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Monday (Jan 25) Lecture Outline

• VUV and X-ray FELs in the World 10:00 – 10:30

• Properties of electromagnetic radiation 10:30 – 10:50

• Break 10:50 – 11:00

• Electron motions in an undulator 11:00 – 11:20

• Undulator radiation 11:20 – 11:40

• Introduction to FELs 11:40 – Noon

Time
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VUV and X-ray FELs in the World
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World Map of VUV and X-ray FELs
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FLASH
European XFEL

Germany

LCLS
LCLS-II & LCLS-II-HE

USA

SwissFEL
Switzerland

POLFEL
Poland

SDUV-SXFEL
SHINE
China

PAL XFEL
S. Korea

SACLA
Japan

FERMI
Italy

SPARC
Italy

Blue=VUV to Soft X-ray
Purple=Soft to Hard X-ray



Sub-systems of an RF Linac Driven X-ray FEL
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An RF-linac driven XFEL has the following sub-systems in order to produce

• PHOTOINJECTOR to generate low-emittance electrons in ps bunches

• RF LINAC to accelerate the electron beams to GeV energy

• BUNCH COMPRESSORS to shorten the bunches and produce kA current

• LASER HEATER to reduce the microbunching instabilities

• BEAM OPTICS to transport the electron beams to the undulators

• UNDULATORS to generate and amplify the radiation in a single pass

• DIAGNOSTICS to characterize the electron & FEL beams

Laser 
heaterPhotoinjector

L1
L2   L3   BC2   

Undulators   
X-rays

electrons

L0
Optics   

Low-emittance 
electron beams

High peak current

Single-pass, high-
gain X-ray FEL

Layout of the sub-systems of the LCLS first X-ray FEL



Linac Coherent Light Source

The last 1 km of the SLAC linac 
accelerates electrons up to 15 GeV

Starting at Sector 20, 
electron bunches are 
injected at 135 MeV

140-m long undulator hall with 2 side-by-side 
undulators, Hard X-ray (HXR) and Soft X-ray (SXR)

Near Experimental Hall

Linac-to-Undulator Transport (340m)

Far Experimental Hall
6

LCLS-II 
LCLS-II-HE Photoinjector



RF-linac Driven FEL Pulse Format
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Low-repetition-rate Mode (e.g., LCLS CuRF)

~8 ms (1/120 Hz)

~10 fs

Continuous-Wave Mode (e.g., LCLS-II/HE, SHINE)

~1 ms (1/MHz)

~1 ms macropulse

~200ns

Burst Mode (e.g., Eu-XFEL)

micropulses

~1 ms macropulse

~100 ms (1/10 Hz)



Planar Undulators
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𝑢

electron beam

magnets

magnetic field

strongback

LCLS-II-HE Soft X-ray Undulator

X-ray polarization 
(same direction as 
electron oscillations)Undulator magnetic field varies sinusoidally 

with z and points in the y direction

B = 𝐵0𝑠𝑖𝑛 𝑘𝑢𝑧 ෝ𝒚

Planar undulators produce linearly (plane) 
polarized radiation at the fundamental 
frequency and also at harmonic frequencies.



Helical Superconducting Undulators
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B = 𝐵0 𝑐𝑜𝑠 𝑘𝑢𝑧 ෝ𝒙 + 𝑠𝑖𝑛 𝑘𝑢𝑧 ෝ𝒚

Superconducting coils are wound around 
the electron beam pipe in a helical pattern.

Undulator magnetic field varies sinusoidally 
with z and points in both x and y directions in 
a helical fashion.

Snapshots of the helical 
undulator magnetic field at 
different locations in one 
undulator period.

Helical undulators produce circularly 
polarized radiation at the fundamental 
frequency.  Helical undulators do not 
produce undulator radiation at the 
harmonic frequencies.

𝑘𝑢 =
2𝜋

𝑢
Undulator wavenumber



Delta Undulators (Variable Polarization)
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Delta undulator cross-section

Varying the linear positions of the magnet jaws 
changes radiation polarization from linear to circular 



X-ray FEL Wavelength for a Planar Undulator
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 =
𝑢

2𝛾2
1 +

𝐾2

2

FEL resonant wavelength
Undulator period

u



u + radiation wave 

e- trajectory

𝑧

𝑥

𝜃𝑚𝑎𝑥

Lorentz relativistic factor
(Dimensionless beam energy)

𝛾 =
𝐸𝑡𝑜𝑡𝑎𝑙
𝑚𝑒𝑐

2

Undulator parameter

K =
𝑒𝑢𝐵0
2𝜋𝑚𝑒𝑐

𝑒𝐵0
𝑘𝑢𝑚𝑒𝑐

=

𝜃𝑚𝑎𝑥 =
𝐾

𝛾

Dimensionless K parameter is a measure 
of how much the electron beam is 
deflected transversely in the undulator

K = 0.934 𝐵0𝑢

B0 in tesla 𝑢 in cm



Electron Beam Kinematics
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𝛾 =
𝐸𝑡𝑜𝑡𝑎𝑙
𝑚𝑒𝑐

2

Kinetic energy
Rest mass energy

0.511 MeV

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑘 + 𝑚𝑒𝑐
2

Electron velocity relative to the speed of light

𝛽 =
𝑣

𝑐

Dimensionless electron beam energy

𝛾 ≈ 1957 𝐸𝑏 𝐺𝑒𝑉

Approximate g for GeV electrons

𝐸𝑡𝑜𝑡𝑎𝑙 ≈ 𝐸𝑘 = 𝐸𝑏

𝛾 =
1

1 − 𝛽2

Using the g-b relation, we can calculate b

We shall see later the longitudinal component of 
the velocity, ʋz is reduced when the electrons 
undergo transverse oscillations in the undulator.

