Flavor-specific Neutrino Self-interaction in Cosmology

Subhajit Ghosh

University of Notre Dame

Theoretical Physics Seminar | Fermilab | 4 Nov, 2021

Overview

Part I

Part II

Introduction

Self interaction, interaction with Dark sector etc.

- Anomalous signal in short- baseline experiments
- Supernova Neutrinos
- Cosmological signatures

Cosmological signatures of Neutrino self interaction

Cosmological signatures of Neutrino self interaction

$$\mathscr{L}_{\text{eff}} = G_{\text{eff}}(\overline{\nu}\nu)(\overline{\nu}\nu), \quad G_{\text{eff}} = \frac{g^2}{m_{\phi}^2}$$

Degeneracy of G_{eff} with N_{eff} (H_0)

CMB (Planck)

$$H_0 = 67.36 \pm 0.54$$
 $\sim 4.4\sigma$ Local measurement (Reiss et. al.)
 $H_0 = 74.03 \pm 1.42$

Proposed as a solution (?) of Hubble tension

Cosmological signatures of Neutrino self interaction

Lancaster et. al. (1704.06657)

Proposed as a solution (?) of Hubble tension

(Doesn't work when CMB polarisation data is included)

Laboratory constraint

Laboratory constraint

Need for cosmological analysis of Flavor specific neutrino self interaction

Flavor Specific Self Interaction

Flavor specific neutrino self interaction in cosmology

CMB is insensitive to specific flavor $(\nu_e, \nu_\mu, \nu_\tau)$ of Neutrino (- Not sensitive to weak interaction)

<u>CMB is sensitive to flavor specific interaction 'collectively' though free-streaming properties</u>

Common coupling strength G_{eff} for coupled flavors (CMB insensitive to specific flavor)

Massless neutrinos 3 flavor ($N_{eff} = 3.046$) Flavor diagonal interaction

Assumptions

 $\Lambda CDM \equiv 0c + 3f$

Effect on CMB spectrum

Changes are milder with less number of coupled neutrinos

Strong flavor specific interaction preferred by CMB

Significance of the SI mode increases dramatically in flavor specific scenario

Strong flavor specific interaction preferred by CMB

Anirban Das, SG : 2011.12315

Why SI mode is a good fit to CMB data?

SI mode interaction strength keep neutrino coupled till matter-radiation equality

-2

 $\log_{10}[G_{\rm eff}/{\rm MeV}^{-2}]$

SI mode enhancement in flavor specific scenario

*MI mode residual is virtually equivalent to ΛCDM *Planck 2018 data with error bar are shown 15

Parameter Values

Planck 2018: TTTTEEE+lowE

Parameters	3c + 0f		2c + 1f		1c + 2f	
	SI	MI	SI	MI	SI	MI
$\Omega_{ m b}h^2$	0.022 ± 0.00016	0.022 ± 0.00015	0.022 ± 0.00016	0.022 ± 0.00015	0.022 ± 0.00015	0.022 ± 0.00015
$\Omega_{ m c}h^2$	0.1205 ± 0.0015	0.1201 ± 0.0014	0.1205 ± 0.0014	0.1201 ± 0.0013	0.1203 ± 0.0014	0.1201 ± 0.0013
$100 heta_s$	$1.0464 {\pm} 0.00087$	1.0419 ± 0.0003	1.045 ± 0.00076	$1.0419 {\pm} 0.00031$	1.043 ± 0.00058	1.0419 ± 0.0003
$\ln(10^{10}A_s)$	2.984 ± 0.017	3.042 ± 0.0161	3 ± 0.0167	3.042 ± 0.0161	3.024 ± 0.0166	3.042 ± 0.016
n_s	0.9386 ± 0.004	0.9626 ± 0.005	0.9473 ± 0.0046	0.9628 ± 0.005	0.9553 ± 0.0049	0.963 ± 0.005
$ au_{ m reio}$	0.0543 ± 0.0077	0.0537 ± 0.0077	0.0538 ± 0.0077	0.0538 ± 0.0077	0.0539 ± 0.0076	0.0539 ± 0.0077
$\log_{10}(G_{\mathrm{eff}}/\mathrm{MeV^{-2}})$	-1.92 ± 0.18	-4.35 ± 0.42	-1.93 ± 0.24	-4.24 ± 0.5	-1.9 ± 0.37	-4.06 ± 0.6
$H_0({ m kms^{-1}Mpc^{-1}})$	69.44 ± 0.64	67.82 ± 0.61	68.81 ± 0.63	67.83 ± 0.6	68.3 ± 0.62	67.83 ± 0.61
$r_s^*(\mathrm{Mpc})$	144.54 ± 0.35	144.84 ± 0.32	144.64 ± 0.34	144.85 ± 0.32	144.76 ± 0.32	144.84 ± 0.31
σ_8	0.834 ± 0.008	0.824 ± 0.0075	0.829 ± 0.0079	0.824 ± 0.0075	0.825 ± 0.0083	0.824 ± 0.0075
$\chi^2 - \chi^2_{\Lambda { m CDM}}$	5.14	0.18	1.8	0.28	0	0.1

