
Finetuning, naturalness, and 
the next good theory

James Wells
University of Michigan

Seminar, Fermilab
December 16, 2021

1

JW, arXiv:1809.03374
arXiv:2107.06082



Imagine two random variables x and y, flatly distributed [0,1]

Sample these two variables five times and plot in 2D plane

(x1,y1)
(x2,y2)
(x3,y3)
(x4,y4)
(x5,y5)
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Figure 1: Five randomly sampled points on the flatly distributed x and y independent random
variables. Each point is equally likely and there is nothing special or abnormal among them.
However, point C is by definition a “finetuned” point for z when considering z = x� y since
it lies very near the x = y diagonal.

Probabilities in XYCM parameter space

Let us begin by defining the XYCM in more detail, including providing the probability
distributions of its parameters. As mentioned above, XYCM is the proposition that z = x�y

where x and y are independently and flatly distributed from 0 to 1 and |z| ⌧ |x|, |y|. The
joint probability distribution function by the XYCM definition is f(x, y) = 1 which satisfies
the required unitary probability condition

1 =

Z 1

0

dy

Z 1

0

dx f(x, y). (1)

In Fig. 1 the (x, y) plane is shown with a few points (A,B,C,D,E) sampled according to
the flat joint probability density function f(x, y) = 1 over 0  x  1 and 0  y  1. One may
ask if any of these points looks particularly unlikely or outrageously unexpected compared to
any other? The answer is no, they are all equally likely. However, point C happens to lie
very close to the diagonal characterized by y ' x. As we shall see below, such a point is label
“finetuned” under a standard finetuning measure used in physics, and as such is sometimes
considered di�cult (“large finetuning”) or impossible (“extreme finetuning”) to contemplate
by some. However, from a statistics point of view, such a point is by no means atypical,
abnormal or monstrous. It is just as likely as any other point in the plot, and should have no
disqualifying prejudices against it from a point-by-point perspective.

Target regions and probabilities

Now, suppose we identify a very small finite “target region” in the (x, y) plane. Let’s call
it �, as depicted in Fig. 2. One can ask, what is the probability of sampling f(x, y) and
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Nothing looks weird about these points, eh? There is nothing alarming here.
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Figure 2: The small blue box � is arbitrarily placed in the the xy plane. The probability of
a subsequent single sampled point on the flatly distributed independent variables x and y to
land within � is very small, and equal to P� = V� where V� is the area of the square.

finding a point within �? This is a very well defined question that can be answered. Bets can
be cast intelligently on such questions. If the volume of � is V� then, the probability P� of
a sampled point landing within � is P� = V�.

From a purely statistical point of view we can ask and answer an infinite number of similar
questions based on di↵erent choices of the target region �. The small regions do not have to
be small boxes such as � in Fig. 2. One could also declare three other very small regions.
Three choices out of an infinite number of choices are the region of very small values of x < ✏

but any value of y (�1), or a very thin region where |x + 2y| < ✏ (�2), or a very thin region
where |x� y| ' ✏ (�3). Each of these regions has volume V�i ' ✏ ⌧ 1. In each of these cases
one can ask, what is the probability P�i of a sampled point landing within the region �i?
The answer is P�i = V�i ⌧ 1, which is a very unlikely probability just as it is a very unlikely
probability of sampling a single point within � in Fig. 2.

A priori vs. a posteriori statistical propositions

An incorrect way of asserting probable versus improbable statistical propositions is to
sample the distribution f(x, y) for a point (x0, y0), then draw an infinitesimally tiny box �0

around that point in the (x, y) plane, and then declare that the sampled point that landed
within tiny �0 was an incredibly improbable occurrence (P0 = V�0 ⌧ 1) that just should
never have happened. No, such a posteriori reasoning is incorrect. In other words, you will
never get somebody to take a bet that the sampled point will never fall into an arbitrarily
tiny box you are free to draw after the point has been identified.

On the other hand, going the opposite direction – a priori reasoning – does lead to valid
statistical propositions of probable vs. improbable. This method entails identifying a tiny box
� in the (x, y) plane first and then sampling the f(x, y) distribution for a point (x0, y0). If
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Now, start over and draw a tiny box of volume D in the x-y plane but do not show anyone.

Then, ask somebody to pick two numbers between 0 and 1: (x,y). 

What is the probability 
that the randomly chosen 
(x,y) will fall into D box? 

Tiny! Probability = D

You would win bets against 
people who thought the 
probability is large.
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But the D box is not the only tiny volume in the (x,y) plane that I can draw.

Consider the “flaring thin diagonal”, which is also small volume.

Figure 4: Plot of the region with z finetuned according to eq. 4, where z = x � y and x and
y are flatly distributed independent random variables from 0  x, y  1. Left panel: the blue
filled-in region is where FT > 102. Right panel: the blue filled-in region is where FT > 103.