𝛽 = 1 −
1

𝛾2

𝛽 ≈ 1 −
1

2𝛾2

Approximate b for 
GeV electrons



X-ray FEL Wavelength Tuning
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The FEL x-ray wavelength can be tuned by one of the following methods 

1. varying the electron beam energy, Eb and thus the beam g

2. varying the gap by moving the magnet jaws symmetrically in and out, thus changing the K value

𝐵0 𝑔,  𝑢 = 3.13𝐵𝑟 𝑒𝑥𝑝 −5.08
𝑔

𝑢
+ 1.54

𝑔

𝑢

2The on-axis magnetic field amplitude depends 
on the gap-to-period ratio. The remanence 
magnetic field,      of NdFeB is about 1.2 tesla.𝐵𝑟

e- beam

Larger gap – Smaller K – Shorter 

period

gap

poles magnets

gap

Small gap – Large K – Long 

e- beam



LCLS-II-HE Variable-Gap Soft X-ray Undulator
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This example illustrates how we change the LCLS X-ray FEL 
wavelength by varying the magnet gap of the Soft X-ray 
(SXR) undulator which has an undulator period of 56 mm.

The undulator K parameter decreases and photon energy 
increases as we increase the gap (right figures), using the 
LCLS-II-HE 8-GeV electron beams as an example. 
However, opening the gap to increase the photon energy 
also reduces the FEL output pulse energy (below).
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Properties of Electromagnetic Radiation
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EM Radiation in Free Space

High frequency

Long wavelengthLow frequency

Short wavelength
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Photon energy ℎ𝜈 =
1239.84 𝑒𝑉

λ 𝑛𝑚

 ∙ ℎ𝜈 = ℎ𝑐 = 1.23984 ∙ 10−6𝑒V−m

𝑐 = 2.9979 ∙ 108 𝑚/𝑠

ℎ = 4.1357 ∙ 10−15 𝑒V ∙ 𝑠

𝑐

𝑥

𝑦 𝑧



Accelerated charged particles emit EM radiation
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Bremsstrahlung

Synchrotron radiation

Radiation from oscillatory motions

Radiation from circular motions



Generations of Beam-based Radiation Sources
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• X-ray Tubes

– X-ray tubes emit Bremsstrahlung and characteristic peaks

– Characteristic peaks are narrow-line atomic transitions

• Synchrotron Radiation (1st and 2nd Generation Light Sources)

– Electrons going around bends produce synchrotron radiation

– First generation SR operated as parasitic radiation devices

– Second generation SR are dedicated to radiation production

• Synchrotron Radiation (3rd Generation Light Sources)

– 3rd Gen SR have low-emittance lattice with straight sections

– Bending magnet and wiggler radiation is broadband

– Undulator radiation has narrow spectral lines

• X-ray Free-Electron Lasers (4th Generation Light Sources)

– XFEL produce coherent, tunable, narrow-band x-rays

– X-ray pulses are typically a few femtoseconds long

– FEL peak brilliance is typically 10 orders of magnitude brighter 

than third-generation SR.



Electric Field of a Gaussian Wave-Packet

Radiation intensity
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𝐼 =
1

2𝑍0
𝐸 𝑧, 𝑡 2

𝐼0 =
1

2𝑍0
𝐸0

2

Wavenumber

Phase

𝐸(𝑧, 𝑡) = 𝐸0𝑒
𝑖 𝑘𝑧−𝜔𝑡+𝜓 𝑒

−
𝑡−𝑡0

2

2𝜎𝑡
2

+ c.c.

Amplitude

Angular frequency

Gaussian envelope rms temporal width

𝑘 =
2𝜋

 𝜔 =
2𝜋𝑐



Normalized 
intensity envelope

Gaussian envelope
Impedance of free space = 120p 

Complex electric 
field of a Gaussian 
wave-packet

Fast carrier waves at w



Fourier Transform a Gaussian Pulse

𝐸(𝑡) = 𝐸0𝑒
−𝑖𝜔𝑟𝑡𝑒

−
𝑡2

2𝜎𝑡
2

20

න𝑒−𝑖 𝜔−𝜔𝑟 𝑡𝑒
−

𝑡2

2𝜎𝑡
2
𝑑𝑡ℰ(𝜔) =

𝐸0

2𝜋

ℰ(𝜔) =
𝐸0
2𝜎𝜔

𝑒
−

𝜔−𝜔𝑟
2

2𝜎𝜔
2

𝜎𝜔𝜎𝑡 = ½

2𝜎𝑡

Time domain

2𝜎𝜔

𝜔𝑟

Frequency domain

Fourier Transform limit 
of time-bandwidth 

product (rms widths)

Consider only the time-dependent part of a 
Gaussian wave-packet. Its Fourier Transform 
is a Gaussian spectrum centered at ± 𝜔𝑟

ℰ 𝜔 2

In general, TBW is 
larger than 1/2 



Radiation Pulse & Time-Bandwidth Product

• Time-bandwidth product for a Gaussian pulse

• Multiply both sides by the Planck’s constant in eV-s

𝛿𝜀 ∙ 𝛿𝑡 ≥ 1.82 𝑒𝑉 ∙ 𝑓𝑠

𝛿𝜈 ∙ 𝛿𝑡 =
4𝑙𝑛2

𝜋
𝜎𝜔𝜎𝑡 = 0.44
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ℎ = 4.136 ∙ 10−15 𝑒V-s

