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Tuesday (Jan 26) Lecture Outline

• Nonlinear Harmonic Generation 10:00 – 10:30

• High-Gain Harmonic Generation (HGHG) 10:30 – 11:00

• Break 11:00 – 11:10

• Echo-Enabled Harmonic Generation (EEHG) 11:10 – 11:40

Time
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Nonlinear Harmonic Generation
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Harmonic Generation at FLASH EUV FEL
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Fundamental wavelength = 13.7 nm

h l (nm) Pulse energy (mJ)

1 13.7 40

3 4.6 0.25

5 2.74 0.01



Harmonic Generation in an FEL

5

𝑐𝑘 =
1

𝜋
න
0

2𝜋

𝑆 𝜓 exp −𝑖𝑘𝜓𝑛 𝑑𝜓

𝑆 𝜓 =
𝑎0
2
+ 𝑅𝑒 ෍

𝑘=1

∞

𝑐𝑘exp 𝑖𝑘𝜓

In the special case where the longitudinal distribution is periodic in phase

Complex Fourier coefficients
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Strong bunching along the longitudinal coordinate 𝜁
of the electron bunch translates into non-zero Fourier 
coefficients at multiple harmonic frequencies



1D FEL Simulation with Third Harmonic
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Harmonic Generation in a Single-pass FEL
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Harmonic bunching occurs at larger z but the 
harmonic bunching exponential growth rates are 
greater than the fundamental bunching growth 
rate. However, the bunching factor decreases with 
harmonic number. As a result, the FEL harmonic 
power also decreases with harmonic number.

H. Freund et al.,  IEEE J. Quantum Elec. 36(3), 275 (2000).



High-Gain Harmonic Generation (HGHG)
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Longitudinal Motion Transfer Matrix
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Mzd

Myy’

Mxx’

𝑹𝑧𝛿 =

𝑅55 𝑅56

𝑅65 𝑅66

The 6D phase-space transfer matrices

It is customary to denote the transfer matrix 
for the longitudinal motions (z and relative 
energy deviation d ) as Rzd

R56 matrix element transforms the relative difference in energy d into position z along the bunch  



Chicane R56
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At 𝐸0, the beam follows the red path with an extra pathlength relative to the straight path (dashed) as given by

If we raise the beam energy to 𝐸0 + 𝛿𝐸, the beam follows a slightly shorter path (blue) with an extra pathlength
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Principle of HGHG FEL
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HGHG uses an external laser to modulate the electron energy in the modulator, followed by a 
chicane to converts the energy modulations into density modulations, and finally the bunched 
beam with high Fourier coefficients radiates coherently at a harmonic frequency in the radiator.



Dimensionless Variables
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Dimensionless longitudinal position, ξ, which is defined as 𝜉 =
2​𝜋​𝑠

𝜆where s is the longitudinal position in meters, and λ is the 
wavelength of the laser used to modulate the beam.

The energy of the electrons is described by the 
dimensionless energy deviation 𝑝 which is given by:

Here 𝜎𝛾 is the rms energy spread in the electron beam 

before the beam is modulated. 

𝑝 =
𝛾 − 𝛾0
𝜎𝛾

We will assume that the initial electron distribution is 
Gaussian in energy and is independent of the longitudinal 
coordinate.  The initial dimensionless distribution is:

𝑓0 𝑝 =
𝑁0

2​𝜋
𝑒−

𝑝2

2



Dimensionless Modulation Strength A
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Electron phase space after the modulator

𝑝′ = 𝑝 + 𝐴 sin 𝜉

The prime denotes the phase space after modulation, 
while the unprimed coordinates are the phase space 
before modulation.  The dimensionless parameter 𝐴
represents the energy modulation strength as given by:

𝐴 =
Δ𝛾

𝜎𝛾The energy modulation Δ𝛾 depends on the laser power, 
laser transverse size, undulator length and undulator K



Dimensionless Buncher Strength B
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Next the electron beam passes through a chicane where 
it undergoes bunching.  The new phase space is:

𝜉′ = 𝜉 + 𝐵​𝑝′

𝜉′ = 𝜉 + 𝐵 𝑝 + 𝐴 sin 𝜉

The dimensionless parameter B describes the 
strength of the chicane, and is given by: 𝐵 =

2𝜋𝑅56𝜎𝛾
𝜆1𝛾0



Phase-space Distribution
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Harmonic Bunching Factor
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Courtesy of Quinn Marksteiner (LANL)



