/m

Optimization Vocabulary

- Design variables: knobs
- **Objectives:** goals of the simulation/experiment
 - usually emittance & bunch length for injectors
- Photoinjector MOGA optimization

Constant Design Variables

Variable	Value	Unit
Gun Gradient	20	MV/m
Buncher Gradient	~2	MV/m
Cavity 5-8 Gradient	32	MV/m
Cavity 5-8 Phase	max energy	Degrees
Laser radius	0.5	mm
Laser FWHM	20	ps

- **Pareto front:** set of 'best' points given trade off between two parameters.
 - Region where you can not improve one parameter w/o 'hurting' the other.
 - Examples on next slide

Flexible design Variables

Variable	Min	Мах	Unit
Sol 1	0	0.075	Т
Sol 2	0	0.075	Т
Gun Phase	-10	10	Degrees
Buncher Phase	-90	-40	Degrees
Cavity Phases (4)	-20	20	Degrees
Cavity Gradients (4)	0	32	MV/m

Baseline injector optimization results

- Flattop
 - Cryomodule at commissioning baseline
 - Gauss
 - Cryomodule at commissioning baseline
 - First_4cryo
 - First 4 cryomodule cavity phases and gradients

• First 4 cryo = varied gun, buncher, solenoids,

and first 4 cavities of cryomodule

Varied Laser and Gun Energy

- Requirements:
- Final energy >90 MeV
- Energy spread < 0.5 MeV
- Laser radius and FWHM has large impact on results
- Gun gradient set to produce:
 - 700 keV or 650 keV

Optimizations with one cavity failure:

- Run 1 & 3:
 - Laser FWHM = 20ps
 - Laser radius = 1.0 mm
 - Cavity 1 gradient = 0 MV/m
- Run 2 & 4:
 - Laser radius and FWHM variable
 - Cavity 1 gradient = 0 MV/m
- All runs:
 - Cavity 2-4 allowed to vary
 - Cavity 5-8 gradient = 32 MV/m
 - Peak field on axis*

As built optimizations

• Operations study for low charge commissioning

Laser shaping

Sum Frequency Generation (SFG)

- Ongoing R&D by the laser group + ARD
 - R. Lemons, S. Carbajo, J. Duris, et al.
 - Same transverse/radius options as gaussian pulse
 - Wide range of longitudinal profiles from Gaussian to puesdo-square pulses
- Generation of non-gaussian temporal profiles
- Flexible FWHM (GDD)
 - Group delay dispersion
- 'Rounding'
 - Scale factor (SF) between Taylor coefficients

Filtered profiles

- Filter removes large ripples
 - Filter choice was static for each optimization
 - Varied from 1, 0.7, 0.5 nm
- GDD and SF added as optimization variables
 - These are tunable in the laser room

Preliminary SFG laser shaping

- Results shown here are 15 meters:
 - 100 pC
 - After first cryomodule
 - SSNL BW = 1, 0.7, 0.5
- Magenta = best emittance values near 1 (mm) bunch length

13

SSNL Bandwidth 0.7 nm

Preliminary SFG results

Gauss vs. SFG BW 1.0

Summary:

- Optimization helps improve, understand, and estimate machine performance
- Beam emittance is sensitive to parameters in gun and first accelerating cavties
- Flexible laser radius and FWHM is helpful for mitigating space charge forces
- Small deviations in gun energy does not degrade performance dramatically
 - 700keV or 650 keV vs. 750 keV
- A failed cavity in the first cryomodule can be a showstopper
- New laser shaping techniques can help mitigate emittance growth by reducing 'tails' of the beam

Backup

Software Tools

Optimization frameworks:

- Xopt: <u>https://github.com/ChristopherMayes/xopt</u>
 - Astra, GPT
- LibEnsemble: <u>https://github.com/Libensemble/libensemble</u>
 - OPAL

Beam physics:

- Distgen: <u>https://github.com/ColwynGulliford/distgen</u>
- ASTRA: <u>https://www.desy.de/~mpyflo/</u>
- Lume-astra: <u>https://github.com/ChristopherMayes/lume-astra</u>
- OPAL: <u>https://gitlab.psi.ch/OPAL/src/-/wikis/home</u>
- openPMD-beamphysics: <u>https://github.com/ChristopherMayes/openPMD-beamphysics</u>

Xopt: Constraints

- Two objectives minimized:
 - 95% emittance
 - bunch length
- Six constraints:
 - Conditions to help optimizer reject bad parameter combinations

Output	Operator	Value
Kinetic Energy	>	90 MeV
Energy Spread	<	200 keV
Bunch Length	<	1.5 mm
95% Emittance	<	90 um
Particle loss	=	0
Higher order dE	<	5 keV

NSGA-II in a nutshell:

- 1. Do an initial sample
 - parent population, Po
- Find the pareto front (Fi) through sorting objectives
 - Pareto front = "nondominated"
- Calculate crowding distance, and sort to pick new population, P1
- 4. Use selection, crossover, and mutation to generate children (new population)
- 5. Evaluate new population (run simulation)
- 6. Repeat starting at #2.

http://oklahomaanalytics.com/data-sciencetechniques/nsga-ii-explained/

Caveat...ignoring hyperparameter tuning, summer student worked on this

K. Deb, et al. NSGA-II, IEEE Trans. On , 2002