Full-width-at-half-maximum (FWHM) in    
time       and linear frequency domain𝛿𝑡 𝛿𝜈

𝜈 =
𝜔

2𝜋

Linear frequency

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

𝛿𝑡 = 2 2𝑙𝑛2 𝜎𝑡
d𝑡

FWHM

𝐸 𝑡 2

𝑡 − 𝑡0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

𝛿𝜈 = 2 2𝑙𝑛2
𝜎𝜔
2𝜋

𝛿𝜈

𝜈 − 𝜈𝑟

ℰ 𝜈 2Energy (eV) – time FWHM product

ℎ𝛿𝜈 ∙ 𝛿𝑡 = 1.82 𝑒𝑉 ∙ 𝑓𝑠



Wave Equation & Helmholtz Equation

• Wave equation

• Solution to the wave equation

• Helmholtz equation for the time-independent wave amplitude

2 −
1

𝑐2
𝜕2

𝜕𝑡2
𝑢 𝒓, 𝑡 = 0

22

2 + 𝑘2  𝒓 = 0

 𝒓 = 𝐴 𝒓 𝑒𝑖𝒌·𝒓

Time-independent 
wave amplitude

Time-dependent 
oscillatory term

𝑢 𝒓, 𝑡 = Re  𝒓 𝑒−𝑖𝜔𝑟𝑡



Paraxial wave equation for a wave
propagating in the z direction

T denotes transverse spreading due 
to optical diffraction

and 𝑘 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2

Paraxial approximation

For axisymmetric Gaussian beams, 

𝑤0 is the radius where the field 
decays to 1/e of E0 at the beam waist
𝑤 𝑧 is the 1/e radius at location z

Paraxial Approximation

𝑇
2 =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
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𝑇
2 − 2𝑖𝑘

𝜕

𝜕𝑧
𝐴 𝑥, 𝑦, 𝑧 = 0

𝑘𝑥
2 + 𝑘𝑦

2 ≪ 𝑘𝑧
2

𝑥

𝑦

Gaussian beam transverse amplitude
(beam propagating in the z direction)

𝑘𝑥 = 𝑘𝑦

𝑒
−

𝑟2

𝑤2 𝑧 𝑒𝑖 𝑘𝑧−𝜔𝑡+𝜓 𝑧 𝑒
𝑖 𝑘

𝑟2

2𝑅 𝑧𝐸(𝑟, 𝑧) = 𝐸0
𝑤0

𝑤 𝑧

Gouy phase shift

Radius of curvature of the 
Gaussian beam wavefront



Gaussian Beam Intensity & Diffraction

• Optical intensity

• Gaussian beam

• Gaussian beam diffracting from the beam waist

24

𝑒
−
2𝑟2

𝑤2𝐼(𝑟, 𝑧) = 𝐼0
𝑤0

𝑤

2

𝐼 𝑟, 𝑧 =
1

2𝑍0
𝐸 𝑟, 𝑧 2

𝑤 = 𝑤0 1 +
𝑧2

𝑧R
2

Far-field divergence half-angle

𝜃 =
𝑤0

𝑧𝑅
=

𝜆

𝜋𝑤0

𝜃𝑤0 =
𝜆

𝜋𝑧𝑅

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

𝑤0

𝐼0

𝐼0
𝑒2

Beam profile at beam waist

𝐼 𝑟



Radiation Beam FWHM, Radius and Emittance

rms beam radius

rms angular divergence

Gaussian beam emittance
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𝜎𝑟 =
𝑤0

2

𝜎𝑟′ =
𝜃

2 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

𝑤0

𝜃

𝐼0

1

𝑒2
𝐼 = .135𝐼0

Radial dimension (or angle)

𝜎𝑟
𝜎𝑟′

FHWM

rms 𝐼 = .606𝐼0
𝛿𝑟′𝐹𝑊𝐻𝑀 = 2𝑙𝑛2 𝜃 (𝜃 = 1/e2 half-angle) 

Gaussian beam radial FWHM

Gaussian beam angular divergence FWHM

𝛿𝑟𝐹𝑊𝐻𝑀 = 2𝑙𝑛2 𝑤0 ( 𝑤0 = 1/e2 radius) 

𝐼 𝑟

𝐼 𝑟′

𝜖𝑟 = 𝜎𝑟𝜎𝑟
′

𝜖𝑟 =
𝜆

4𝜋

Photon beam emittance for 
transversely incoherent (not 
diffraction limited) radiation

𝜖𝑟 = 𝑀2
𝜆

4𝜋
𝑀2 > 1



Photon Beam Transverse Coherence
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Incoherent 
monochromatic 
diffuse source 
(e.g., Na lamp)

Narrow slit 
diameter = 2a

2a

Young’s 
double slit

Screen

D

x

x'

a
𝑎

𝐷
Slope =

𝐴 ≤
𝜆

2

Condition for interference 
pattern to appear on screen

Radiation phase-space

Coherent phase-space area

𝐴 = 2𝜋𝜖𝑟



Spontaneous vs Stimulated Emission

Partial
reflector

Total
reflector

Pump (source of energy)

Gain Medium

Pump (source of energy)

Gain Medium

Stimulated emission

in out

Population inversion

1

2
3

pump

Spontaneous emission

out

1

2
3
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How does an FEL differ from a laser?

