
Website Development

 1

RUNNING HEAD: Website Development

Website Development for Automation of the Leave/Travel System and to Interface a

Database

By

Linda M�mayi

Fort Valley State University, GA

August 11, 2005\

Supervisor: Mari Herrera

Summer Internship in Science and Technology (SIST) - 2005

Fermi National Accelerator Laboratory

Batavia, IL

Website Development

 2

Website Development for Automation of the Leave/Travel System and to Interface a

Database

Abstract

The Computing Division (CD) at Fermilab receives several leave and travel

requests every year from its employees. These requests are handled by the administrative

staff who have to follow certain procedures to get approval for the requestors. To help

facilitate the process of making leave/travel requests and the work done by the staff, steps

are being taken to gradually automate the process. This paper discusses some of the steps

taken to achieve this goal including development of a travel website that contains

documentation for the travel processing staff, and development of online forms for

making requests. The website and the online forms were created using HTML and

Macromedia Dreamweaver MX 2004®. This paper also discusses development of

websites using software known as CodeCharge Studio 2.3® to interface an underlying

database.

Website Development

 3

Introduction

Fermi National Accelerator Laboratory (Fermilab) is a research laboratory that

focuses on advancing the understanding of the fundamental nature of matter and energy

by providing leadership and resources for qualified researchers to conduct basic research

at the frontiers of high energy physics and related disciplines. In order to accomplish this

critical mission, Fermilab relies on the expertise of several scientists, engineers, and other

staff. The lab is divided in to several divisions and sections that each contribute

significantly to its mission. One such division is the Computing Division (CD).

During my internship at Fermilab, I was privileged to work as an intern in the

Computing Division under the Program Support group. The Computing Division�s

mission is to play a full part in the overall mission of the laboratory and in particular to

proudly develop, innovate, and support excellent and forefront computing solutions and

services, recognizing the essential role of cooperation and respect in all interactions

between ourselves and with the people and organizations that we work with and serve.

The Program Support group, as part of the Computing Division, plays an important part

in accomplishing the division�s mission by providing Administrative, Publishing,

Documentation and Infrastructure support in the Computing Division.

The objective of this paper is to describe the project that I worked on during my

internship, that is, the process of developing a website for both the leave/travel system

and for interfacing an underlying database. The project can be divided in to two parts: the

leave/travel request system website and the database website. The purpose of the

leave/travel request subproject was to facilitate the processing of leave and travel requests

made by the Computing Division employees by making documentation on how to handle

Website Development

 4

the requests readily available to staff on a travel website, providing online forms for

obtaining desired information from users, and simplifying other general tasks. The

purpose of the website/database subproject was to create a website that would serve as a

user-friendly interface to an underlying database such as a MySQL database, therefore

allowing Program Support staff to easily manipulate data in the database via the web as

opposed to having to do so directly in the database itself.

I. Automation of the Leave and Travel System

1. Analysis of the Existing System

When I joined the program support group, the leave and travel system was

essentially a manual system. The idea of having an automated leave and travel request

system had been discussed and few steps had already been taken to start developing the

system. For instance, there was some documentation available online for the travel staff

and a simple flowchart that demonstrated how the automated system would work had

been drawn. Since this leave/travel request system was in actuality two separate systems;

I started by working on the leave request system. Since this automated leave request

system was in actuality still in the process of being proposed, I was asked to assist in

developing an overview of how the automated system would work.

2. The Leave system

The first stage of my project was to develop a detailed flowchart describing how the

automated leave request system would work. In order to do so, I studied an existing flow

chart and solicited more information on how leave requests are processed.

Website Development

 5

2.1. Method Used and How the System Works

Then I proceeded to draw a flowchart using Microsoft Word describing the

process. The leave request system would work as follows: First, the leave requestor

would complete an online leave request form. The information from the form would be

saved in a central database and the requestor�s supervisor and colleagues of his/her leave

request would be notified of the request (In order for this to work, programmers would

need to develop appropriate software). If the request is approved or denied by the

supervisor, the requestor is notified. Additionally, if the leave is approved then the

information is posted on the CD internal website so that colleagues are aware of who is

on leave and for how long. The flowchart drawn is provided in appendix A.