Significance of the SI mode is increasing

Parameter Values

Planck 2018: TTTTEEE+lowE+lensing+BAO+ShoES

Parameters	3c + 0f		2c + 1f		1c + 2f	
	SI	MI	SI	MI	SI	MI
$\Omega_{ m b}h^2$	0.023 ± 0.00014	0.022 ± 0.00013	0.022 ± 0.0001	0.022 ± 0.00013	$\overline{0.022\pm0.0001}$	0.022 ± 0.00013
$\Omega_{ m c} h^2$	0.1206 ± 0.001	0.1188 ± 0.0009	0.12 ± 0.001	0.1188 ± 0.0009	0.12 ± 0.0009	0.1188 ± 0.0009
$100 heta_s$	1.0465 ± 0.00079	1.042 ± 0.00029	1.045 ± 0.00068	1.042 ± 0.00029	1.043 ± 0.00056	1.042 ± 0.00029
$\ln(10^{10}A_s)$	2.98 ± 0.0153	3.044 ± 0.0144	3.0 ± 0.0151	3.044 ± 0.0145	3.0 ± 0.0151	3.045 ± 0.0142
n_s	0.9383 ± 0.004	0.966 ± 0.0045	0.9483 ± 0.004	0.966 ± 0.0046	0.9572 ± 0.004	0.966 ± 0.0042
$ au_{ m reio}$	0.0532 ± 0.007	0.0563 ± 0.0071	0.0544 ± 0.007	0.0565 ± 0.0071	0.0554 ± 0.007	0.0566 ± 0.0071
$\log_{10}(G_{\mathrm{eff}}/\mathrm{MeV^{-2}})$	-1.91 ± 0.16	-4.34 ± 0.43	-1.91 ± 0.22	-4.22 ± 0.52	-1.86 ± 0.36	-4.03 ± 0.61
$H_0({ m kms^{-1}Mpc^{-1}})$	69.45 ± 0.42	68.46 ± 0.41	69.08 ± 0.42	68.47 ± 0.4	68.75 ± 0.41	68.48 ± 0.41
$r_s^*({ m Mpc})$	144.5 ± 0.26	145.12 ± 0.24	144.73 ± 0.26	145.12 ± 0.23	144.93 ± 0.24	145.12 ± 0.24
σ_8	0.833 ± 0.0065	0.821 ± 0.006	0.827 ± 0.0065	0.821 ± 0.0059	0.822 ± 0.0071	0.821 ± 0.006
$\chi^2-\chi^2_{\Lambda{ m CDM}}$	1.99	0.17	-1.35	0.25	-1.67	0.33