▪ FEL gain medium is free electrons in vacuum (lasers have bound electrons)

▪ FEL have broad wavelength tunability (lasers have no or limited tunability)

▪ FEL beams are distortion-free (laser gain media have optical distortions)

▪ FEL work at x-ray wavelengths (x-ray laser upper state lifetimes are too short)

▪ The coherence length of a SASE FEL is much shorter than that of a typical laser.

28



Electron Motions in an Undulator

29



Lorentz force governs the rate of change in the electron beam energy and momentum

Force caused by an electric field acts along the electron beam propagation direction, thus changing the 
beam energy

Force caused by a magnetic field is perpendicular to the beam propagation direction, thus changing the 
beam momentum by Dp and the beam direction by Dp/p0. Magnetic force does not change the beam 
energy.

Lorentz Force

30

𝐅 = −𝑒 𝐄 + 𝛖 × 𝐁

Δ𝑊 = න𝐅 ⋅ 𝑑𝐬 = −න𝑒𝐄 ⋅ 𝑑𝐬

Δ𝐩 = න𝐅𝑑𝑡 = −න𝑒 𝛖 × 𝐁 𝑑𝑡



Planar Hybrid Permanent Magnet Undulators
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B = 𝐵0𝑠𝑖𝑛 𝑘𝑢𝑧 ො𝑦

B
u

Steel poles Magnets

y

z
x

Electrons travel mainly in the z direction

The Lorentz force imparts a force in the x direction that is sinusoidal with z and opposes the electrons’ 
motion (electrons going into the page experience a force pointing out of the page, and vice versa).

The on-axis (           ) magnetic field is 
sinusoidal with z and points in the y direction

𝑘𝑢 =
2𝜋

𝑢
Undulator wavenumber

Electrons also have a small initial velocity in x

F = −e v × B

Lorentz force

𝑦 = 0



Transverse Motion in a Planar Undulator
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𝑣𝑥 = 𝑐
𝐾

𝛾
cos(𝑘𝑢𝑧)

𝑑𝑣𝑥
𝑣𝑧𝑑𝑡

=
𝑑𝑣𝑥
𝑑𝑧

= −
𝑒𝐵0
𝛾𝑚𝑒

sin(𝑘𝑢𝑧)

𝐵0𝑠𝑖𝑛 𝑘𝑢𝑧 ො𝑥−𝑒𝑣𝑧
𝑑𝒑𝑥
𝑑𝑡

= 𝛾𝑚𝑒

𝑑𝐯𝑥
𝑑𝑡

=

Integrate with respect to z

Transverse velocity

𝑣𝑥 =
𝑒𝐵0

𝛾𝑚𝑒𝑘𝑢
cos(𝑘𝑢𝑧)

Electrons enter the undulator with a small initial 
velocity      .  Lorentz force is the restoring force 
that brings them back to the equilibrium position, 
similar to an oscillating mass on a spring.

𝑣𝑥

c
c

Transverse acceleration

Transverse displacement 𝑥 =
𝐾

𝛾𝑘𝑢
sin(𝑘𝑢𝑧)



Longitudinal Motion in a Planar Undulator
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Longitudinal velocity in z relative to c

𝛽𝑧 = 𝛽2 − 𝛽𝑥
2

𝛽𝑧 = 𝛽 1 −
𝛽𝑥
2

𝛽2

𝛽𝑧

𝛽𝑥

𝛽

𝜃𝑚𝑎𝑥

𝛽𝑥 = 𝛽𝑠𝑖𝑛𝜃

𝛽𝑥
2 ≈ 𝛽2

𝜃𝑚𝑎𝑥
2

2

𝛽𝑥
2 ≈ 𝛽2

𝐾2

2𝛾2

Transverse velocity in x relative to c

Average transverse velocity squared

𝜃𝑚𝑎𝑥 =
𝐾

𝛾

𝑥

ҧ𝛽𝑧 ≈ 1 −
1

2𝛾2
−
𝐾2

4𝛾2

Average longitudinal velocity along the undulator

𝑣𝑥 = 𝑚𝑎𝑥

𝑣𝑥 = 0



Moving with the Electrons
• In the laboratory frame, the electrons are moving in the 

z direction at the average longitudinal velocity

• In the frame moving with the electrons, the “beam 
frame,” the undulator period is shortened by g*

x'

y'

z' Beam frame 

𝑣𝑧
′

𝑢
′ =

𝑢

𝛾∗

x

y

z Laboratory frame 

𝑣𝑧

𝑢

𝛾∗ =
1

1 −
ҧ𝑣𝑧
2

𝑐2

34

ഥ𝑣𝑧 = 𝑐 1 −
1

𝛾2
1 +

𝐾2

2

1
2

𝛾∗ =
𝛾

1 +
𝐾2

2



In the beam frame, the undulator is a traveling EM wave with the Lorentz contracted period      
The electron oscillates at a wavelength equal to the contracted undulator period,

Oscillations in Electron Beam Frame

′ =
𝑢

𝛾∗
=

𝑢

𝛾
1 +

𝐾2

2

E

B

𝑣𝑧
′ 𝑢

′

𝑢
′

′ = 𝑢
′

FEL wavelength in beam frame
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In the beam frame, the electron oscillates transversely (along the x'

axis) and also longitudinally (along the z' axis) at twice the 
frequency of the transverse oscillations. This figure-8 motion gives 
rise to radiation at the harmonics of the fundamental frequency.



