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Axion Like Particles

Axions were originally a solution to the strong CP
prOblem [Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]. ALPs however
don’t have to be related to the strong CP.

Pseudo-scalars.
Can be a CDM component (we assume all).

Can be very light and remain CDM candidate:

m (relevant to talk) < 4 X 10712 eV



ALP-SM Interactions
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Coherent Interactions (1)

3 0.4 GeV

m, - cm?
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Coherent Interactions (1)

For light ALPS (m, <30 eV), la = ————=> /Aj_proic
- X"
a = ape" r

In the non-relativistic limit...



Coherent Interactions (2)

Hopy = = 8ayyla" Sy =—buy Sy
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b a—-y gal//l// V 2pa COS(mat) TV a—y J[astro-ph/9501042]



Coherent Interactions (2)
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b -S, =—b, -8

H iy = a’ Py a—y " POy
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b a—y = SayyV 2p, COS(myt) - v a—y [astro-ph/9501042]

This is an effect linear in 84y !



Coherent Interactions (2)

—_— — — —>

Hopy == 8uyybu Sy =—buy 5y

—>

b a—=y — gal//l// V 2pa COS(mat) . ?Cl—l// [astro-ph/9501042]
This is an effect linear in 84y !

But how to measure 1t?

v
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Interaction of a classical magnetic field B with a spin? ;
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Interaction of a classical magnetic field B with a spin§> ;
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Larmor Precession and Zeeman Splitting

Interaction of a classical magnetic field B with a spinf> ;

7 )5o5x e ioyms
S
Reminder: H,,, = — ?a_w- ?V,

Is there a known way to measure magnetic fields?
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Noble-Alkali
Comagnetometers



Bloch Equations
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Bloch Equations

*k To leading order in important stuff
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longitudinal)
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Bloch Equations

*k To leading order in important stuff

Creating macroscopic polarization
(generates a non-trivial steady state solution)

53 @%

Decaying excitations
(causes stabilization)

Torque
(generates transverse from
longitudinal)

11
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Transverse EOMs

We usually assume SZ = 0 (also that | ?\ ~ |8, |),
And care only about §;, = §, + S,

The transverse EOMs become

S=y(B+—|x5 - I'S + R?
Y
. l b,
Sl:l}/ BZ+ SJ__Z}/ BJ_+_ SZ — FSJ_
Y
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Solving the EOMs

?G_W = L\ 2P, cOS(m,t) - 7a_w
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Solving the EOMs

?a—vf = L\ 2P, cOS(m,t) - 761—1//

bJ_
Sl:l}/BZSJ__l]/(BJ_I y)SZ - FSJ_

13



Solving the EOMs
b a—y — gcu//y/\/Tpa cos(mat) } 7&—1//

. . bl
S, =BS5S, —iy| B, 5. — IS,

Fourier. From now on I’'m
If B is constant going to ignore subtleties
regarding cos(m, t) # e
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Solving the EOMs

—

b oy = Buyy\ 2P COS(M, L) - 761—1//

. . bl
S, =BS5S, —iy| B, 5. — IS,

Fourier. From now on I’'m
If B is constant going to ignore subtleties
regarding cos(m, t) # e

b, +yB (v =m,) S
yB,—m,) +ill °

S (w=m) =

13



The Result

b, +yB, S

S =——
- i+ (yB, — m,) ¢



The Result

The trSaF;ivervSi b + B
5, = - 1 TVD) Sz
i+ (yB, — m,)

The transverse spin:
Everything is encoded in the spin projections in the
directions perpendicular to the pump



The Result

Signal

The transverse N
spin \ b _I_ B
5, = - L T7/D) S,
i+ (yB, — m,)

Signal:
The thing we want to measure that an ALP generates



The Result

Transverse
Magnetic fields

The transverse N /
TN b, +yB,
SJ_

Signal

— .—SZ
i+ (yB, — m,)

Transverse Magnetic fields:
Can either be noise, or (as we will see) the effect of one atom

species on the other. Note that it is proportional to y.