For large FT the volume is very small. Therefore, it is improbable3 (P�FT = VFT) that a
sampled point on a flat distribution, or a nearly flat distribution spread out in (x, y) on a
scale much larger than �FT, should land in �FT. It is nigh impossible for it to land in the
extreme finetuned region of FT > 106.

Finetunings and probable natural theories

It is important to keep in mind that the finetuning computation, as normally defined
(see eq. 4), does not care about what the probability distribution is. It is an unambiguous
definition. On the other hand, connecting finetuning to a probability requires integrating a
probability density function f(x, y) over a selected target region �. Likewise, determining
whether a sample point is improbable to land within the finetuned region requires integrating
a probability density function over �FT, although making a qualitative binary declaration
of “improbable” vs. “not necessarily improbable” does not require knowing the probability
density function precisely. If it is flat or not too radically di↵erent from flat, then it is rare to
fall into �FT. If it is peaked heavily along the diagonal, or in the upper right corner of the xy
plane, then landing in �FT would be less improbable.

Back to the main discussion: The analogy with the statistical analysis of a single random
variable gaussian distributed can be revisited. We can compute the FT value that would
give the same probability of (x, y) landing within �FT as the probability of a single random
variable x landing within �n�, which is the region of x more than n� away from its mean
value. One sees in Fig. 5 that with increasing n� the FT increases rapidly. A “2� event”
has the same probability as a finetuning of more than 430. A “3� event”, which is certainly
quite rare (probability of 0.27%), is equivalent to finetuning of more than 9 · 104. Given that
3� signifies an important threshold of rarity and signs of new physics in physics4, it would

3If we had instead chosen x, y to be flat over the interval ⇠  x, y  1 instead of 0  x, y  1 the probability

of landing in the FT region would increase modestly to P�FT(⇠) =
2

FT+1

⇣
1+⇠
1�⇠

⌘
when FT · (1� ⇠) � 1.

4The importance of 3� (99.73% probability of falling within it) is highlighted in the Intergovernmental Panel
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I would not bet 
much that a random 
choice of (x,y) would 
fall into the blue D
volume.
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Now imagine making a bet, and then asking someone to randomly choose (x,y)
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It’s inside D! Big surprise.
(This was C point on first slide)
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What does this have to do with physics? Finetuning considerations.

The blue flare region is the region of “high finetuning of Z” in Z = X – Y.

Figure 3: The green filled-in area is the target region �2� integrated over the gaussian dis-
tributed probability density function. It is rare that a randomly sampled single point should
fall within �2� and rarer yet for it to fall within �3� (i.e., |x| > 3), and so on.

– they just happen to lie in a small region in parameter space. A key question is whether in the
practical application of finetuning to determine if a theory is natural or unnatural (i.e., likely
or unlikely) one has identified �FT as an a posteriori selection or as an a priori selection.
If a posteriori then declarations of probable versus improbable finetuned theory points are
meaningless, but if a priori such declarations are meaningful. It is assumed in this letter that
�FT is an a priori determined region since it is algorithmically computed without reference
to the details of a theory, and therefore probability reasoning is valid2.

Let us now show how finetuning selects a small region of parameter space. The common
definition of finetuning of the parameters xi on some observable or outcome ⇠ through the
relation ⇠ = ⇠(x1, x2, . . . , xn) is

FT =
nX

i=1

����
xi

⇠

@⇠

@xi

���� . (3)

In our XYCM this translates to

FT =

����
x

z

@z

@x

����+
����
y

z

@z

@y

���� =
x+ y

|x� y| (4)

A large finetuning is one where FT > 102 or 103, for example. An extreme finetuning might
be defined to be FT > 106. We plot the finetuned regions corresponding to FT > 102 and
FT > 103 in Fig. 4 (the region FT > 106 is too small to be visible). The target region volume
corresponding to finetuning FT is

V�FT =
2

FT + 1
. (5)

2An attack on this viewpoint (e.g., concern for what observables, or functions of observables, should be
used to compute finetunings) and a defense against such attacks can be found in [13].
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In general, consider

Finetuning is defined as

FT is evaluated for given 
values of x1, x2, …, xn.

For Z = X – Y (z=x, x=x1, y=x2)

The D region of FT > 102 is in blue.
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Many physics eqs. Map to Z = X – Y.

If I a priori define a large FT region in the (X,Y) space, I can entertain bets on 
whether nature’s choice lands in the tiny blue region (i.e., high FT region).

We will do examples.

But keep in mind: NOTHING IS WRONG WITH A HIGH FINETUNED THEORY.  
I just wouldn’t bet on it.
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Let me do one example first: the singlet Higgs added to the SM

Then I want to make grander, general statements about Naturalness and the 
Hierarchy problem, etc.