Once this flowchart was complete, I submitted it for further consideration by the

CD. Hence this system was put on hold while I worked on the travel system.

3. The Travel System:

The automated travel system is being implemented gradually as the different steps

are considered and approved by the supervisors. My first task was to develop web pages

that contained online documentation related to the travel request process for the Program

Support staff. This involved obtaining suitable material for the website content as well as

identifying a suitable design for the website. Since there was information available online

on a website, I decided to use information from the website, in addition to the

information collected from the travel staff, as the content for the new travel website that I

was developing.

Website Development

 6

3.1 Method

To develop the web site, I used Hypertext Markup Language (HTML) and

Macromedia Dreamweaver MX® software (referred to simply as Dreamweaver).

Dreamweaver is a commercial software that is used for building web sites and

applications. It provides a combination of visual layout tools, application development

features, and code editing support, enabling developers and designers to create websites

and applications more efficiently (Dreamweaver MX 2004). Dreamweaver allows the

users to create websites in the following languages HTML (Hypertext Markup

Language), PHP (Hypertext Preprocessor), and ColdFusion, as well as to create Active

Server Pages (ASP) that are interactive WebPages. Dreamweaver also allows the use of

Cascading Style Sheets (CSS) and JavaScript Style Sheets (JSS) which specify the design

styles for the website. It also contains detailed tutorials on how to use the software. It�s

because of these features that we decided it was an appropriate tool for the task at hand.

3.2 Designing the Website

To begin with, I created the two templates for the index page. The templates had

similar content but differed in terms of design. The purpose of this was to allow the

Program Support staff to evaluate and determine which template they preferred. Once a

suitable design was identified based on feedback, I proceeded to develop the other pages

in the selected format. The website consisted of three pages: the Index, the Foreign

Travel Management System (FTMS) page, and a page for general travel process

information, which were all linked to one another and to the Computing Division�s

internal web site (CD Internal). The website also included sample letters, forms and any

other documentation that the Program Support staff required. When the general content

Website Development

 7

of the web site was in place, I started to add the additional information and graphics. For

instance, I incorporated links to other travel-related sites and sample letters in the

website. The sample letters were created in MS Word and imported to the travel web site

using Dreamweaver.

3.3 Editing and Publishing the Website

As part of the development process, I forwarded the travel website to the Program

Support staff for evaluation. This was to enable them to evaluate the content of the site

and inform me of any changes or corrections that they felt were necessary before the

website was published. Final editing for the travel web pages was done based on

feedback from the Program Support staff and the website was submitted for publication

on the server. The folder containing the new travel website was saved on the server and

the CD internal website was updated such that the new travel website was linked to the

CD internal website.

4. Developing Electronic Forms

 The next step was to develop online forms that would be used not only for travel

related tasks but would also be used as templates for developing forms for other purposes

such as submitting requests for using different facilities and registration for conferences.

Since the idea of using electronic forms had not officially been approved, my supervisor

and I had to write a project plan so that I could get approval to include electronic forms

on the website. A project plan gives an overview of what the actually project is, its

purpose and advantages, and how it would be implemented. In this case, the project plan,

described the purpose of the electronic forms, what forms would be used for and their

benefits, how they would be developed and implemented. The project plan was then

Website Development

 8

submitted for consideration. In the mean time, I proceeded to develop a sample electronic

form to be used for placing online requests particularly requests for conference room

reservations.

4.1 Method

The electronic form was developed using Dreamweaver software, HTML and

Perl. The online form system comprises of four HTML pages (a form page, a return page,

a log page and an error log page) and a Perl script.