The Result

Transverse
Magnetic fields

The transverse N /
N b, +yB e
S =—— "= §~
i+ (yB, — m,)

Signal

Spin in the z direction
Main demand: Don’t be tiny



The Result

Transverse
Magnetic fields

The transverse N /
N\ b, +yB ey
P S
i+ (yB, — m,)
\

ALP mass

Signal

ALP Masses
Our experiments can only probe ultralight ALPs. To date we can
probe up to ~5peV, can probably be extended to neV,

theoretically ueV, though that is unlikely.



The Result

Transverse
Magnetic fields

The transverse N /
N b, +yB, .
S, = ; S~
i+ (yB, — m,)
1 \

Resonance ALP mass
Frequency

Signal

Resonance Frequency
Determined mostly by external magnetic fields (which we can

control with coils). Note that it is proportional to y.



The Result

Transverse
Magnetic fields

The transverse N /
N b, +yB e
S =—— "= §~
i+ (yB, — m,)

Signal

Decoherence Rate l
Resonance ALP mass
Frequency

Decoherence Rate:

The decoherence rate determines the width of the atomic
response to ALPs. Can be mHz-kHz (though exceptions exist).
A small decoherence rate can be problematic due to slow
response time.
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\/ e Axion Like Particles (ALPs) _
Ultra Light ALP DM

* ALPs Brief Overview generates magnetic-like
fields.

e (Coherent Interactions

e Noble-Alkali Comagnetometers

J e Spin-Based Magnetometry

* Why Noble-Alkali? By measuring the spins
S @l Beaulhe of a “system”, we are

also measuring the
e NASDUCK ALPs.

e Conclusions
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o b, 1
Why Alkali? s-rttrs

We need a way to generate 5., and to measure S .

Both can be achieved with optical lasers for Alkali metals

“Pump” laser polarizes the spins,
“Probe” laser measures them

Problem:

SNR « y, and the gyromagnetic ratio of alkal
metals is large.

10



Why Noble? s.-
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Our problem was that y .y, was too large
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Noble gases have a gyromagnetic ratio which is smaller by 2-3
orders of magnitude!
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b, +yB
Why Noble? s-zoo7
Our problem was that y .y, was too large

Noble gases have a gyromagnetic ratio which is smaller by 2-3
orders of magnitude!

Noble gases do not interact with the lasers
but

They can be both polarized, and measured by Alkali spins.

17



Spin Exchange: Polarizing Sy,
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|

Spin passed from one
atom to the other

Spin Exchange: Polarizing Sy,
during collision:

6 Rapld Iy 5 Rinduced on Alk & SNob
Alk ) k 5 Alk Rinduced on Nob & SAlk
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|

Spin passed from one
atom to the other
during collision:

Spin Exchange: Polarizing Sy,
6 (Rapidly)
AZ ) k 6 Ak Riuced on Nob & DAlk

18




Magnetic field from
(quantum) point-like

Spin Exchange: “Measuring” S, y.;
interactions

6 Rapldly 5 1nduced on Alk & SNob
) k 5 1nduced on Nob & SAlk

19
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Glass Cell
f Alkali Vapor

Alk
f Alk

Alk



Comagnetometer
Ingredients List

Glass Cell
Alkali Vapor
Noble Gas
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Comagnetometer
Ingredients List

Glass Cell
Alkali Vapor
Noble Gas
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Electro;’
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Comagnetometer
Ingredients List

Glass Cell

Alkali Vapor

Noble Gas
Lasers
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\/ e Axion Like Particles (ALPs)
e ALPs Brief Overview

e (Coherent Interactions

Ultra Light ALP DM
generates magnetic-like
fields.

e Noble-Alkali Comagnetometers

/ e Spin-Based Magnetometry
* Why Noble-Alkali?

e (QOld Results
e NASDUCK

e Conclusions

Magnetometers can
measure ALPs. Alkali
magnetometers are
easy to work with, while
Noble magnetometers
are more sensitive.