And then talk about more theories, including the SM itself.
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did not show up. This is reminiscent of a similar conclusion using a different approach to
assess Naturalness – finite Naturalness [4] – applied specifically to the top quark contribution
to the Higgs mass.

The summary of this section is that the SM has low finetunings across matchings of EFTs
across its mass thresholds and therefore passes its Naturalness test. There are dozens of
non-trivial tests that could have come to a different conclusion. This gives confidence that
our primary theory at the present (the SM) does not register as a failure in the Naturalness
evaluation with which we plan to asses conjectured theories. This is in contrast to illogically
charging the SM with a lethal naturalness problem and then finding new theories that do not.
The SM is Natural. Or differently said, the SM does not suffer from Unnaturalness.

5 Adding a heavy singlet

One of the simplest ways to extend the SM is to add a real singlet scalar σ to the spectrum.
One can call this theory SM+σ for short. The lagrangian is

LSM+σ = LSM +
1

2
(∂µσ)

2 −
1

2
m2

σσ
2 −

ησ
2
H†Hσ2 +

λσ
4
σ4 (12)

Let us suppose that the mass of the σ-particle is higher than the masses of the other particles in
the spectrum, and let’s also call the effective theory that includes the σ particle Lσ+ = LSM+σ.
We shall see that if the mass of the σ particle is too high then the matching encounters a
finetuning problem, matching the discussion of [13].

Given the high mass of the σ particle we can integrate it out and are left with a low
energy lagrangian Lσ− below the σ-mass threshold which is the SM lagrangian plus many
higher dimensional operators, such as O6 = |H|6. After some analysis we can see that no
operator in Lσ− suffers from a finetuning of matching across the mσ threshold except possibly
the coefficient m2 of the operator |H|2. In that case the matching is

m2
(−) = m2

(+) −
ησm2

σ

16π2

[

1− ln

(

m2
σ

µ2

)]

(13)

where for clarity we have defined

m2
(±) = m2 evaluated at q2 = m2

σ(1± ε), where ε" 1. (14)

In other words m2
(−) is the coefficient of |H|2 in the low-energy effective theory just below the

mσ threshold after the σ-particle has been integrated out, and m2
(+) is the coefficient of |H|2

in the high-energy theory above the mσ threshold that includes the σ particle.

The calculation of the finetuning across the threshold yields:

FT[m2] =

∣

∣

∣

∣

m2
σ

m2

∂m2

∂m2
σ

∣

∣

∣

∣

=

∣

∣

∣

∣

ησm2
σ

8π2m2
h

ln

(

m2
σ

µ2

)
∣

∣

∣

∣

(15)
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where the last term utilizes the leading order result in the low-energy theory thatm2 = −m2
h/2.

We come across here the first instance where we think carefully how to deal with the arbitrary
matching scale µ.

In the computation of observables the final result cannot depend on the arbitrary scale µ in
the loop integrals. In practice, the result does not depend on µ at the order of the calculation,
and a substantial residual µ dependence is an indication of the importance of including higher
order corrections. On the other hand, the computation of the finetuning through sensitivity
to loop effects, such as our example in eq. 15, depends on µ. Not only that, choosing µ = mσ

in eq. 15 appears to conclude that there is no finetuning independent of the mass m2
σ.

Is not then the strong dependence of finetuning on the arbitrary scale choice µ of matching
an indication of the worthlessness of finetuning? No. The proper way to think of the scale
choice is that it is indeed arbitrary, and any reasonable choice from the point of view of theory
calculability can be employed and the result should not be finetuned across the boundary.
Reasonable choices the community has long made is mσ/2 < µ < 2mσ, which translates
into ln(m2

σ/µ
2) ranging from −1.4 to 1.4. Thus, we should vary µ over the entire range and

determine what the average finetuning is. That is one precise prescription on how to deal
with µ dependence. Another prescription which is much simpler to implement and yields
roughly the same results is to replace ln(∆/µ2) with both +1 and −1 and average over the
two resulting values for finetuning. We go with that prescription unless there is a case where
replacing with +1 and −1 gives artificial cancellations, and then we revert back to the original
prescription of averaging finetuning over choices −1.4 < ln(∆/µ2) < 1.4. Our singlet scalar
example here has no artificial cancellations by replacing ln(∆/µ2) = ±1 and this prescription
applied to our example then gives

FT[m2] =
ησm2

σ

8π2m2
h

= 0.8 ησ
( mσ

1TeV

)2

(16)

The reader may be concerned that by using ln(∆/µ2) = ±1 we changed the definition of
our finetuning requirement by evaluating µ away from the precise mass threshold. However,
this was only done to maintain the intuitions of those who wish to determine the finetuning of
the Higgs boson with respect to m2