Fast and Slow Electron Motions

36

▪ Fast transverse motion in x Lorentz force due to 𝑣𝑧 cross By

▪ Once every undulator period

▪ Fast longitudinal motion in z Modulations of 𝑣𝑥 in a planar undulator
▪ Twice every undulator period

▪ Slow transverse motion Weak focusing due to transverse field gradient
▪ Occurring over many undulator periods

▪ Slow longitudinal motion Microbunching due to FEL interaction
▪ Occurring over the entire undulator length

Strong focusing due to external quadrupoles

Motion What causes the motion

(Helical undulators do not have this motion)



Undulator Radiation
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Synchrotron Radiation (SR)

38

Synchrotron Radiation Facility
Spectral 
property

Broadband

Broadband

Sharp lines



Electrons radiate when they are accelerated
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In the Lab frame, electrons’ motions are relativistic and we need to use the relativistic Larmor formula. 
The electrons emit the highest radiation power where they experience the greatest acceleration. 

Electron trajectory

𝑃 =
1

6𝜋𝜀0

𝑒2

𝑐3
ሶ𝐯2

Larmor formula

In the electron rest frame, their 
motions are non-relativistic. We 
can calculate the total power 
radiated by an oscillating dipole.

𝑃 =
𝛾6

6𝜋𝜀0

𝑒2

𝑐3
ሶ𝐯2 −

𝐯 × ሶ𝐯 2

𝑐2



Relativistic Doppler Shift

In the beam frame, the electron oscillates like a dipole 
antenna and emits radiation in a dipole radiation pattern 
with two spherical lobes propagating in opposite directions.

 =
𝑢

2𝛾2
1 +

𝐾2

2

Transforming back to the laboratory frame, the 
lobes get Doppler shifted and turn into a narrow 
x-ray beam with a half-cone angle of 1/g*

 =
′

2𝛾∗

1/g*

40

Length Contraction  &  Doppler Shift

1

2𝛾∗
1

𝛾∗
x = 

1

2𝛾∗2



Undulator Radiation Wavelength
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𝜆 =
𝜆𝑢
2𝛾2

1 +
𝐾2

2
+ 𝛾2𝜃2

Fundamental undulator wavelength

ҧ𝑣𝑧 = 𝑐 1 −
1

2𝛾2
1 +

𝐾2

2

𝜆𝑢
ҧ𝑣𝑧
−
𝜆𝑢𝑐𝑜𝑠𝜃

𝑐
= 𝜆

Average velocity along z

z

ҧ𝑣𝑧

𝜆𝑢
ҧ𝑣𝑧
=
𝜆𝑢𝑐𝑜𝑠𝜃 + 𝜆

𝑐

In the time Dt the electron 
travels one period, 𝜆𝑢

𝜆 ≈
𝜆𝑢

1 −
1
2𝛾2

1 +
𝐾2

2

−𝜆𝑢 1 −
𝜃2

2

Small-angle approximation

𝑡 = 0𝑡 = 0.5Δ𝑡𝑡 = Δ𝑡

𝜃

𝜆𝑢𝑐𝑜𝑠𝜃
𝜆

𝜆𝑢

Consider an observer 
looking at the electron at 
an angle q w.r.t. the z axis. 



Undulator Radiation Harmonics
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m = 1

m = 2

m = 3

m = 4

m=1

m=3

m=5

𝜆𝑚 =
𝜆𝑢

𝑚 2𝛾2
1 +

𝐾2

2
+ 𝛾2𝜃2

Harmonics wavelength
Harmonics number

Radiation beam 
transverse profile



SR Brilliance and Photon Energy Spectra
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Undulator radiation spectrum with odd harmonics.
The gray lines denote energy tuning curves toward 
higher energy by opening up the magnet gap.

m=1

m=3

m=5

m=7
m=9

Photon Energy (eV)

0

2E+14

4E+14

6E+14

8E+14

1E+15

1.2E+15

1.4E+15

100 1,000 1,900 2,800 3,700 4,600 5,500 6,400 7,300 8,200 9,100 10,000



Undulator Radiation Spectral Property
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A single electron traversing an undulator with Nu

periods will produce a constant amplitude train of 
electromagnetic waves with Nu wavelengths.

The Fourier Transform of a constant amplitude 
wave train with Nu wavelengths is a sinc2 function 
with a spectral FWHM of approximately 1/Nu

𝑑2𝑈

𝑑Ω𝑑𝜔
∝ 𝑁𝑢

2𝐸𝑏
2

𝑠𝑖𝑛 𝜋𝑁𝑢
∆𝜔
𝜔0

𝜋𝑁𝑢
∆𝜔
𝜔0

2

∆𝜔

𝜔0
∝

1

𝑁𝑢

Peak ∝ 𝑁𝑢
2

𝑁𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 = 𝜋𝛼𝑁𝑏
𝐾

1 + 𝐾2

2The number of photons within the coherent angular 
and spectral bandwidths is proportional to the number 
of electrons and the fine-structure constant, 𝛼 = 1/137



Undulator Radiation and FEL Brilliance
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𝐵𝑝 =
# 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝐴𝑥𝐴𝑦
∆𝐸
𝐸

𝜏

Peak Brilliance
(Spectral Brightness)

Phase-space areas in x and y

Relative x-ray energy bandwidth Pulse length

Und. Radiation FEL

# photons/pulse ~ 108 ~ 1012

Phase space area 𝐴𝑥 > 100 𝐴ℎ𝜈 𝐴ℎ𝜈

Relative BW ~ 1% ~ 0.1%

Pulse length ~ ps 10s of fs

Total increase 1 108 - 1010



Particle Transverse Positions and Angles
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Consider a single electron (red) in an ensemble of billions of particles co-traveling with the 
reference particle (blue)

𝑥
𝑥′

is the transverse position of the particle relative to the reference particle𝑥

𝑥′ is the angle the particle makes with respect to the reference particle’s trajectory

𝑥′ =
𝑑𝑥

𝑑𝑧
=
𝑝𝑥
𝑝𝑧

≈
𝑣𝑥
𝑐

Similarly, the particle is also described by its transverse position     and angle  𝑦′𝑦

Paraxial approximation: transverse velocities are much smaller than c so the angles 𝑥′ and 𝑦′ ≪ 1



Ensemble Averages and rms Values
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𝑥𝑥′ is the correlation between the particle’s position 
and angle (𝑥𝑥′ is also known as the flow).