“Compensation Point”
Comagnetometer

[IMB, Y. Hochberg, E. Kuflik, T. Volansky. arxiv:1907.03767]



Response to Magnetic Noise
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Sail® =m,) =

23



Response to Magnetic Noise

signal + YapeS; aicB1 A

(YaiB, Ak — M) + 11 Ak

Sail® =m,) =

BJ_,Alk — BJ_,noise T+ 2/UWN()bSJ_,Nob/ SNob,z

23



Response to Magnetic Noise

signal + YapeS; aicB1 A

(YaiB, Ak — M) + 11 Ak

Sail® =m,) =

BJ_,Alk — BJ_,noise T+ 2/UWN()bSJ_,Nob/ SNob,z

(Ignoring backreaction of Alkali on Noble)

23



Response to Magnetic Noise

signal + YapeS; aicB1 A

(YaiB, Ak — M) + 11 Ak

Sail® =m,) =

BJ_,Alk — BJ_,noise T+ 2/UwNobSJ_,Nob/ SNob,z

(Ignoring backreaction of Alkali on Noble)

SN VAIkPz,Alk 4 2YNobAMNob
OB, 1oise  (YauBzak — My) + 1Ak (PNobBzNob = 114) + 11 Nob
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Response to Magnetic Noise

signal + YapeS; aicB1 A

(YaiB, Ak — M) + 11 Ak

Sail® =m,) =

BJ_,Alk — BJ_,noise T+ 2/UWN()bSJ_,Nob/ SNob,z

(Ignoring backreaction of Alkali on Noble)

(}/Nosz,Nob o ma) + iFNo

l

For I'yop & 0,m, = 0, B, N is tunable

aBJ.,noise: (VA\KBZAW — M Lg) + LPA/

0S Alk yArszr ( 1+ 2}/Nob;uwNob

such that aBJ_,noiseSAlk — O
23
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The Compensation Point

At the compensation point, any
magnetic noise (at low frequencies)
has no effect on the alkali spins!

Additionally, the two species are “In
resonance”, allowing for a fast response
of the system to sudden changes.

Let’s illustrate

24



Compensation Point lllustration (B)

*k A 2D heuristic illustration, so some artistic freedom was taken.
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Compensation Point lllustration (B)

>

Bnoise

*k A 2D heuristic illustration, so some artistic freedom was taken.

No
Signal!

SJ_ cx}/KBtOt_}/KBmd_l_yKBl = 0!

noise
25



Compensation Point lllustration (be)

*k A 2D heuristic illustration, so some artistic freedom was taken.
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Compensation Point lllustration (be)

>

be

*k A 2D heuristic illustration, so some artistic freedom was taken.
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Compensation Point lllustration (be)

*k A 2D heuristic illustration, so some artistic freedom was taken.

Measurable
Signal!

20



Compensation Point lllustration (bn)

*k A 2D heuristic illustration, so some artistic freedom was taken.
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Compensation Point lllustration (bn)

>

bn

*k A 2D heuristic illustration, so some artistic freedom was taken.
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Compensation Point lllustration (bn)

>

bn

*k A 2D heuristic illustration, so some artistic freedom was taken.
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Compensation Point lllustration (bn)

*k A 2D heuristic illustration, so some artistic freedom was taken.

