
 1

Programming in LabView:

The 2280 System Ramp and Linearity Tests

Stacey Nordt

Computer Science

North Carolina A&T State University

August 7, 2001

Project Supervisor: Tim Kasza

Fermi National Accelerator Laboratory

Abstract

 The objective of this project was to convert a Visual C++ program into a LabView

program. The LabView program was used to test the 2280 system for accurate channel

data and develop various charts to output the data received. This paper discusses the

process in which this was done.

 2

Table of Contents

Introduction

I. Project Introduction 3

II. Test Modules 4

III. LabView 5

Project 2280

I. Description 6

II. Training 7

III. Pre-Requisites 7

IV. Data Table 8

V. Ramp Test 9

VI. Deviations Test 10

VII. Diflin Test 11

VIII. Post-requisites 12

IX. Problems with Project 12

X. Future Adjustments 13

Closing

I. Conclusion 13

II. Acknowledgements 14

III. References 14

IV. Appendix 15

 3

Introduction

In January 2000, the Computing Department of Fermi National Accelerator Laboratory

started a project that dealt with the conversion of existing diagnostics into LabView.

These diagnostics are used by the Equipment Support Department to test various

CAMAC modules. They were originally written in several different programming

languages and have occupied the attention of technicians and summer interns in order to

convert them. The Equipment Support Department first explored the feasibility of

LabView during the summer of 1999. The technicians found that LabView was a more

practical programming tool than the various programming languages used prior to this

evaluation. The Computing Department did the first alteration consisting of converting

PCCDL (Personal Computer CAMAC diagnostic languages) into LabView 5.1 in 2000.

In 2001, they converted the tests created in LabView 5.1 to the newer LabView 6i. They

also started a directions page in HTML explaining how to use and set up each test

developed. The goal for summer 2002 was to complete the diagnostics conversion for

CAMAC systems (LRS 2280, 4300, 4290) written in C or C++ programming languages

with the most recent version, LabView 6.1. This report describes the methods used for

completing the LRS 2280 system project and assisting the Computing Department in

accomplishing this goal.

 4

Test Modules

CAMAC

The Computer Automated Measurement And Control (CAMAC) is a modular data

handling system that can be used for data and programmable applications. CAMAC

crates are controlled by intelligent devices. For this project the Jorway 73A SCSI bus

crate controller was utilized. The main function of the CAMAC is to provide

communication from the modules to the standardized backplane called a DATAWAY

and then the DATAWAY to a computer.

CAMAC Modules

The CAMAC modules required for this test package are:

• LRS 2323 - Programmable gate and delay generator

• LRS 4222 - Gate and delay generator that produces time delays and intervals

• LRS 2280 - The analog to digital conversion system processor

• LRS 1976 - Time to digital and analog to digital conversion tester

• LRS 1987A - 48 channel Charge Fan Out

• Fermi 156 - A digital analog converter that provides a voltage level to the 2280 to

determine the overall gain of the system

• LRS 2285A - Analog to Digital Converter being tested for its linearity and data

from its 24 channels

NIM

 The first Nuclear Instrumentation Module was made in 1964 for the nuclear and high

energy physics communities. The purpose of the NIM was to create a system of modules

 5

that could be interchangeable. The NIM module required for this test package is the LRS

428F.

LabView

Laboratory Virtual Instrument Engineering Workbench (LabView), developed by

National Instruments, is a powerful analysis programming language. It was first

introduced in 1983, when National Instruments was interested in discovering new ways

to decrease the time used in programming software languages. The idea was to combine

front panel user interfaces with a block diagram programming method allowing for a

faster and more efficient, software-based graphical instrumentation. Since 1983,

LabView has grown popular in many research laboratories and industries.

LabView is a part of a new graphical programming language, called �G�. It uses

terminology, icons and ideas that are familiar to technicians, scientists and engineers.

Virtual Instruments (VI�s) created in LabView can generate charts, graphs and

customized, user-defined graphics. LabView integrates data acquisition, analysis, and

presentation in one system making programming simple and manageable.

Versions of LabView

• LabView 1: ©1986. This version was only created for Apple Macintosh due to its

graphical capabilities.

• LabView 2: ©1990. LabView was rewritten and execution speeds were

comparable to C programming languages.

 6

• LabView 3: ©1993. Used with Apple Macintosh, Microsoft Windows, and

SunOS. Version 3 introduced multi-platform capabilities.

• LabView 4: ©1996. LabView improved on a simplified set of palettes that

include only the most used functions.

• LabView 5: ©1998. This version added multithreading, ActiveX Automation,

translation tools, instrumentation, data acquisition, and general interface.