Current Enhancement
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phase 
space

Final 
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space

Initial 
current

Final 
current

Courtesy of Quinn Marksteiner (LANL)



HGHG Demonstration in the UV and VUV
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Spectra of HGHG (red) and unsaturated SASE (blue) 
under the same conditions. HGHG exhibits small 
shot-to-shot pulse energy fluctuations. 0.23 nm FWHM

SASE x105

Wavelength (nm)
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HGHGMod Chicane Radiator

800 nm 266nm (120 mJ)

88nm 

(1 mJ)

L. Yu et al.,  Phys. Rev. Lett. 91, 074801-1 (2003).



Limitations of HGHG
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𝑏 𝑛 < exp −
1

2
𝑛2

𝜎𝛾

Δ𝛾

2

Maximum harmonic bunching factor

Small changes in phase of the laser translates to large phase changes in the harmonic



Echo Enabled Harmonic Generation
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Shearing the Distribution with Large R56 (B)

B = 0.34 B = 0.6 B = 1.0

B = 2.0 B = 5.0 B = 10.0



Principle of EEHG - 1
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Modulator 1 Radiator UndulatorModulator 2

200 nm
Laser

1.8 GeV
E-Beam

200 nm
Laser

Soft X-ray

𝐴1
𝐵1 𝐴2 𝐵2

Distribution after 𝐵1 Distribution after 𝐴2 Distribution after 𝐵2

D. Xiang and G. Stupakov,  Phys. Rev. ST Accel. Beams 12, 030702 (2009).



Principle of EEHG - 2
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Distribution after 𝐵1 Distribution after 𝐴2

Distribution after 𝐵2

D. Xiang and G. Stupakov,  Phys. Rev. ST Accel. Beams 12, 030702 (2009).



Phase Space after the First Modulator 𝐴1
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The first modulator imparts a sinusoidal 
modulation in energy, identical to the modulator in 
HGHG.  Typical value of modulation is 𝐴1 ≈ 3.

𝑝′ = 𝑝 + 𝐴1 sin 𝜉

The first modulator modifies phase space 
distribution according to:



Phase Space after the First Chicane 𝑩1
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The first chicane following the first modulator 
produces energy stripes.  The larger the chicane, 
the thinner each energy stripe will be. For the 24th

harmonic, a value of bunching is 𝐵1 ≈ 26.8.

The first chicane modifies phase space distribution 
according to:

𝜉′ = 𝜉 + 𝐵1​𝑝′

𝜉′ = 𝜉 + 𝐵1 𝑝 + 𝐴1 sin 𝜉



Phase Space after the Second Modulator 𝐴𝟐
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The second modulator gives each stripe a 
sinusoidal modulation. 

The second modulator modifies phase space 
distribution according to:

𝑝′′ = 𝑝′ + 𝐴2 sin 𝜅𝜉′

𝑝′′ = 𝑝 + 𝐴1 sin 𝜉 + 𝐴2 sin 𝜅 𝜉 + 𝐵1 𝑝 + 𝐴1 sin 𝜉

𝜅 =
𝑘𝑛
𝑘1



Phase Space after the Final Chicane 𝑩𝟐
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The final chicane rotates each of the stretched out 
energy bands in phase space, and produces 
bunching at very high harmonic.

The final chicane modifies phase space distribution 
according to:

𝜉′′ = 𝜉 + 𝐵1 𝑝 + 𝐴1 sin 𝜉

𝜉′′ = 𝜉 + 𝐵1 + 𝐵2 𝑝 + 𝐴1 𝐵1 + 𝐵2 sin 𝜉 + 𝐴2𝐵2 sin 𝜅𝜉 + 𝜅𝐵1𝑝 + 𝜅𝐴1𝐵1 sin 𝜉 + 𝜙



EEHG is better than HGHG at high harmonics
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𝑏𝑛 ≈
0.39

𝑛1/3

Scaling of EEHG bunching factor is favorable 
toward high harmonic generation.



Summary of Harmonic Generation
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• FELs produce radiation at the fundamental and odd harmonics along the electron 
beam axis.  The harmonic power decreases rapidly with harmonic number.

• High-Gain Harmonic Generation (HGHG) produces narrow-linewidth radiation at 
the harmonic of the injected laser.  HGHG is sensitive to energy spread as well as 
phase and frequency changes in the laser.

• Echo-Enabled Harmonic Generation (EEHG) is an attractive technique to the 
generation of very high harmonic from the laser-driven harmonic FEL.