σ. There is no problem maintaining the strict requirement
µ = mσ and seeing that there is large finetuning. Recall, the finetuning is the maximum
finetuning across a threshold with respect to any high-energy parameter. The mass m2

σ was
one such parameter but so is the H†H operator coefficient m2

(+) in the high-scale theory. The
finetuning with respect to it is

FT[m2] = FT[m2
(−) |m

2
(+)] =

∣

∣

∣

∣

∣

m2
(+)

m2
(−)

∂m2
(−)

∂m2
(+)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m2
(+)

m2
(−)

∣

∣

∣

∣

∣

µ2=m2
σ

=

∣

∣

∣

∣

1−
ησm2

σ

8π2m2
h

∣

∣

∣

∣

"
ησm2

σ

8π2m2
h

(for large m2
σ) (17)

which is the same result as eq. 16. The reason for this high finetuning seeping into the m2
(+)

dependence is that the large logarithm is none other than the β-function of the renormalization
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Thus, there is a large finetuning of EFT matching at this threshold if ms is large.

For h = 1 the finetuning is FT > 103 (level-3 finetuning) if ms > 36 TeV.

I would bet against arbitrarily massive singlets that couple to the SM Higgs,
unless there is a new principle at play!
- Supersymmetry
- ”separation mechanism” that enforces h << 1
- …
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General principles I wish to advocate:

- FT computations across EFT thresholds is an a priori well-defined algorithm for 
determining tiny volumes D (high FT) that I would generally bet against.

- If from our perspective a speculative theory is viable only if it has very high 
finetuning (level 4 or higher, say) then the theory is likely to be wrong or there is a 
deeper idea that is yet to be invoked or discovered that explains the high FT.

- Finetuning is uniquely interesting method to determine a priori tiny volumes since 
its probability interpretation is largely independent of the range of values the 
underlying parameters can gave. This is certainly true for Z = X – Y, flat prior 
model.
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A large finetuning is one where FT > 102 or 103, for example. An extreme finetuning might
be defined to be FT > 106. We plot the finetuned regions corresponding to FT > 102 and
FT > 103 in Fig. 4 (the region FT > 106 is too small to be visible). The target region volume
corresponding to finetuning FT is

V�FT =
2

FT + 1
. (5)

2An attack on this viewpoint (e.g., concern for what observables, or functions of observables, should be
used to compute finetunings) and a defense against such attacks can be found in [13].
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To be a little more precise

fail the Wilsonian Naturalness test) and should be labeled as such. Level-0,1,2 theories pass
the Wilsonian Naturalness test in our view. One can imagine many different views on whether
Level-3, Level-4 and Level-5 theories pass the Wilsonian Naturalness test. It is hard to argue
that they are hopelessly improbable at that level and so in the spirit of conservativeness
they should not be labeled Unnatural, but they should be looked upon with some suspicion
and they likely need other good theory qualities (consilience, additional explanatory power
compared to competitors, etc.) to remain in the good graces of physicists. The reader may
disagree with my assessments for viability of each level, but I hope they would think hard
about what level is ok and what is not. One can start by asking if a Level-13 theory of the
future is likely, without any extra principle brought in to explain its large finetuning. If you
say “no way is a Level-13 theory going to happen,” like I do, then ask yourself about Level-12,
and keep going until you get nervous about being too rigidly judgmental about the viability
of a hypothesized new theory. For me, that is Level-6, as stated above.

Let us summarize our definition of Wilsonian Naturalness:

Endo-Natural theory: An endo-Natural theory is one where the finetunings
are not high (all are, say, level-4 or lower4) across all its particle thresholds when
matching EFTs above and below the thresholds, according to the a priori defined
algorithms of assessment discussed above.

Exo-Natural theory: A theory may have large finetuning across threshold(s),
but those finetunings are explained in principle and are not accidental. This case
has no implication of low probability despite its large finetuning, and we call the
corresponding theory exo-Natural.

Wilsonian Natural theory: A Wilsonian Natural theory is one that is either
endo-Natural or exo-Natural.

Exo-Natural theories are ones with strong UV/IR correlations embedded in them, which in
principle can be discerned. We do not discuss them much in what follows, but let us illustrate
here an exo-natural theory by considering the Arkani-Hamed-Harigaya theory [9], which was
introduced as a possible explanation of the the g − 2 anomaly [10]. By virtue of finetuned
cancellations in the dimension-six operators that give rise to g − 2, the model “violates the
Wilsonian notion of naturalness” in the words of the authors. In our language, the violation
is not a violation of Wilsonian Naturalness but rather a violation of endo-Naturalness which
comes at the matching interface of the second highest mass state S, where the EFT has a
large coefficient of a g − 2 inducing dimension-six operator that is nearly exactly cancelled
by integrating out the S field at the matching threshold scale mS. But it is this violation of
endo-Naturalness that points to the correct supposition that this was no accidental finetuned
cancellation and the EFT under consideration (just below the heavier L particle mass) is
incomplete and there are surely new particle(s) or new principles at play that are not manifest

4Upon surveying the literature of physicists intuitions, any choice of level-3 through level-6 has been deemed
a defensible upper bound on tolerable finetuning.