• LabView 6: ©2000. Version 6 added Waveform improvements, I/O name

controls, DataSocket improvements, cluster and array shortcuts, automatic wiring,

better graph and chart set up, better navigation of palettes, and a new dialog box.

• LabView 6.1: ©2001. Most recent version. It is now compatible with PC�s

running Microsoft Windows, UNIX/Linux, MacOS, and Concurrent PowerMax

operating systems.

Project 2280

Description

The main purpose of this project was to convert a previously written Visual C++ program

into a LabView program. The C++ code was written in order to test the LRS 2280

CAMAC ADC system for data acquisition and linearity. A data table was created that

included numerical information outputted from the system. The modules� performance

was evaluated by creating three tests using the data table. The three tests displayed graphs

that allowed the user to see the results. They were the Ramp, Deviations, and Diflin

graphs. The test could be run for a 12-bit or 15-bit 2280 module. All of these steps had to

be reconstructed in LabView.

 7

Training

Having no knowledge of LabView prior to arriving at Fermilab, extensive training was

necessary. The training exercises consisted of the two tutorials and two demonstration

sessions listed below.

• LabView Tutorial Basics: Getting Started, Introduction to LabView, Creating and

Debugging a VI, Creating a sub VI, Loops and Charts, Arrays and Graphs, Case

and Sequence Structures, Strings and File I/O, and VI options.

• LabView Tutorial Advanced: Planning LabView Applications, LabView Clusters,

Local and Global Variables, Attribute Nodes, Advanced File I/O Techniques, and

Developing Larger Projects.

• LabView Demonstrations: Conducted by supervisor, Tim Kasza, and veteran

intern, Joseph Jaskierny.

Prerequisite to Starting the Project

• Prior to starting this project, it had to be possible for all of the 2280 tests to be

accessed upon request. It was essential to develop a main test panel to do so.

• A CAMAC I/O analysis also had to be produced to test the 2280 for valid sub-

addresses and function codes to ensure accurate testing ability.

 8

Data Table

The data table was established so that the user could see the data values being read out of

the 24 channels of the 2285 A. The table also outputs the following terms:

pC: the charge in Pico Coulombs being outputted from the 1987A

DAC word: digital representation of voltage level applied to charge fan-out module

Residual: the distance of a data point from a calculated slope

Worst Residual: the residual that is the most out of range of the expected absolute value.

Maximum Value: the maximum output value of each channel from the 2285

Gain: counts per Pico Coulomb

Pedestal: the initial data gathered from the 2285 with no input charge

If the absolute value of the residuals for the 12-bit module exceeds 2, the channel will

fail. The same results will occur for the 15-bit module if the residuals exceed 15.

Figure 1: front panel screen shot of the last few data table columns.

 9

Ramp Test

The Ramp Test was built to plot the ADC output (counts) versus charge of each channel

of the 2280 system on a graph. There are 20 data points on the graph to represent the

number of steps. The steps are calculated by the number of times there was charge

inputted into the 1987 A.

Figure 2: Front panel of the Ramp Graph

 10

Deviations Test

This test outputs a graph that plots the residuals and the pC with the data received from

each channel of the 2285 A. The graph allows the user to see if the residuals are within

the appropriate range.

Figure 3: The front panel of the Deviations Graph with graphing menu.

 11

Diflin Test

The Diflin Test was meant to test the differential non-linearity of the 2285 A. The graph

displays hexadecimal data for incrementing pC values. The range for these results

depends on the resolution (12-bit or 15-bit) of the 2280 module. The test observes

whether or not each data bit has been reached and that none of the bits get stuck on or off.

This lets the user know that the data is precise.

Figure 4: Front panel of the Diflin Graph with accurate data and no missed bits.

* Note: To see an example of the block diagrams for these tests refer to the appendix.

 12

Post-requisite Before Completion

Upon completing each project, it is required that an HTML Directions page be developed

explaining the set up and instructions for the project with the intention of making the

LabView program more convenient for the user. This page can be found at

<http://www-esd.fnal.gov/Lvdocs/Lrs2280/Lrs2280_Directions.html>. The programmer

also has to perform a demonstration of the project for the Computing Department.

Problems with Project

• C++ and Fortran code: The C++ code that was to be converted was written in the

summer of 1996. Most of the source code had been misplaced in this six-year

period. Fortunately, the code written in C++ had been a conversion from a

previously written Fortran code. In addition to rewriting the C++ program,

knowledge of the Fortran program was needed to locate the missing code. The

majority of the functions written to create the Diflin graph were missing as well.

Consequently, it was necessary to use the LRS 4300 system program in order to

complete the graph.