𝑥2 = න𝑥2𝑓 𝑥, 𝑥′, 𝑦, 𝑦′ 𝑑𝑥 𝑑𝑥′𝑑𝑦 𝑑𝑦′

𝑥′2 = න𝑥′2𝑓 𝑥, 𝑥′, 𝑦, 𝑦′ 𝑑𝑥 𝑑𝑥′𝑑𝑦 𝑑𝑦′

Ensemble average value of 𝑥2

Ensemble average value of 𝑥′2

𝑥𝑥′ = න𝑥𝑥′𝑓 𝑥, 𝑥′, 𝑦, 𝑦′ 𝑑𝑥 𝑑𝑥′𝑑𝑦 𝑑𝑦′

Ensemble average value of 𝑥𝑥′
𝜎𝑥

𝜎𝑥′

For cases where f is a Gaussian distribution, the 
ellipse corresponding to rms values, 𝜎𝑥 and 𝜎𝑥′
(blue) with a phase-space area equal to 𝜋𝜀𝑥,𝑟𝑚𝑠

encompasses only 39% of the particles. Going to 
2𝜎𝑥 and 2𝜎𝑥′ increases the phase-space area to 
4𝜋𝜀𝑥,𝑟𝑚𝑠 (black) and raises the fraction of 
particles enclosed in the ellipse to 87%.



Normalized and Un-normalized Emittance
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𝜀𝑥,𝑟𝑚𝑠 = 𝑥2 𝑥′2 − 𝑥𝑥′ 2

Un-normalized emittance is larger at low energy

Un-normalized rms emittance in x

𝑥′

𝑥′

Un-normalized emittance decreases as the beams are 
accelerated to higher energy (adiabatic damping)

𝜀𝑛,𝑟𝑚𝑠 = 𝛽𝛾 𝑥2 𝑥′2 − 𝑥𝑥′ 2

To compare emittance of particle beams with different 
energy, we “normalize” the emittance by multiplying it 
by 𝛽𝛾 (or 𝛾 since 𝛽~1 ). The normalized emittance is 
conserved in the absence of non-linear forces.



• Consider the TEM00 of a Gaussian beam at the beam waist

rms beam radius

• We also write the electric field as a function of beam divergence

rms angular divergence

Photon Beam Emittance
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𝜎𝑟 =
𝑤0

2

𝜎𝑟′ =
𝜃

2

𝐸(𝑟) = 𝐸0𝑒𝑥𝑝 −
𝑟2

𝑤0
2 = 𝐸0𝑒𝑥𝑝 −

𝑟2

4𝜎𝑟
2

ℇ(𝑟′) = ℇ0𝑒𝑥𝑝 −
𝑟′2

𝜃2
= ℰ0𝑒𝑥𝑝 −

𝑟′2

4𝜎
𝑟′
2

𝜀𝑟 = 𝜎𝑟𝜎𝑟′ =


4𝜋

𝑤0

𝜃

𝑧𝑅

𝜃𝑤0 =
𝜆

𝜋

Τ1 𝑒

Photon beam rms emittance

𝐸(𝑟)

𝑧𝑅 =
𝜋𝑤0

2

𝜆



Beam-limited Radiation Brightness
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Σ𝑥 = 𝜎𝑥
2 + 𝜎𝑟

2Source size

Angular divergence
Σ𝑥′ = 𝜎𝑥′

2 + 𝜎𝑟′
2

Phase space area in x, y 𝐴𝑥 = 2𝜋𝑥𝑥′ 𝐴𝑦 = 2𝜋𝑦𝑦′

𝜀𝑥 = 𝜎𝑥𝜎𝑥′ ≫ 𝜀𝑟

Third generation undulator radiation is e-beam emittance dominated

𝜎𝑥 ≫ 𝜎𝑟 𝜎𝑥′ ≫ 𝜎𝑟′

Undulator radiation brightness

ℬ𝑈𝑅 =
ℱ

4𝜋2𝜀𝑥𝜀𝑦

ℱ ≡ Spectral photon flux  
# 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

0.1% 𝐵𝑊 ∙ 𝑠



Diffraction-limited Radiation Brightness
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Diffraction-limited phase-space area

𝐴𝑟 = 2𝜋𝜎𝑟𝜎𝑟′ = 2𝜋𝜀𝑟

𝐴𝑟 =
𝜆

2

If the electron beam emittance is less than or equal to 
the radiation beam emittance, the output radiation is 
considered diffraction limited

𝜀𝑥,𝑦 ≤
𝜆

4𝜋

Diffraction-limited radiation brightness
ℬ𝐷𝐿 =

4ℱ

𝜆2

This is true for both FEL and diffraction-limited synchrotron radiation



Benefits of FEL over Undulator Radiation

• Small beam size

• Low angular divergence

• Femtosecond pulses

• Narrow spectral BW

• Higher photon flux

Full transverse coherence
Diffraction limited radiation
Coherent diffractive imaging

Time-resolved studies of physical, chemical, biological 
and materials science dynamics

X-ray diffraction of small crystals, single viruses, etc.