7

Exo-Natural theory possibilities:  Landscape + anthropics kind of approaches, or theories with large UV/IR correlations.
(Note both of these categories evoke new principles)

15



within the EFT and are yet to be found. Indeed that is the case. Thus, the theory is an exo-
Natural theory, and is therefore Wilsonian Natural. It is for these reasons that it must be
emphasized that there is no claim here that endo-Naturalness must always hold in any theory.
Rather, the claim is on the implication of when endo-Naturalness does not hold: there are
new particle(s) or principle(s) yet to be discovered because the theory is secretly exo-Natural
– i.e., always Wilsonian Natural.

In summary, let us formulate the main conjecture of the paper as follows:

Wilsonian Naturalness conjecture: Large accidental finetunings in EFTmatch-
ing across a particle threshold is highly improbable. Any such finetuning that may
occur should be pursued as a sign for the existence of new particle(s) or princi-
ple(s) that render the large finetuning as a non-accidental result (i.e., it is secretly
an exo-Natural theory). Furthermore, any conjectured theory that relies on large,
unexplained accidental finetuning in EFT matching across particle threshold(s) is
unlikely to be a good description of nature. Summary: Wilsonian Naturalness is
expected to be satisfied by the next useful theory of nature beyond the Standard
Model5.

The subject of the rest of this paper is to illustrate the meaning and value of this conjecture.

4 The Standard Model

Statements abound in the literature that “the SM suffers from the Naturalness problem”, or
more or less equivalently, the hierarchy problem and the finetuning problem [11]. We need to
find a theory that “cures the SM’s naturalness problem” is another common refrain. However,
there is no place for such talk when it comes to a highly successful theory like the SM. If some
dreamt-up criteria ends up labeling the SM with a Naturalness problem, then I want every
other theory I come up with to also have a Naturalness problem just like it.

There is no reasonable sense in which the SM has a naturalness problem or any other
problem intrinsic to the theory itself such that it should be relegated to lower status. It is
a successful first-class theory, culminating in the discovery of the Higgs boson which was a
non-trivial corroboration of one of its peculiar features. However, one could try to expand
beyond the surface meaning of “Naturalness problem” and say something that is reasonable:
The SM has no principle or mechanism suggested within it that can protect the Higgs boson
mass if new states that couple to it are introduced at large scales, and since we have no
reason to believe that such new states are forbidden in nature, we realize that there is a
problem – a “Naturalness problem of proliferation of new states that we generically expect”
– in understanding how such new states could exist while the Higgs boson is so light. We can

5Of course, one is free to speculate on the possibility that a more radical idea could come along that does
not involve even lagrangians or Wilsonian effective field theories in any currently recognizable way, where
Wilsonian Naturalness tests would not be directly applicable.

8

Very important: There may be other definitions of naturalness that are useful to 
demote theories from having otherwise high status. Agnostic to that.
But ideas must give argument for WHY such and such property is bad. Only way to 
do that is connect to probability/likelihood. Without that, I’m uninterested.
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The Standard Model is a Wilsonian Natural Theory
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find a theory that “cures the SM’s naturalness problem” is another common refrain. However,
there is no place for such talk when it comes to a highly successful theory like the SM. If some
dreamt-up criteria ends up labeling the SM with a Naturalness problem, then I want every
other theory I come up with to also have a Naturalness problem just like it.

There is no reasonable sense in which the SM has a naturalness problem or any other
problem intrinsic to the theory itself such that it should be relegated to lower status. It is
a successful first-class theory, culminating in the discovery of the Higgs boson which was a
non-trivial corroboration of one of its peculiar features. However, one could try to expand
beyond the surface meaning of “Naturalness problem” and say something that is reasonable:
The SM has no principle or mechanism suggested within it that can protect the Higgs boson
mass if new states that couple to it are introduced at large scales, and since we have no
reason to believe that such new states are forbidden in nature, we realize that there is a
problem – a “Naturalness problem of proliferation of new states that we generically expect”
– in understanding how such new states could exist while the Higgs boson is so light. We can

5Of course, one is free to speculate on the possibility that a more radical idea could come along that does
not involve even lagrangians or Wilsonian effective field theories in any currently recognizable way, where
Wilsonian Naturalness tests would not be directly applicable.

8

Equations like the above have no obvious connection to probability.
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call this formulation the “proliferation naturalness problem” and it was argued for in [12]. As
we will discuss in sec. 8, this “proliferation problem” is what is implicitly behind declaring
a theory to have a “hierarchy problem”, where the hierarchy is between the SM states and
exotic new states generically expected to exist in nature well above the weak scale.