• Lack of Space: In LabView programming there is limited space available before

the program starts to become illegible. To alleviate this problem sub VI�s within

VI�s needed to be created. This can also be difficult to follow, but it allows for

more programming space.

 13

• File Corruption: File corruption occurred on the 14th of June, which prevented

opening the LabView program. Assuming that the entire project was lost caused

disappointments and delays; however, it was later discovered that the drives are

backed up each night and only one day�s work was lost.

Possible Future Adjustments

National Instruments upgrades LabView annually. In the past, the Computing Division

has had to make changes to programs they wanted to upgrade from 6.i to 6.1. The 2280

System Project may have to undergo some modifications for future upgrades. Also, upon

the completion of projects in the Computing Department, the technicians test run the

software to check for adjustments that may be needed prior to its use. As a result, there

may have to be some minor changes to the 2280 system project.

Conclusion

The 2280 system project has been completed, although minor adjustments may be

necessary. The data being outputted is correct when compared with the original Visual

C++ code; however, the code had to be altered. The maximum charge requested for the

original code had to be decreased due to aged modules. This alteration improved the

residual values used for graphing.

I believe that LabView is a worthy addition to the technological advancements in

programming languages. It is efficient and manageable for the programmer as well as the

user. I appreciate being given the opportunity to work with LabView and with such an

outstanding group of engineers.

 14

Acknowledgements

I would like to thank Elliot McCrory and Dianne Engram for allowing me to be apart of

the Fermilab family. Thanks to Jim Davenport for giving me wonderful input regarding

my paper and to Dave Peterson for being an excellent mentor. To Tim Kasza, Adam

Walters, and the entire Computing Department for making sure that I was comfortable

and that I had everything I needed. I�d like to give a special thanks to the LabView Team:

Mike Behnke, Rick Mahlum, Joseph Wilhelmi, and Joseph Jaskierny. I couldn�t have

completed this project without you guys. To the SIST interns, whether you like it or not

we will always be bonded by this experience. In the case that I have mistakenly forgotten

anyone, please know that I appreciate you as well.

Thank you all for making this a pleasurable and memorable summer.

References

1. �Electronics Equipment Pool Catalog� Dec. 2001. FermiLab.
<http://www-esd.fnal.gov/esd/catalog/>

2. �LabView Manual� 2002. National Instruments<http://www.ni.com>

3. Fortran Power Station Reference. Microsoft Corporation, 1995.

4. Nell Dale, Chip Weens, and Mark Headington. �Programming and Problem

Solving with C++�. 2nd edition. Sudbury, MA: Jones and Bartlett Publishers, Inc.,
2000

 15

Appendix

L e C ro y 2 2 8 0 H T M L D ire c t io n s P a g e

C A M A C I /O

R a m p a n d L in e a ri ty T e s t
In c o m p le te T e s ts

C o m p le te T e s ts

In it ia l iz a tio n

D a ta T a k in g

D a ta A n a ly s is

D is p la y R e s u lts

E r ro r M e s s a g e s a n d D ia g s

D e b u g g in g P ro c e s s

C u rre n t P ro je c t

Example Flowcharts completed to display the status of the project in weekly LabView

meetings.

LeCroy 2280

Display Results
Incomplete Tests

Complete Tests

Ramp
Chart

Deviations
Chart

Non-
Linearity

Chart

Current Project Data
Table

 16

Main test panel

CAMAC I/O front panel and error detector

 17

Block Diagram for the Data Table

Block Diagram of the Ramp Graph

 18

Block diagram of the Deviations Graph with a sample of the tool bar

Block diagram of the Diflin Graph with functions menu

 19

Crate Setup

Module Set Up from left to right: 399 backplane display, 428F ([with nimcam adapter]�
anywhere), 156 (slot 10), 4222 (slot 11), 1976 (slot 13), 1987A (slot 16), 2285A (slot 17),
2323 (slot 20), 2280 (slot 19), and crate controller.

Colors:
7 Lemo Cables � green, 1 50-pin charge fan out � red, 2 Lemo Terminators � yellow,
1 50-pin Terminator - tan

Cabling:
1976 ZERO TO + 20V to 1987 VDAC
2323 DLY chan A to 4222 IN TRIG (3 nSecs)
4222 OUT1 to 2280 CLEAR (3 nSecs)
4222 OUT3 to 428F IN (1 nSec)
428F OUT to 1987 GATE (under 1976 label)
428F OUT to 2280 GATE IN (3 nSecs)
2280 REQ to 2280 GRANT IN (1 nSec)
1987 50-pin charge fan out to adc inputs of the 2285 using coax cables
50-pin terminator (51 ohm resistors across unused 1987 outputs)

Lemo Terminators:
4222 unused IN TRIG input
2280 INH OUT (2285 only)