Better fit than ΛCDM

Constraints with other dataset

Effect on H_0 : Phase shift

Neutrino self interaction can enhance H_0 even when N_{eff} is kept fixed

Photon transfer function $-\cos(kr_s^* + \phi_{\nu})$

 $\ell \approx k D_A^* = (m\pi - \phi_\nu) \frac{D_A^*}{r_\nu^*}$

 $D_A^* = \int^{z^*} \frac{1}{u(z)} dz$

 $r_{s}^{*} =$

Bashinsky et. al. , astro-ph/0310198 Baumann et. al. , 1508.06342 Ghosh et. al. , 1908.09843

Phase shift due to **free-streaming** neutrinos

 $\phi_{\nu} \simeq 0.19 \pi R_{\nu}$

$$R_{\nu} = \frac{\rho_{\nu}}{\rho_{\gamma} + \rho_{\nu}}$$

$$\int_{0}^{\infty} \frac{H(z)}{H(z)} dz \qquad \qquad R_{\nu} = R_{\nu}^{\Lambda \text{CDM}} \times \begin{cases} 0, & \text{for } 3c + 0f \\ \frac{1}{3}, & \text{for } 2c + 1f \\ \frac{2}{3}, & \text{for } 1c + 2f \end{cases}$$
Change in ϕ_{ν} is compensated (mostly) by change
$$D_{A}^{*} - \text{through change in } \Omega_{\Lambda} \text{ and } H_{0}$$

Effect on H_0 : Phase shift

Effect on H_0 : Phase shift

		SI: $3c + 0f$	SI: $2c + 1f$	ΛCDM	
H	$f_0({ m kms^{-1}Mpc^{-1}})$	69.47 ± 0.59	68.87 ± 0.58	67.90 ± 0.54	
	Ω_{Λ}	0.7035 ± 0.0071	0.6989 ± 0.0072	0.6912 ± 0.0073	70*
	$100 heta_s$	1.0463 ± 0.00094	1.0447 ± 0.00079	1.04186 ± 0.00029	$\theta_s \approx \theta_* \equiv \frac{r_s}{D^*}$
	$r_s^*({ m Mpc})$	144.58 ± 0.32	144.69 ± 0.31	144.87 ± 0.29	$D_{\dot{A}}$
	$D^*_A({ m Mpc})$	12.69 ± 0.036	12.72 ± 0.034	12.773 ± 0.028	

Anirban Das, SG: 2011.12315

21

Flavor specific SINU - with varying N_{eff} : $1c + 2f + \Delta N_{\text{eff}}$

SINU can accommodates larger $N_{\rm eff}$

← Enhancement of CMB spectra due to self-interaction compensates additional silk damping

In addition to enhancement of H_0 due to phase shift, larger N_{eff} can also boost the H_0 value

Effect of BAO data

Part I : Summary : CMB favors Flavor specific self-interaction

0	Flavor specific neutrino self interaction is phenomenologically motivated
	\rightarrow takes into account laboratory constraints
0	The significance of the SI mode is increased dramatically
	\rightarrow similar in χ^2 to Λ CDM fit
0	The position of the SI mode peak in Flavor specific interaction
	remains almost the same in Flavor universal case
0	However, does not predict a larger H_0 than flavor universal case

Flavor specific neutrino self interaction can provide similar (in some case better) fit to the CMB (& LSS) data

- Effect of non-diagonal interaction
- aries naturally when considering massive Neutrinos
- Phenomenological model for flavor specific interaction

direction

Future

Cosmology favors Flavor specific neutrino self interaction

Part II : Dark Radiation Isocurvature

Isocurvature Perturbation in CMB

Dark Radiation (DR)

Parametrized by $\Delta N_{\rm eff}$

Free-streaming DR (FDR)

Similar to (SM/free-streaming) neutrinos Non zero anisotropic stress

Coupled/fluid DR (CDR)