Better signal-to-noise ratios

52

High-resolution spectroscopy



Introduction to FEL

53



Electron Position & Velocity in the Undulator

𝑣𝑧 = 𝑐 1 −
1

𝛾2
−
𝐾2

𝛾2
𝑐𝑜𝑠2 𝑘𝑢𝑧

1
2

Electron position and velocity in one undulator period

𝑣𝑥 = 𝑐
𝐾

𝛾
cos(𝑘𝑢𝑧)

𝑥 =
1

𝑘𝑢

𝐾

𝛾
sin(𝑘𝑢𝑧)𝑧 = 0 𝑧 = 𝑢

x = 0

54

Example: 𝑢 = 5.6 cm, K = 3 and Eb = 8 
GeV, the maximum transverse position
and angle of the trajectory are:

𝑥𝑚𝑎𝑥 = 1.7 𝜇𝑚

𝜃𝑚𝑎𝑥 = 192 𝜇𝑟𝑎𝑑

𝑣x

𝑣z

v
𝜃



The v x B force produces the transverse acceleration, i.e., rate of change in the electrons’ transverse 
momentum.  By integrating the rate of change in the relativistic transverse momentum, we obtain the 
electrons’ sinusoidal velocity along the x direction.

The rate of change in the electron energy (W) is proportional to the dot product of the transverse 
electron current (A-m) and radiation beam transverse electric field (V/m).

Lorentz Force in a Planar Undulator
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𝑑𝑊

𝑑𝑡
= 𝒋 ∙ 𝐄

𝑑𝒑

𝑑𝑡
= −𝑒𝝼 × 𝐁

𝑑 𝛾𝑚𝑒𝑣𝑥
𝑑𝑡

= −𝑒𝑣𝑧𝐵𝑦

𝑚𝑒𝑐
2
𝑑𝛾

𝑑𝑡
= −𝑒𝑣𝑥𝐸𝑥

vx

Ej
t

𝑣𝑥 = 𝑐
𝑒𝐵0

𝛾𝑚𝑒𝑐𝑘𝑢
cos(𝑘𝑢𝑧)



Resonant Wavelength

In the time the electrons travel one undulator period (blue), the optical wave (red) has traveled one 
undulator period plus one wavelength. The wave slips ahead of the electron one wavelength. This 
special wavelength is called the Resonant Wavelength.

𝑢+ 𝑟

𝑢



𝑟

𝑢
=

𝑐

ഥ𝑣𝑧
− 1

𝑢

ഥ𝑣𝑧
=

𝑢 + 𝑟

𝑐

𝑟

𝑢
=

1

1 −
1
2𝛾2

1 +
𝐾2

2

− 1

𝑟 =
𝑢

2𝛾2
1 +

𝐾2

2
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Electron-Wave Energy Exchange
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𝑑𝑊

𝑑𝑡
= 𝐣 ∙ 𝐄 𝐸𝑥 = 𝐸0 𝑐𝑜𝑠 𝑘𝑧 − 𝜔𝑡 + 𝜑𝑗𝑥 = −𝑒𝑣𝑥

𝑑

𝑑𝑡
𝛾𝑚𝑒𝑐

2 = −𝑒
𝑐𝐾𝐸0
𝛾

𝑐𝑜𝑠 𝑘𝑢𝑧 𝑐𝑜𝑠 𝑘𝑧 − 𝜔𝑡 + 𝜑

Transverse electron 
current density

Transverse electric field 
of the optical radiation

Rate of energy exchange

𝑗𝑥 = −𝑒
𝑐𝐾

𝛾
𝑐𝑜𝑠 𝑘𝑢𝑧

This phase can be made constant with a judicious choice of k

𝜓

𝑑𝛾

𝑑𝑧
= −𝑒

𝑐𝐾𝐸0
2𝛾𝑚𝑒𝑐

2
𝑐𝑜𝑠 𝑘𝑢 + 𝑘 𝑧 + 𝜑 − 𝜔𝑡 + 𝑐𝑜𝑠 𝑘𝑢 − 𝑘 𝑧 + 𝜑 − 𝜔𝑡

Energy exchange occurs via the vector dot product between the transverse 
electron current density and the transverse electric field of the radiation



Resonant Wavenumber
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𝜓 = 𝑘𝑢 + 𝑘𝑟 𝑧 + 𝜑 − 𝜔𝑟𝑡

Ponderomotive phase

Differentiate with respect to t and set it to zero

𝑘𝑢 + 𝑘𝑟 ഥ𝑣𝑧
𝑑𝜓

𝑑𝑡
= − 𝜔𝑟 = 0

𝑘𝑟 = 𝑘𝑢
2𝛾𝑟

2

1 +
𝐾2

2

Resonant wavenumber

𝑘𝑢 =
𝑘𝑟

2𝛾𝑛
2 1 +

𝐾2

2

Average axial velocity of the nth electron

ഥ𝑣𝑧𝑛 ≈ 𝑐 1 −
1

2𝛾𝑛
2 1 +

𝐾2

2Divide both sides by c

𝑘𝑢 + 𝑘𝑟 − 𝑘𝑟 = 01 −
1

2𝛾𝑛
2 1 +

𝐾2

2

The ponderomotive phase remains constant with 
time as the electrons travel along z for a special 
wavenumber called the resonant wavenumber 𝑘𝑟



Resonance Condition
Energy Gain

Snap shots of an optical wave (red) traveling collinearly 
with an electron (black circle) that follows a sinusoidal 
trajectory (blue) at three different points along an 
undulator period from top to bottom. 

