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Axion Like Particles

• Axions were originally a solution to the strong CP 
problem [Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]. ALPs however 
don’t have to be related to the strong CP.

• Pseudo-scalars.

• Can be a CDM component (we assume all).

• Can be very light and remain CDM candidate:

3

ma(relevant to talk) < 4 × 10−12 eV
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Coherent Interactions (1)
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a = a0eixμpμ

In the non-relativistic limit…

ma ≲ 30 eV na =
0.4 GeV
ma ⋅ cm3

> 1/λ3
de−BroglieFor light ALPs  (                   ),  na =

0.4 GeV
ma ⋅ cm3
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Coherent Interactions (2)
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This is an effect linear in         !   gaψψ

⃗b a−ψ = gaψψ 2ρa cos(mat) ⋅ ⃗v a−ψ [astro-ph/9501042]

But how to measure it?

Haψψ = − gaψψ
⃗b a ⋅ ⃗S ψ = − ⃗b a−ψ ⋅ ⃗S ψ
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Interaction of a classical magnetic field       with a spin     :⃗B ⃗S

⃗B

⃗S

· ⃗S = γ ⃗S × ⃗B H = − γ ⃗B ⋅ ⃗S

Is there a known way to measure magnetic fields?

Haψψ = − ⃗b a−ψ ⋅ ⃗S ψReminder:
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To leading order in important stuff*

Torque 
 (generates transverse from 

longitudinal)

Decaying excitations

(causes stabilization)

Creating macroscopic polarization 
 (generates a non-trivial steady state solution) 

· ⃗S = γ ( ⃗B +
⃗b

γ ) × ⃗S − Γ ⃗S + R ̂z
· ⃗S = γ ( ⃗B +

⃗b
γ ) × ⃗S

· ⃗S = γ ( ⃗B +
⃗b

γ ) × ⃗S − Γ ⃗S
· ⃗S =
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The transverse EOMs become

· ⃗S = γ ( ⃗B +
⃗b

γ ) × ⃗S − Γ ⃗S + R ̂z

·S⊥ = iγ (Bz +
bz

γ ) S⊥ − iγ (B⊥ +
b⊥

γ ) Sz − ΓS⊥
b⊥

γ

We usually assume   (also that ) ,

 And care only about 

·Sz = 0 | ⃗S | ≈ |Sz |
S⊥ = Sx + iSy
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⃗b a−ψ = gaψψ 2ρa cos(mat) ⋅ ⃗v a−ψ

·S⊥ = iγBzS⊥ − iγ (B⊥ +
b⊥

γ ) Sz − ΓS⊥

If  is constantBz

S⊥(ω = ma) =
b⊥ + γB⊥(ω = ma)

(γBz − ma) + iΓ
Sz

Fourier. From now on I’m 
going to ignore subtleties  

regarding  cos(mat) ≠ eimat( )
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Sz

The transverse 
spin

The transverse spin:

Everything is encoded in the spin projections in the 

directions perpendicular to the pump
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Transverse Magnetic fields:

Can either be noise, or (as we will see)  the effect of one atom 

species on the other. Note that it is proportional to .γ
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The transverse 
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direction
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Transverse 
Magnetic fields

Spin in the z direction

Main demand: Don’t be tiny
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direction

Signal

Transverse 
Magnetic fields

ALP mass

ALP Masses

Our experiments can only probe ultralight ALPs. To date we can 

probe up to ~5peV, can probably be extended to neV, 
theoretically , though that is unlikely. μeV



The Result
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direction

Signal

Transverse 
Magnetic fields
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Frequency

Resonance Frequency 

Determined mostly by external magnetic fields (which we can 

control with coils). Note that it is proportional to . γ



The Result

S⊥ =
b⊥ + γB⊥

iΓ + (γBz − ma)
Sz

The transverse 
spin Spin in the z 

direction

Signal

Transverse 
Magnetic fields

ALP massResonance 
Frequency

Decoherence Rate

Decoherence Rate:

The decoherence rate determines the width of the atomic 

response to ALPs. Can be mHz-kHz (though exceptions exist). 

A small decoherence rate can be problematic due to slow 

response time. 
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Ultra Light ALP DM 
generates magnetic-like 
fields.

By measuring the spins 
of a “system”, we are 
also measuring the 
ALPs.
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Why Alkali?
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We need a way to generate , and to measure .Sz S⊥

Both can be achieved with optical lasers for Alkali metals

“Pump” laser polarizes the spins,

“Probe” laser measures them

Problem: 
, and the gyromagnetic ratio of alkali 

metals is large.
SNR ∝ γ

S⊥ =
b⊥ + γB⊥

(γBz − ma) + iΓ
Sz
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Why Noble?

17

Our problem was that  was too largeγAlk

Noble gases do not interact with the lasers

They can be both polarized, and measured by Alkali spins. 

Noble gases have a gyromagnetic ratio which is smaller by 2-3 
orders of magnitude!