Similar to (strongly) self-interacting neutrinos Zero anisotropic stress

Isocurvature parameters

$$A_{iso}(k_*) \quad \left[\text{or } f_{iso} \equiv A_{iso} / A_{adia} \right] \qquad \qquad P_{II}^{(1)} \ (\equiv A_{iso}(k_1)) \\ \hline n_{iso} \qquad \qquad Or \qquad P_{II}^{(2)} \ (\equiv A_{iso}(k_2)) \\ \hline n_{iso} \qquad \qquad Or \qquad \qquad P_{II}^{(2)} \ (\equiv A_{iso}(k_2)) \\ \hline n_{iso} \qquad \qquad Or \qquad Or \qquad \qquad Or \qquad \qquad Or \qquad \qquad Or \qquad Or \qquad \qquad Or \qquad \qquad Or \qquad Or \qquad \qquad Or \qquad \qquad Or \qquad Or \qquad \qquad Or \qquad$$

 $k_1 = 0.002 \text{ Mpc}^{-1}$ $k_2 = 0.1 \text{ Mpc}^{-1}$

Isocurvature Initial conditions

variable	$\mathcal{O}(0)$	$\mathcal{O}(k au)$	$\mathcal{O}((k au)^2)$	${\cal O}(\omega k^2 au^3)$
δ_γ	$-\frac{R_{\mathrm{DR}}}{1-R_{\mathrm{DR}}}$	0	$rac{R_{ m DR}}{6(1-R_{ m DR})}$	
$ heta_\gamma/k$	0	$-rac{R_{ m DR}}{4(1-R_{ m DR})}$	0	
$\delta_{ u}$	$-rac{R_{ m DR}}{1-R_{ m DR}}$	0	$rac{R_{ m DR}}{6(1-R_{ m DR})}$	
$ heta_ u/k$	0	$-rac{R_{ m DR}}{4(1-R_{ m DR})}$	0	
$\sigma_{ u}$	0	0	$-rac{19R_{ m DR}}{30(1-R_{ m DR})(15+4R_{ m DR}+4R_{ u})}$	
$\delta_{ m DR}$	1	0	$-\frac{1}{6}$	
$ heta_{ m DR}/k$	0	$\frac{1}{4}$	0	
$\sigma_{ m DR}$	0	0	$\frac{15 - 15R_{\rm DR} + 4R_{\nu}}{30(1 - R_{\rm DR})(15 + 4R_{\rm DR} + 4R_{\nu})}$	
η	0	0	$rac{-R_{ m DR}+R_{ m DR}^2+R_{ m DR}R_{ u}}{6(1\!-\!R_{ m DR})(15\!+\!4R_{ m DR}\!+\!4R_{ u})}$	
h	0	0	0	$rac{R_{ m DR}R_b}{40(1-R_{ m DR})}$
δ_b	0	0	$rac{R_{ m DR}}{8(1-R_{ m DR})}$	
δ_c	0	0	0	$-\frac{R_{\mathrm{DR}}R_b}{80(1-R_{\mathrm{DR}})}$

(In synchronous gauge)

Adiabatic initial condition : $\delta_{\gamma} = \delta_{\nu} = \delta_{DR}$

FDR - Isocurvature

For both CDR & FDR isocurvature:
$$\sum_{i} R_i \delta_i = 0$$

$$R_i = \bar{\rho}_i / (\bar{\rho}_\gamma + \bar{\rho}_\nu + \bar{\rho}_{\rm DR})$$