The above articulation of the “proliferation naturalness problem” of the SM is really about
contemplating simple new theories that are concatenations of the SM, and it by no means
suggests that the SM itself is unnatural. The SM has done its job, and whatever Naturalness
test one implements the SM better pass it to be a worthwhile test. It is up to any new theory,
on the other hand, which might include new states at higher mass scales, to make sure it
passes its own Naturalness test.

In what sense can we be sure that the SM passes its Naturalness test? In other words,
how does one determine that the criteria set forward earlier when applied to the SM does
not condemn it inappropriately as an unnatural theory? The answer is by straightforward
calculation. At every particle mass threshold (mt, mh, mZ , mW , mb, etc.) compute the low-
energy (theory below mass threshold) couplings !gL in terms of the high-energy (theory above
mass threshold) couplings !gH and compute the threshold finetunings using MS renormalized
parameters. The answer is that there are no large threshold finetunings in the theory at all,
and it therefore it passes the Naturalness test. The Wilsonian Naturalness algorithm correctly
retains the SM.

It should be noted that the SM had very many opportunities to fail its test, since there was
always a possibility that among the many matching conditions at the numerous thresholds
one could have been highly finetuned. No large finetuning was found, but it could have been.

Perhaps the best opportunity for the finetuning to have manifest itself is across the top
quark threshold. The matching of the m2 above and below the top mass after electroweak

symmetry breaking requires us to inspect the m2
h coefficient of

m2

h

2 h2 operator above and below
the top mass. One finds the leading term to be

m2
h(mt)L = m2

h(mt)H +
3m4

t

4π2v2
+O(y2tm

2
h) (10)

where v ! 246GeV and yt is the top-quark Yukawa coupling.

We can compute the finetuning across the mt threshold and we find

FT[m2
h|mt] !

3m4
t

π2v2m2
h

(11)

Inserting mt = 173GeV and mh = 125GeV into this equation one finds FT = 0.3 which is
O(1) as we expect most finetunings to be across thresholds. This is a low finetuning that is
consistent with a Natural theory.

One should note that there would be nothing wrong in principle with the SM if the Higgs
boson were much lighter. For example if mh had been found to be less than ∼ 1GeV the
finetuning value across the top quark threshold would be FT >

∼ 103. In that case, the theory
would have failed its Wilsonian Naturalness test, which would not have been physically im-
possible but rather highly improbable. Again, it is to be expected that such a large finetuning

9

18



19

Algorithms and definitions 
are different but result 
matches intuitions of 
Farina et al.’s finite 
naturalness discussion.

arXiv:1303.7244



Although the SM has no Naturalness problem or finetuning problem, it does 
have a hierarchy problem.

Hierarchy problem: a theory has a hierarchy problem if it immediately develops a 
Naturalness problem if generically expected new states (e.g., heavy singlet 
scalars) are added to it in standard ways that the theory would otherwise see no 
problem in doing.

As we saw before, adding a few massive singlets to the SM immediately creates a 
theory that has a Naturalness problem. No reason not to expect them.

à SM has a hierarchy problem
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Example: Supersymmetry

group flow for the m2
(+) mass parameter. Very large changes in m2

(+) over small changes in µ2

is what ultimately led to the finetuning with respect to m2
(+) evaluated at the µ2 = m2

σ scale.

Therefore, we can with confidence use eq. 16 to determine the finetuning across the m2
σ

mass threshold. With this in hand, we find that to reach level-3 finetuning or above with
ησ = 1 the σ mass must be mσ > 36TeV. This Naturalness proscription against such high
masses might upon first inspection seem remote and uninteresting, but it is a remarkably
powerful constraint that in all the many mass scales of nature, from here to the Planck scale,
the introduction of any scalar boson that interacts moderately well with the SM Higgs would
create, according to our assessments, a theory that does not pass its Wilsonian Naturalness test
across the mass threshold. This is another articulation of the serious “proliferation naturalness
problem” that was discussed in sec. 4, and it is why many wish nature to possess a deeper
principle, such as supersymmetry, to automatically allow large numbers of additional states,
beyond the SM states that we know about, to be present in nature without facing repeated
worries about how the Higgs boson mass could be so light in the presence of them all.

6 Supersymmetry

The case of supersymmetry adds some complication to the algorithm of computing finetunings
across thresholds. In the case of the minimal supersymmetric Standard Model (MSSM) the
largest threshold finetuning is going from a full Higgs sector with two Higgs doublets to a low-
energy theory with a single Higgs doublet that has the propagating h125 boson and the three
Goldstone bosons that constitute the longitudinal components of the W± and Z0. Our goal
then is to describe the matching between the full MSSM lagrangian parameters with two Higgs
doublet (Hu, Hd) and the effective theory below a heavy lepton multiplet (Φ = {A,H0, H±},
where the low-energy theory contains the SM doublet H .