4.2 Description of How the Electronic Forms work

Each component of the online form serves a different purpose. The form page

(example in appendix B) provides the user interface and consists of different fields to be

used to collect information from the users. The return page (example in appendix B) is

the confirmation page that the user gets after successfully submitting their request. It also

provides the user with information such as whom to contact if they need further

assistance. The log page (example in appendix C) is a blank web page where information

from the form would be placed and that would be updated automatically each time a new

request is made. The error log page keeps track of errors that the users encounter while

using the request form and is accessible only by the web developer. The Perl script

processes information from the submitted form, saves and updates the log page, and

returns the return page whenever a new request was submitted. It also simultaneously

sends emails to the Program Support staff notifying them of the new request.

The online requests system would works as follows: when a user wants to place a

request they would access the CD Internal page where there would be a link to the

electronic request form. The user would have to complete the form and click the submit

Website Development

 9

button to submit the request. Once the user successfully submits a request, he/she would

get a response (return page) indicating that his/her request has been received. At the same

time, an email is sent to the program support staff informing them that a request has been

made. The Perl code used to generate this online request system is available in appendix

E.

4.3 Testing and Debugging the Perl script

Several modifications had to be done before the script was able to work as

expected. The server URLs had to be accurate as well as the name of the form objects

such as textfields and text areas. When all the variables had been checked, I ran a sample

test of the script with some test data and confirmed that it was working as expected. The

script was designed in such a way that future use of the script would require very little

modification of the script therefore it will be very useful for creating other forms in

future.

4.4 Documentation

After creating the sample form, I worked on writing documentation. Writing precise

documentation is an important aspect of any project. It provides the opportunity to

explain clearly what the developed program does and how to use it, and also serves as a

valuable resource for future reference. In my case, the documentation elaborated the

significance of having the forms online, how the forms worked and how I went about

developing the forms. This documentation will enable the Program Support staff to use

the developed sample form as a template for other forms they may require in future.

Website Development

 10

5. Discussion

With the travel website in place, the travel staff can easily access information they

need via the web as opposed to having to manually locate files and folders when they

need some clarifications. The travel website will be used by Programs Support staff for

references and also to facilitate training of new employees who join the travel staff.

Because the proposal to include the electronic forms in the travel website was denied; the

form was not included in the travel website. Nevertheless, we were able to use the form

for other purposes such as registration of participants for a conference to be held at

Fermilab later this year.

II. Website Development Using Code Charge Studio 2.3®

1. Overview

The Program Support group was interested in finding software that could be used

to develop websites for manipulating data in a database. One piece of software that was

being considered was CodeCharge Studio 2.3®. The next phase of my project was to

develop web interfaces for manipulating the data in a database using the specified

software so that the group could see whether or not it was suitable for achieving the goal.

1.1 Method

I used a piece of software known as CodeCharge Studio 2.3® which I will refer to

as CodeCharge. CodeCharge is commercially available software that is used as an

effective tool for creating database-driven Web applications with minimal amount of

coding. It includes an Application Builder that enables the user to convert his/her

database (MS Access, MS SQL, MySQL, Oracle, etc.) into a working Web application

Website Development

 11

with login-protected user access to database search, list, view and update functions; a

Query Builder for visually specifying database tables, fields and their relations; and a

Microsoft FrontPage Add-in for converting Microsoft FrontPage in to a web application

development environment.

The websites created by CodeCharge are in the following languages: C#, PHP,

VBScript, Perl and JSP. The advantages of using CodeCharge to develop web interfaces

include (1) reducing the need for hand coding since the software does most of the actual

coding; (2) software is accompanied by a detailed tutorial that guides the user on how to

use it; and (3) CodeCharge, as opposed to using the regular database forms and pages

such as those in MS Access, can interface a variety of databases whereas the database

forms and pages are restricted to the particular database type. CodeCharge works in

conjunction with the appropriate database ODBC driver to establish a connection

between the website and the database.

1.2 How Code Charge Works

Open Database Connectivity (ODBC) is a standard database access method

developed by the SQL (Structured Query Language) Access group in 1992. The goal of

ODBC is to make it possible to access any data from any application, regardless of which

database management system (DBMS) is handling the data. ODBC manages this by

inserting a middle layer, called a database driver, between an application and the DBMS.