The ponderomotive phase is equal to -p/2.  The wave 
electric field vector points in the opposite direction of 
the transverse electron velocity.  The electron is 
accelerated by the optical electric field.

The rate of energy exchange is positive, i.e., the 
electron gains energy from the optical wave.
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Resonance Condition
Energy Loss
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Snap shots of an optical wave (red) traveling collinearly 
with an electron (black circle) that follows a sinusoidal 
trajectory (blue) at three different points along an 
undulator period from top to bottom. 

The ponderomotive phase is equal to p/2.  The wave 
electric field vector points in the same direction with 
the transverse electron velocity.  The electron is 
decelerated by the optical electric field.

The rate of energy exchange is negative, i.e., the 
electron loses energy to the optical wave.



FEL Energy-Phase & Pendulum Equations

61

−𝜋

𝜂

𝜋

Pendulum equations 𝑑𝜃

𝑑𝑡
= 𝜔

𝑑𝜔

𝑑𝑡
=−

𝑔

𝑙
𝑠𝑖𝑛𝜃

FEL energy-phase equations
𝑑𝜓

𝑑𝑧
=2𝑘𝑢𝜂

𝑑𝜂

𝑑𝑧
=− 𝑎 𝑠𝑖𝑛𝜓

Untrapped

𝑎 =
𝑒𝐸0 ෡𝐾

2𝑚𝑒𝑐
2𝛾0

2

Trapped

q

w

l

g

𝜓

Separatrix



Electrons Gain/Lose Energy & Bunch Up
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𝐻 =
𝑚𝑙2 ሶ𝜃

2

2
−𝑚𝑔𝑙 1 − cos 𝜃

𝜔

𝜃
Pendulum potential energy

𝑉 = 𝑔𝑙 1 − cos 𝜃 POTENTIAL

-2𝜋 2𝜋-𝜋 𝜋0

Hamiltonian (kinetic energy + potential energy) of the pendulum

Half of the electrons (ponderomotive phase from -p to 
0) gain energy and move up in the bucket. The other 
half of the electrons (phase from 0 to p) lose energy 
and move down in the bucket. In term of pendulum 
potential energy, they all fall down to the bottom of 
the potential well and bunch up near phase = 0.



Energy Modulations & Density Modulations
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Electrons interacting with the ponderomotive waves develop energy and density modulations.



Radiation from a Bunch of Electrons

64

FEL interaction induces density modulations with period equal to the radiation wavelength.  
The emitted fields are in phase and add coherently.  Coherent intensity scales with N

2

Incoherent undulator radiation 
Electrons are randomly distributed along z

Electrons are bunched with period of a radiation 

Ratio of coherent power to incoherent power is N (the number of electrons in one )



Coherent FEL radiation 



Bunched Beams Emit Coherent FEL Radiation
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𝐸 2 = 𝜖 2 𝑁𝜆 +𝑁𝜆 𝑁𝜆 − 1 𝑏2

𝐸 𝑈𝑅
2 = 𝜖 2𝑁𝜆

𝐸 𝐹𝐸𝐿
2 = 𝜖 2 𝑁𝜆 + 𝑁𝜆

2

𝑏 = 0

Unbunched beam

Incoherent undulator radiation

Bunched beam

Coherent FEL emission

Bunching factor

Radiation from an ensemble of 𝑁𝜆 electrons 
𝑁𝜆 is number of electrons in one wavelength

𝑏 ~ 1

Bunching factor

Bunching factor

𝑏 =
1

𝑁𝜆
෍

𝑛

𝑒𝑖𝜓𝑛 𝑧

𝑁𝜆

𝜖 2 = power emitted by one electron



Segmented Undulators in a FODO Lattice
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Undulator Undulator Undulator Undulator Undulator

QF QF QFQD QD QD

xrms

yrms

rms radius (m)

Distance along undulator beamline (m)



FEL Animation

67Courtesy of Gabriel Marcus



Summary of FEL Radiation Properties
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• FELs are tunable sources of coherent radiation based on the same principle of 
operation, i.e., resonant wavelength, energy and density modulations followed by 
coherent bunched beam radiation, over the entire electromagnetic spectrum.

• FEL radiation, similar to undulator radiation, originates from the sinusoidal 
motions of electrons in undulators. However, the FEL beams have full transverse 
coherence, large numbers of photons per pulse and peak brightness several 
orders of magnitude above the peak brightness of undulator radiation.

• X-ray FELs produce nearly Gaussian coherent beams similar to a high-quality 
conventional laser beam but with very small angular divergence.

• The radiation generation process in an FEL is completely classical. The motions of 
electrons in energy-phase space can be described by two coupled differential 
equations similar to those describing the motions of a classical pendulum.



References

69

1. “An Introduction to Synchrotron Radiation: Techniques and Applications” by 
Philip Willmott, John Wiley & Sons (2019).

2. “Free-Electron Lasers in the Ultraviolet and X-ray Regime” by Peter Schmüser, 
Martin Dohlus, Jorg Rössbach and Christopher Behrens, Second Edition, 
Springer Tract in Modern Physics, Volume 258.

3. “Synchrotron Radiation and Free-Electron Lasers: Principles of Coherent X-ray 
Generation” by Kwang-Je Kim, Zhirong Huang and Ryan Lindberg, Cambridge 
University Press (2017).

4. “Review of Free-Electron Laser Theory” by Zhirong Huang and Kwang-Je Kim, 
Phys. Rev. Spec. Topics in Accel. Beams, 10, 034801 (2007).