As is well known, as superpartner masses increase the heavy doublet decouples with it and
can be thought increasingly as a vev-less heavy complex scalar. This can then be eliminated.
This heavy state can then be integrated out and the low-scale lagrangian that results can match
its parameters with those of the theory with the heavy state. The subtlety is what algorithm
to use for the “lagrangian parameters” of the full MSSM theory. In this supersymmetric case
the most straightforward choice, and the choice that has been considered for many applications
before, are the gauge couplings (g′, g, and gs), superpotential parameters (Yukawa couplings
and the µ term), and soft supersymmetry breaking terms (m2

Hu
, m2

Hd
, m2

Q̃
, etc.)

With these considerations we first write the theory above the heavy Higgs doublet thresh-
old [14]:

V (Hu, Hd) = (|µ|2 +m2
Hu

)|Hu|
2 + (|µ|2 +m2

Hd
)|Hd|

2 − bHu ·Hd + c.c.

+
1

8
g′2

(

|Hu|
2 − |Hd|

2
)2

+
1

8
g2

(

H†
uσ

aHu +H†
dσ

aHd

)2
(18)

This then needs to be matched to the theory below the heavy Higgs doublet threshold

V (H) = m2|H|2 + λ|H|4 (19)
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After some manipulations one finds

m2 = −

(

1− sin2 2β

2

)

[

|m2
Hd

−m2
Hu

|
√

1− sin2 2β
−m2

Hd
−m2

Hu
− 2|µ|2

]

(20)

λ =
1

8

(

g′2 + g2
)

(1− sin2 2β) (21)

where

sin 2β =
2b

m2
Hd

+m2
Hu

+ 2|µ|2
. (22)

Given this definition of the angle β, in the limit of large superpartner mass scale we can
identify the light SM Higgs boson H and the heavy decoupled doublet state Φ with

H = cosβHd + sin βHu (23)

Φ = − sin βHd + cos βHu. (24)

where Hu = iσ2H∗
u.

We are left with the below-threshold lagrangian of eq. 19 and its matching equations
(eqs. 20 and 21) entirely in terms of the parameters of the above-threshold theory once the
dependence of that angle β on the supersymmetry parameters are substituted (eq. 22). If we
identify the heavy supersymmetry masses as the collection of m̃2

k = {m2
Hu

, m2
Hd
, |µ|2, b} that

have typical scale values of Λsusy, one can see readily from eq. 20 that

FT[m2] = maxk

∣

∣

∣

∣

m̃2
k

m2

∂m2

∂m̃2
k

∣

∣

∣

∣

∼
Λ2

susy

m2
Z

. (25)

The precise values of the FT depends on the exact choices of parameters but it is generic that
the result is as shown, FT ∼ Λ2

susy/m
2
Z .

This scaling of finetuning matches the intuitions that have been present in the supersym-
metry community for quite some time now. Traditionally the calculation was to check on
the finetuning of the small value of m2

Z given all the heavy superpartner masses in the scalar
potential. The equation for m2

Z for electroweak symmetry breaking at leading order is

m2
Z = −2|µ|2 +

2(m2
Hd

−m2
Hu

tan2 β)

tan2 β − 1
(26)

Finetunings are then computed and the result is generically FT ∼ Λ2
susy/m

2
Z . So, although the

O(1) factors will be different between our algorithm for computing the threshold finetuning
and the finetuning computed from considering superpartner mass dependences on mZ , the
results are the same within O(1) factors. The main reason for this is that at tree-level
m2 = −1

2m
2
Z cos2 2β, and so computations of finetuning on m̃2 should be very similar to that

of m2
Z .

Roughly speaking using the guide that FT ∼ Λ2
susy/m

2
Z one can contemplate declaring

some supersymmetric theories6 with large Λsusy to fail the Naturalness test and thus should be

6Remember, a theory in our definition here does not have variable parameters. Theories are indexed values
of a theory class. A supersymmetric theory then has specific single values for each of its parameters m2

Hu

, µ,
etc. defined at some convenient scale.
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Level-3 (level-4) finetuning suggests that superpartners should be 
below ~ few TeV (few tens of TeV) if standard susy is correct approach.
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Example: Doublet-triplet splitting in GUTs (this approach reproduces intuitions)

relegated to lower status. Less probable, and perhaps even improbable, level-4 finetuning, for
example, would put Λ2

susy/m
2
Z ∼ 104 and thus Λsusy ∼ 10TeV. LHC limits of 1−3TeV for the

mass of superpartners puts the current level of finetuning at about 102−103, which is borderline
for when someone would wish to confidently relegate the remaining supersymmetric theories
to the trash bin. Note, there still remains an infinite number of supersymmetric theories that
perfectly satisfy all known data and are not in conflict with any expectations. Only a high
level of finetuning across thresholds (i.e., failing its Wilsonian Naturalness test) can cast a
shadow on any of those otherwise good theories. It is with trepidation that one throws out
otherwise perfectly good theories that are consistent with all known data; nevertheless, we
reiterate adherence to the notion that such high finetunings are correlated with low a priori
probabilities for realization [3].