The purpose of this layer is to translate the application's data queries into commands that

the DBMS understands. For this to work, both the application and the DBMS must be

ODBC-compliant, that is, the application must be capable of issuing ODBC commands

and the DBMS must be capable of responding to them (Webopedia). CodeCharge Studio

Website Development

 12

uses this concept to connect web pages to the corresponding database. The figure below

outlines how ODBC works.

 Queries sent to driver

 DBMS

Once the CodeCharge Studio software has been installed on the machine, simply

open the software to start using it. To create a new web interface, the user can easily

select the appropriate options for creating a new project, and follow the steps provided by

the application builder. The application builder guides one through a step by step process

to develop the website allowing one to select which functions (such as Delete, Add, Edit)

from a given set of functions to incorporate in his/her web site. The user also selects

which data should be displayed by specifying the tables and fields from which data

should be retrieved. In addition, the application builder helps the user configure the

connection to be used to access the database. This requires the user to enter the correct

server path and URL for the server hosting the database, and also select the appropriate

ODBC driver for the connection based on the type of underlying database. Once the user

clicks the Finish button of the application builder, they are presented with a template of

what the web page looks like. Any further editing can be done at this design stage. To

CodeCharge
web
application

Database
Driver

Queries are
converted to
commands

Results displayed on
the web application

Results sent
back to driver

Website Development

 13

publish the page, the user can select the �Live Page� option on the menu and the page

will be published on the specified server.

1.3 Developing a website Using CodeCharge Studio 2.3 ®

For my assignment, I first had to create a sample Microsoft Access database and a

sample website to familiarize myself with the CodeCharge software. I created the

database with two tables � StudentInfo and AcademicInfo - then entered sample data in to

the tables. I used CodeCharge to create a web interface for the database.

1.4 Results

Using the application builder, I followed the steps and was able to successfully

create a website and edit it in the Design mode. An example of a website created using

CodeCharge is provided in appendix D.

1.5 Discussion

Although CodeCharge was quite effective for developing the websites desired, I

wasn�t able to proceed with the actual implementation of my project (development of

web interfaces for the MySQL database) due to complications involving the set up of the

existing MySQL database. For me to able to proceed with my assignment, configuration

changes would have to be made on the database. At the time of writing this paper,

configurations were yet to be changed hence I was unable to complete this project.

Nevertheless, CodeCharge proved to be a very useful piece of software. When

using it the user didn�t have to do much coding since CodeCharge did most of the work.

It�s easy to use and is accompanied by very detailed tutorials as well as readily available

online support. However, the CodeCharge software is very specific in terms of

requirements needed to set up the environment for developing, testing and implementing

Website Development

 14

website therefore making it somewhat complicated to use. There are several requirements

that have to be met to have the suitable environment and these requirements are different

for each language and database.

Overall Conclusion

One of the tasks handled by the Program Support group in the Computing

Division is the processing of leave and travel requests for the division. Since the

Computing Division consists of over 200 employees, the Program Support groups

receives numerous leave and travel requests every year. It�s for this reason that the idea

of automating the system was put forward. Automating the leave and travel system is a

complex and gradual process. My project this summer helped facilitate the automation

process by: (1) providing a website containing leave and travel documentation for

Program Support staff , (2) creating electronic forms that can be used for a wide range of

tasks, and (3) since I was able to use CodeCharge Studio to develop web applications for

interfacing databases, in future if a database is created for storing leave and travel

information or for any other purpose, CodeCharge can also be used to create web

interfaces for the databases. Although the automation of the leave and travel system is

still far from complete, once its fully developed and implemented, it will benefit not just

the Computing Division but Fermilab as a whole because the developed system can serve

as a template for the other divisions.

Website Development

 15

References

Castro, E. (2001). Perl and CGI for the World Wide Web. CA: Peachpit Press.