Measurable, Enhanced Signal!
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Noble and Alkali Spin Detectors for
Ultralight Coherent darK matter

[IMB, Y. Hochberg, O. Katz, O. Katz
E. Kuflik, G. Ronen, R. Shaham, T. Volansky. 2105.04603, and a bit of 22YY.XXXX]



Noble and Alkali Spin Detectors for
Ultralight Coherent darK matter

N

NASDUCK

[IMB, Y. Hochberg, O. Katz, O. Katz
E. Kuflik, G. Ronen, R. Shaham, T. Volansky. 2105.04603, and a bit of 22YY.XXXX]



NASDUCK Experiments

Rb

NASDUCK

@, NASDUCK Floquet “Cocomag”
’ [NASDUCK, 2105.04603 ]
Xel129 Xe131

And more!
H W
Y P 4
Xe129  Xei31 * A a

NASDUCK
Modulated







Response to Signal

YAOzAKB LAk .
Sal@ = my,) = =
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Response to Signal

YAOzAKB LAk .
Sal@ = my,) = —

(YakB, Atk — M) + i1 o

YAlk/lMNosz,Alk bJ_,ALP—Nob

(arBoak — M) + T an) (NobBrNob — M) + ilnob )
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Response to Signal

Sail®w =m,) =

yAlkSz,AlkBJ_,Alk

(YaBz Ak — M) + i1 Ak

S AR D 1

((YarBra — My) + iLa)

((}/Nosz,Nob B ma) + iFNob)

Alkali response
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Sail®w =m,) =

yAlkSz,AlkBJ_,Alk

(YaBz Ak — M) + i1 Ak

((YarBra — My) + iLa)

((}/Nosz,Nob B ma) + iFNob)

Alkali response

Noble response
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Response to Signal

yAlkSz,AlkBJ_,Alk
Sa(@w =m,) = —

(YaBz Ak — M) + i1 Ak

D, A1)

((YanBzak — Ma) + iCaw)

((}/Nosz,Nob B ma) + iFNob)

Alkali response

Noble response

| Yam | => 1 7nob | s Boalk = Bynop T €

For large magnetic fields (=high frequencies), we cannot

resonance for both the alkali and the noble simultaneously!

39

o YaikB Al
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yNobB z,Nob




Floquet Fields
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Floquet Fields

B, = B, + Bp cos(wgt)
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Floquet Fields
B, = B, + Bp cos(wgt)

— im,t
YA, aBL anl®w =m,) - e

(YaikBzax — M) + i1 A

San(t) =

36



Floquet Fields

B, = B, + Bp cos(wgt)

im t+nwgt

yAlkSz,AlkBJ_,Alk(a) =m,)-e it X Z 77(") }/AlkSz,AlkBL,Alk(a) =m,)-e

Sa(t) = ; ;
(YaiBzax — M) + i1 o (YaiBz a0 — My — nwp) + il g

n
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Floquet Fields

B, = B, + Bp cos(wpt)

im t+nwgt

yAlkSz,AlkBJ_,Alk(a) =m,)-e it X Z 77(") }/AlkSz,AlkBL,Alk(a) =m,)-e

Sa(t) = ; ;
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B, = B, + Bp cos(wpt)
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Sa(t) = ; ;
(?’Alsz,Alk —my) + il A (J’Alsz,Alk,o —m, — nwg) + il py

n

For wp = YaiB, Alk0 — YNobBz.Nob,or WE get that around the floquet frequency

1y TSz anBLap(@ = m,)

n :
F (NobBrNob.o — Ma) + T AL

Sa(@w = m, + wp) =

So that for m, = yNopB, Nob.o WE €an now have both the species in resonancel!
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For each measurement, we only get bounds on

|ma o }/Nosz,Nob,O | < @(I)FNob
Therefore, nearly 3000 measurements were taken during a 5-months period

Sensitivity was limited by noise of probe beam (i.e. OOM larger than magnetic noise)

}

An improvement by an order of magnitude should not be too difficult”
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Conclusions

e Comagnetometers offer unprecedented sensitivity for
Ultralight ALPs

e The NASDUCK collaboration has many experiments it can
do/has already done.

* With creativity, one can think of new experiments to run!
We already have several ideas for how to utilize existing
experiments for other things.
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