In concluding this section, let us briefly remark that our approach differs significantly
from some others in assessing finetuning in supersymmetric theories in that here we only
assess finetunings among parameters “locally” across a threshold. We look at parameters
above and below a heavy mass threshold and ask if there is finetuning in that matching.
Some have implemented “non-local” finetuning assessments, by considering a supersymmetric
theory with input parameters, say m1/2 (universal gaugino mass) and others [15], defined at
the GUT scale and then tracking how m2

Hu
and m2

Hd
scale with it: m2

Hu,d
= m2

Hu,d
(m1/2).

Finetunings are then computed with respect to the input parameter m1/2:

FT[m2
Z ] =

∣

∣

∣

∣

m1/2

m2
Z

∂m2
Z

∂m1/2

∣

∣

∣

∣

. (27)

In this case there is implicitly a calculation of a parameter at one scale (mZ at q2 = m2
Z)

in terms of a parameter m1/2 defined far away at the scale q2 = M2
GUT. Related schemes

for identifying independent vs. dependent variables with correlations at various scale choices
among the supersymmetric parameter choices may be introduced, which in our language would
be useful for turning a theory that fails to be endo-Natural into one that is exo-Natural, and
thus respects Wilsonian Naturalness. We are neutral as to the value of this activity, although
we recognize that conceivably it could be used to both artificially and inappropriately lower the
finetuning of a theory, but also to identify underlying parameter correlations that yield lower
finetuning, which a deeper theory might be able to justify. With that said, the intuition at
play here that requires a speculative theory to be Wilsonian Natural is laudable and justified.

7 Grand Unified Theories

Another example of an improbability of parameter cancellations that has been discussed in
the literature for years is the so-called doublet-triplet splitting problem in grand unified the-
ories [16, 17]. For example, minimal SU(5) theory breaks down to the SM gauge groups via
the condensation of the 24 dimensional representation Σ. The vacuum expectation value of
this field is

〈Σ〉 = vΣ · diag(2, 2, 2,−3, 3) (28)

14where the value of the vev vΣ is determined by parameters !w in GUT-scale Higgs potential:
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After symmetry breaking the superpotential splits the H5,5̄ into H + u, d, 3, 3̄ terms:

W = µ3H3̄H3 + µHuHd =⇒ W(−) = µHuHd + · · · (30)

where
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We know that vΣ # 1016GeV for the unification of couples, and we also know that µ needs to
be 102−3GeV for weak scale supersymmetry. Thus, there is an extraordinary finetuning in the
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Thus, minimal supersymmetric SU(5) GUTs have level-13 finetuning and do not pass their
Wilsonian Naturalness test. This is why it is often referred to in the literature as the doublet-
triplet splitting problem. It really is simply a Wilsonian Naturalness problem of the theory
across matching EFT thresholds.

Of course there are many interesting ideas on how to solve this problem in Grand Unified
theories, but the point here is that it is identified as a problem immediately from the per-
spective of our algorithmic finetuning tests for Wilsonian Naturalness, and the magnitude of
the problem (level-13 finetuning) matches intuitions of early researchers in GUT theories who
appreciated the seriousness of this deficiency in minimal GUT theories.

8 Extra dimensions and the hierarchy problem

Let us make a few brief remarks about theories of extra dimensions [18, 19, 20]. Researchers
have added extra spatial dimensions, either flat or warped, in order to recast and perhaps
solve the hierarchy problem. It is worthwhile making a rather precise definition of the hier-
archy problem here in order to give our perspective on the worth of introducing extra spatial
dimensions to solve it.

If the SM does not have a Wilsonian Naturalness problem, as we argued sec. 4, then
what can we mean that it has a hierarchy problem, especially since the terms are often used
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Conclusions

Naturalness is an extra-empirical assessment on a theory: are there reasons 
why a theory may be unlikely even though at present it is empirically fine.
(E.g. susy is empirically perfectly fine today – LHC has not changed that)

Wilsonian Naturalness is one of (possibly) many ways to assess a theory’s 
naturalness status. It relies on computing finetuning of EFT parameters across 
particle mass thresholds.

The Standard Model is Wilsonian Natural.

Other theories (supersymmetry, extra singlet theory, etc.) are Wilsonian Natural 
only in a limited region of parameter space. 

I’m willing to bet that the next good theory is Wilsonian Natural.
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