CodeCharge Studio 2.3, Retrieved 07/26/05, from

http://www.yessoftware.com/products/product_detail.php?product_id=1

Lemay, L. (1995). Teach Yourself Web Publishing With HTML in a Week. IN: Sams

Publishing.

Macromedia Dreamweaver MX 2004 at a Glance, Retrieved 07/18/05, from

http://www.macromedia.com/software/dreamweaver/productinfo/overview/

Open Database Connectivity, Retrieved 07/18/05, from Webopedia

http://www.webopedia.com/TERM/O/ODBC.html

Acknowledgements

I wish to extend my uttermost appreciation to God and to the following organizations

and individuals for enabling me to participate in this internship program and for making

my experience at Fermilab both intellectually and socially stimulating.

! Fermilab

! Computing Division and in particular the Program Support group

! Mrs. Dianne Engram, Dr. Elliott McCrory, and SIST Committee

! Supervisor: Mari Herrera

! Mentors: Cosmore Sylvester, Jamieson Olsen, Dr. Davenport and Dr. Herman

White

! Fellow Interns

Website Development

 16

Appendix A: Flowchart

 --

 -

Key
 - Step requires electronic signature
 - Step requires a user interface
 -Workflow software actions, email notifications, and other underlying
processes

Leave Request Form Submitted
(See sample leave request form attached)

Request Approved Request Denied No Response
Supervisor fails to meet
response deadline

Notify Supervisor
Once request is received,
email is sent to
requestor�s supervisor.
Approval/denial received
within 2 days

Notify Requestor Info Posting
CD internal Website
only displays names,
dates of those on leave
not leave type in
tabulated form. Leave
type available to Dept.
Heads and Division
office. Group leaders
can view lave type of
group members only.

Request forwarding
If supervisor fails to
respond the request is
sent to the next in
line.

Modifying
Requests
All modified
requests are
considered
new requests.
Requests can
be modified at
any stage.

If next in line fails to meet
response deadline, notify
requestor and send
request back to supervisor

Request stored in
Database

Concurrently notify
requestor�s colleagues
(via email) of the leave
request and they
provide input to
supervisor

Website Development

 17

Appendix B:
Confroom.html

Return.html

Website Development

 18

Appendix C: Confroomreglog.html

Appendix D: Sample Website Created Using CodeCharge Studio

Website Development

 19

Appendix E: Confroom.pl
#! /usr/local/bin/perl
BEGIN {
require "/afs/fnal/ups/etc/setups.pl";
ups::use_prod("perl_dbd_mysql","v2_9003", "SETUP_PERL_DBD_MYSQL");
$^W=0;
}
use CGI qw/:standard/;

Set Variables
$guestbookurl = "http://home.fnal.gov/~marih/public_html/forms_requests/confroomreg.html";
$guestbookreal = "/afs/fnal.gov/files/home/room3/marih/public_html/forms_requests/confroomreg.html";
$guestlog = "/afs/fnal.gov/files/home/room3/marih/public_html/forms_requests/confroomreglog.html";
$returnpageurl = "http://cdinternal.fnal.gov/DOE_Workshop/doe8345/return2.html";
$cgiurl = "http://computing.fnal.gov/cgi-bin/aheavey/confroom.pl";
$date_command = "/usr/bin/date";

Set Your Options:
$mail = 1; # 1 = Yes; 0 = No #changed to 1
$uselog = 1; # 1 = Yes; 0 = No
$linkmail = 1; # 1 = Yes; 0 = No
$separator = 1; # 1 = <hr>; 0 = <p>
$redirection = 1; # 1 = Yes; 0 = No
$entry_order = 1; # 1 = Newest entries added first;
 # 0 = Newest Entries added last.
$remote_mail = 1; # 1 = Yes; 0 = No
$allow_html = 1; # 1 = Yes; 0 = No
$line_breaks = 0; # 1 = Yes; 0 = No

If you answered 1 to $mail or $remote_mail you will need to fill out
these variables below:
$mailprog = '/usr/lib/sendmail'; #left as is; same as in bfnalformmail anyway 8/3/04
$recipient = 'marih@fnal.gov, mmayilin@fnal.gov';