S⊥ =
b⊥ + γB⊥

(γBz − ma) + iΓ
Sz

but
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Spin Exchange: Polarizing SNob,z

18

Alk Nob

Alk Nob

Nob
Alk

(Rapidly) Rinduced on Alk ∝ SNobNob

Rinduced on Nob ∝ SAlkAlk

Spin passed from one 
atom to the other 
during collision:

Negligible



Spin Exchange: “Measuring” S⊥,Nob
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Alk Nob

Alk Nob

Nob
Alk

(Rapidly)

Magnetic field from 
(quantum) point-like


interactions

Binduced on Alk ∝ SNobNob

Binduced on Nob ∝ SAlkAlk
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• Why Noble-Alkali?
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Ultra Light ALP DM 
generates magnetic-like 
fields.

Magnetometers can 
measure ALPs. Alkali 
magnetometers are 
easy to work with, while 
Noble magnetometers 
are more sensitive. 
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[IMB, Y. Hochberg, E. Kuflik, T. Volansky. arxiv:1907.03767]
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B⊥,Alk = B⊥,noise + 2λMNobS⊥,Nob/SNob,z

SAlk(ω = ma) =
signal + γAlkSz,AlkB⊥,Alk

(γAlkBz,Alk − ma) + iΓAlk

∂SAlk

∂B⊥,noise
=

γAlkSz,Alk

(γAlkBz,Alk − ma) + iΓAlk (1 +
2γNobλMNob

(γNobBz,Nob − ma) + iΓNob )

(Ignoring backreaction of Alkali on Noble)

For  is tunable 
such that 

ΓNob ≈ 0,ma ≈ 0, Bz,Nob
∂B⊥,noise

SAlk = 0

γAlkSz,Alk

(γAlkBz,Alk − ma) + iΓAlk
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The Compensation Point
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At the compensation point, any 
magnetic noise (at low frequencies) 

has no effect on the alkali spins!

Additionally, the two species are “in 
resonance”, allowing for a fast response 

of the system to sudden changes. 

Let’s illustrate
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A 2D heuristic illustration, so some artistic freedom was taken.*

K
3HeBz

Bnoise

But now, 
for K:

No 
Signal!

γKB⊥
indS⊥

K ∝ γKB⊥
tot = + = 0!γKB⊥

noise
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A 2D heuristic illustration, so some artistic freedom was taken.*

K
3HeBz

be

For K:

S⊥
K ∝ γKB⊥

tot = b⊥
e

Measurable 
Signal!
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Compensation Point Illustration (bn) 

27

A 2D heuristic illustration, so some artistic freedom was taken.*

K
3HeBz

bn

For K:

S⊥
K ∝ γKB⊥

tot = γKB⊥
ind ∼

γe

γn
bn

Measurable, Enhanced Signal!



The Romalis Group Comags
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[Gergoios Vasilakis Dissertation 2011], [Justin M. Brown Dissertation 2011],  [Thomas W. Kornack 
Dissertation 2005]
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Results (e)

[Y. Hochberg, E. Kuflik, T. Volansky, IMB 1907.03767. W. A. Terrano, et al.::1508.02463, LUX Collaboration:1704.02297, M. M. M 
Bertolami, et al. :1406.7712, W. A. Terrano,  et al.: 1902.04246, G. Vasilakis, Dissertation: 2011, J. M. Brown, Dissertation: 2011, T. W. Kornack 
Dissertation: 2005]. 
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System starts to lose 
sensitivity around 10-100 

Hz. 
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NASDUCK Experiments

Xe129 Xe131

NASDUCK 
Modulated

NASDUCK Floquet 
[NASDUCK, 2105.04603 ]

NASDUCK 
“Cocomag”

And more!

Xe129 Xe131

Rb
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Response to Signal

35

SAlk(ω = ma) =
γAlkSz,AlkB⊥,Alk

(γAlkBz,Alk − ma) + iΓAlk
=

γAlkλMNobSz,Alk

((γAlkBz,Alk − ma) + iΓAlk)
b⊥,ALP−Nob

((γNobBz,Nob − ma) + iΓNob)

|γAlk | ≫ |γNob | , Bz,Alk = Bz,Nob + c

For large magnetic fields (=high frequencies), we cannot be in 
resonance for both the alkali and the noble simultaneously!

Noble responseAlkali response

γAlkBz,Alk

γNobBz,Nob
≫ 1
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Bz = Bz,0 + BF cos(ωFt)

For , we get that around the floquet frequency ωF = γAlkBz,Alk,0 − γNobBz,Nob,0

So that for  , we can now have both the species in resonance!ma = γNobBz,Nob,0
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For each measurement, we only get bounds on 



Therefore, nearly 3000 measurements were taken during a 5-months period
|ma − γNobBz,Nob,0 | < 𝒪(1)ΓNob

Sensitivity was limited by noise of probe beam (i.e. OOM larger than magnetic noise)

An improvement by an order of magnitude should not be too difficult*
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SN1987A have 
significant theoretical 
uncertainties [Bar et al. 

1907.05020]. We need new 
experiments! 
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Conclusions

• Comagnetometers offer unprecedented sensitivity for 
Ultralight ALPs

• The NASDUCK collaboration has many experiments it can 
do/has already done. 

• With creativity, one can think of new experiments to run! 
We already have several ideas for how to utilize existing 
experiments for other things. 
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(Degree in beakness school)

Thanks for listening!
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