#first open for reading, read in whole thing, increment the value, then replace whole thing

open (GUEST,"$guestbookreal") || die "Can't Open $guestbookreal: $!\n";
flock (GUEST, 2) || Error ('lock', 'file');
@guestlines = <GUEST>;
foreach my $startline (@guestlines)
{
 $firstword=substr($startline, 0, 7);
 if ($firstword eq 'Current')
 {
 #print "original line: ", $startline, "\n";
 @splitline = split(/=/ , $startline);
 $splitline[1]++;
 $startline = $splitline[0]."=".$splitline[1]."\n";
 #print "updated line is ", $startline, "\n";
 }
}
#print "closing file for reading now", "\n";
close GUEST;

Website Development

 20

open (GUEST,">$guestbookreal") || die "Can't Open $guestbookreal: $!\n";
flock (GUEST, 2) || Error ('lock', 'file');
print GUEST "\n";
print GUEST @guestlines;
close GUEST;

Get the Date for Entry
$date = `$date_command +"%A, %B %d, %Y at %T (%Z)"`; chop($date);
$shortdate = `$date_command +"%D %T %Z"`; chop($shortdate);

Get the input
read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});

Split the name-value pairs
@pairs = split(/&/, $buffer);

foreach $pair (@pairs) {
 ($name, $value) = split(/=/, $pair);

 # Un-Webify plus signs and %-encoding
 $value =~ tr/+/ /;
 $value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;
 $value =~ s/<!--(.|\n)*-->//g;

 if ($allow_html != 1) {
 $value =~ s/<([^>]|\n)*>//g;
 }

 $FORM{$name} = $value;
}
Print the Blank Response Subroutines
#commented out &no_comments unless $FORM{'comments'};
#&no_name unless $FORM{'realname'};

Begin the Editing of the Guestbook File
open (FILE,"$guestbookreal") || die "Can't Open $guestbookreal: $!\n";
@LINES=<FILE>;
close(FILE);
$SIZE=@LINES;

Open Link File to Output
open (GUEST,">$guestbookreal") || die "Can't Open $guestbookreal: $!\n";
for ($i=0;$i<=$SIZE;$i++) {
 $_=$LINES[$i];
 if (/<!--begin-->/) {
 if ($entry_order eq '1') {
 print GUEST "<!--begin-->\n";
 }
 if ($line_breaks == 1) {
 $FORM{'comments'} =~ s/\cM\n/
\n/g;
 }
 print GUEST "$FORM{'comments'}
\n";

Website Development

 21

 if ($FORM{'url'}) {
 print GUEST "$FORM{'realname'}"; }
 else {
 print GUEST "$FORM{'realname'}"; }
In following, changed username to email 4x
 if ($FORM{'email'}){
 if ($linkmail eq '1') {
 print GUEST " \<";
 print GUEST "$FORM{'email'}\>";
 }
 else {
 print GUEST " <$FORM{'email'}>";
 }
 }
 print GUEST "
\n";

 if ($FORM{'Purpose'}){
 print GUEST "Purpose: $FORM{'Purpose'},";
 }
 print GUEST "
\n";

 if ($FORM{'Room'}){
 print GUEST "Room Name: $FORM{'Room'}";
 }
 print GUEST "
\n";

 if ($FORM{'Attend'}){
 print GUEST "Number of Attendees: $FORM{'Attend'}";
 }
 print GUEST "
\n";

 if ($FORM{'Video_pref'}){
 print GUEST "Is Video Needed: $FORM{'Video_pref'}";
 }
 print GUEST "
\n";

 if ($FORM{'Comments'}){
 print GUEST "Comments: $FORM{'Comments'}";
 }
 print GUEST "
\n";

 if ($FORM{'parallel2'}){
 print GUEST "Parallel session (2nd): $FORM{'parallel2'}";
 }
 print GUEST "
\n";

 if ($separator eq '1') {
 print GUEST " - $date<hr>\n\n";
 }
 else {
 print GUEST " - $date<p>\n\n";
 }
 print GUEST "
\n";

 if ($entry_order eq '0') {

Website Development

 22

 print GUEST "<!--begin-->\n";
 }
 }
 else {
 print GUEST $_;
 }
}
close (GUEST);
Log The Entry
if ($uselog eq '1') {
 &log('entry');
}

Mail Option
if ($mail eq '1') {
 open (MAIL, "|$mailprog $recipient") || die "Can't open $mailprog!\n";
 print MAIL "Reply-to: $FORM{'email'} ($FORM{'realname'})\n";
 print MAIL "From: $FORM{'email'} ($FORM{'realname'})\n";
 print MAIL "Subject: Conference Room Request\n\n";
 print MAIL "There is a new Conference Room Request.\n\n";
 print MAIL "--\n";
 #print MAIL "$FORM{'comments'}\n";
 print MAIL "$FORM{'realname'}";

 if ($FORM{'email'}){
 print MAIL " <$FORM{'email'}>";
 }
 print MAIL "\n";
 if ($FORM{'Purpose'}){
 print MAIL "Purpose: $FORM{'Purpose'},";
 }
 print MAIL "\n";
 if ($FORM{'Duration'}){
 print MAIL "Duration: $FORM{'Duration'},";
 }
 print MAIL "\n";
 if ($FORM{'Time'}){
 print MAIL "Start Time: $FORM{'Time'},";
 }
 print MAIL "\n";
 if ($FORM{'Date'}){
 print MAIL "Date: $FORM{'Date'},";
 }
 print MAIL "\n";
 if ($FORM{'Room'}){
 print MAIL "Room Name: $FORM{'Room'}";
 }
 print MAIL "\n";
 if ($FORM{'Comments'}){
 print MAIL "Comments: $FORM{'Comments'}";
 }
 print MAIL "\n";
 if ($FORM{'Video_pref'}){
 print MAIL "Is Video Needed: $FORM{'Video_pref'}";
 }
 print MAIL "\n";

Website Development

 23

 if ($FORM{'Attend'}){
 print MAIL "Number of Attendees (1st): $FORM{'Attend'}";
 }
 print MAIL "\n";
 print MAIL " - $date\n";
 print MAIL "--\n";
 close (MAIL);
}

if ($remote_mail eq '1' && $FORM{'email'}) {
 open (MAIL, "|$mailprog -t") || die "Can't open $mailprog!\n";
 print MAIL "To: $FORM{'email'}\n";
 print MAIL "From: $recipient\n";
 print MAIL "Subject: Conference Room Request\n\n";
 print MAIL "You have successfully requested a Conference Room\n";
 print MAIL "You will receive an email to confirm the room availability\n\n";
 print MAIL "With question contact cd-sis@fnal.gov\n\n";
 print MAIL "--\n";
 #print MAIL "$FORM{'comments'}\n";
 print MAIL "$FORM{'realname'}";

 if ($FORM{'email'}){
 print MAIL " <$FORM{'email'}>";
 }
 print MAIL "\n";
 print MAIL " - $date\n";
 print MAIL "--\n";

 close (MAIL);
}

Print Out Initial Output Location Heading
problem with redirection, try commenting out.
if ($redirection eq '1') {
 print "Location: $returnpageurl\n\n";
}
else {
 &no_redirection;
}#######################
Subroutines
sub no_comments {
 print "Content-type: text/html\n\n";
 print "<html><head><title>No Comments</title></head>\n";
 print "<body><h1>Your Comments appear to be blank</h1>\n";
 print "The comment section in the guestbook fillout form appears\n";
 print "to be blank and therefore the Guestbook Addition was not\n";
 print "added. Please enter your comments below.<p>\n";
 print "<form method=POST action=\"$cgiurl\">\n";
 print "Your Name:<input type=text name=\"realname\" size=30 ";
 print "value=\"$FORM{'realname'}\">
\n";
 print "E-Mail: <input type=text name=\"username\"";
 print "value=\"$FORM{'username'}\" size=40>
\n";
 print "City: <input type=text name=\"city\" value=\"$FORM{'city'}\" ";
 print "size=15>, State: <input type=text name=\"state\" ";
 print "value=\"$FORM{'state'}\" size=15> Country: <input type=text ";

Website Development

 24

 print "name=\"country\" value=\"$FORM{'country'}\" size=15><p>\n";
 print "Comments:
\n";
 print "<textarea name=\"comments\" COLS=60 ROWS=4></textarea><p>\n";
 print "<input type=submit> * <input type=reset></form><hr>\n";
 print "Return to the Return Page.";
 print "\n</body></html>\n";

 # Log The Error
 if ($uselog eq '1') {
 &log('no_comments');
 }

 exit;}
sub no_name {
 print "Content-type: text/html\n\n";
 print "<html><head><title>No Name</title></head>\n";
 print "<body><h1>Your Name appears to be blank</h1>\n";
 print "The Name Section in the guestbook fill out form appears to\n";
 print "be blank and therefore your entry to the guestbook was not\n";
 print "added. Please add your name in the blank below.<p>\n";
 print "<form method=POST action=\"$cgiurl\">\n";
 print "Your Name:<input type=text name=\"realname\" size=30>
\n";
 print "E-Mail: <input type=text name=\"username\"";
 print " value=\"$FORM{'username'}\" size=40>
\n";
 print "City: <input type=text name=\"city\" value=\"$FORM{'city'}\" ";
 print "size=15>, State: <input type=text name=\"state\" ";
 print "value=\"$FORM{'state'}\" size=2> Country: <input type=text ";
 print "value=USA name=\"country\" value=\"$FORM{'country'}\" ";
 print "size=15><p>\n";
 print "Comments have been retained.<p>\n";
 print "<input type=hidden name=\"comments\" ";
 print "value=\"$FORM{'comments'}\">\n";
 print "<input type=submit> * <input type=reset><hr>\n";
 print "Return to the Return Page.";
 print "\n</body></html>\n";
 # Log The Error
 if ($uselog eq '1') {
 &log('no_name');
 }
 exit;
}
Log the Entry or Error
sub log {
 $log_type = $_[0];
 open (LOG, ">>$guestlog");
 if ($log_type eq 'entry') {
 print LOG "$ENV{'REMOTE_HOST'} - [$shortdate]
\n";
 }
 elsif ($log_type eq 'no_name') {
 print LOG "$ENV{'REMOTE_HOST'} - [$shortdate] - ERR: No Name
\n";
 }
 elsif ($log_type eq 'no_comments') {
 print LOG "$ENV{'REMOTE_HOST'} - [$shortdate] - ERR: No ";
 print LOG "Comments
\n";
 }}
Redirection Option

Website Development

 25

sub no_redirection {

 # Print Beginning of HTML
 print "Content-Type: text/html\n\n";
 print "<html><head><title>Thank You</title></head>\n";
 print "<body><h1>Thank You for registering for the OSG Operations Meeting</h1>\n";

 # Print Response
 print "Thank you for registering. Your entry has\n";
 print "been added to the meeting participants page.<hr>\n";
 print "Here is what you submitted:<p>\n";
 print "$FORM{'comments'}
\n";

 if ($FORM{'url'}) {
 print "$FORM{'realname'}";
 }
 else {
 print "$FORM{'realname'}";
 }
 if ($FORM{'email'}){
 if ($linkmail eq '1') {
 print " <";
 print "$FORM{'email'}>";
 }
 else {
 print " <$FORM{'email'}>";
 }
 }
 print "
\n";

 print " $FORM{'country'}";
 if ($FORM{'country'}){
 }
 print " - $date<p>\n";
 # Print End of HTML
 print "<hr>\n";
 print "Back to the Return page.\n"; print "- You may need to reload
it when you get there to see your\n";
 print "entry.\n";
 print "</body></html>\n";

 exit;
}