SG, Soubhik Kumar, Yuhsin Tsai: arXiv:2107.09076

variable	$\mathcal{O}(0)$	$\mathcal{O}(k au)$	$\mathcal{O}((k au)^2)$	${\cal O}(\omega k^2 au^3)$
δ_{γ}	$-\frac{R_{\mathrm{DR}}}{1-R_{\mathrm{DR}}}$	0	$rac{R_{ m DR}}{6(1-R_{ m DR})}$	
$ heta_\gamma/k$	0	$-rac{R_{ m DR}}{4(1-R_{ m DR})}$	0	
$\delta_{ u}$	$-rac{R_{ m DR}}{1-R_{ m DR}}$	0	$rac{R_{ m DR}}{6(1\!-\!R_{ m DR})}$	
$ heta_ u/k$	0	$-rac{R_{ m DR}}{4(1-R_{ m DR})}$	0	
$\sigma_{ u}$	0	0	$-rac{R_{ m DR}}{2(1-R_{ m DR})(15+4R_{ u})}$	
$\delta_{ m DR}$	1	0	$-\frac{1}{6}$	
$ heta_{ m DR}/k$	0	$\frac{1}{4}$	0	
η	0	0	$rac{R_{ m DR}R_{ u}}{6(1-R_{ m DR})(15+4R_{ u})}$	
h	0	0	0	$rac{R_{ m DR}R_b}{40(1-R_{ m DR})}$
δ_b	0	0	$rac{R_{ m DR}}{8(1-R_{ m DR})}$	
δ_c	0	0	0	$-rac{R_{ m DR}R_b}{80(1-R_{ m DR})}$

CDR - Isocurvature

 $\sigma_{DR} = 0$

FDR vs CDR Isocurvature spectrum

Isocurvature accommodate larger N_{eff} ($\equiv N_{\text{tot}}$)

Blue tilted ($n_{iso} > 1$) isocurvature compensates for the larger silk damping due to higher N_{eff}

 $DRID \equiv Dark Radiation density Isocurvature$

MCMC results

MCMC results

Isocurvature accommodates larger $N_{\text{eff}} \rightarrow \text{larger } H_0$

Parameter values: FDR DRID

FDR	P18-TT+lowE	P18-TTTEEE	P18-TTTEEE+lowE+
		+lowE+lensing	lensing+BAO+SH0ES
$100 \omega_b$	$2.3\substack{+0.052 \\ -0.064}$	$2.253\substack{+0.025\\-0.026}$	$2.278\substack{+0.017\\-0.017}$
ω_{cdm}	$0.1252\substack{+0.0046\\-0.0058}$	$0.12\substack{+0.0031\\-0.0031}$	$0.1241\substack{+0.0027\\-0.0028}$
$100*\theta_s$	$1.042\substack{+0.00073\\-0.00077}$	$1.042\substack{+0.00052\\-0.00053}$	$1.042\substack{+0.0005\\-0.0005}$
$ au_{ m reio}$	$0.05416\substack{+0.0085\\-0.0091}$	$0.05534\substack{+0.0075\\-0.008}$	$0.05594\substack{+0.007\\-0.0075}$
$10^{10} P_{RR}^{(1)}$	$22^{+1.1}_{-1.1}$	$23.32\substack{+0.57 \\ -0.57}$	$22.88\substack{+0.49\\-0.49}$
$10^{10} P_{RR}^{(2)}$	$20.55\substack{+0.57 \\ -0.63}$	$20.37\substack{+0.43 \\ -0.46}$	$20.68\substack{+0.37\\-0.39}$
$10^{10} N_{ m dr}^2 P_{{\cal I}{\cal I}}^{(1)}$	$17.48^{+2.1}_{-17}$	$11.22_{-11}^{+1.7}$	$11.84_{-12}^{+1.7}$
$10^{10} N_{ m dr}^2 P_{{\cal I}{\cal I}}^{(2)}$	$228.9^{+61}_{-2.2e+02}$	$73.91\substack{+26 \\ -60}$	102.1^{+37}_{-67}
$N_{ m ur}$	$2.469\substack{+1.3 \\ -0.79}$	$2.031\substack{+1.1 \\ -0.49}$	$2.265\substack{+1.1 \\ -0.47}$
$N_{ m dr}$	$1.19\substack{+0.34 \\ -1.2}$	$1.066\substack{+0.32\\-1.1}$	$1.111\substack{+0.33\\-1.1}$
H_0	$74.03\substack{+3.9 \\ -5.1}$	$68.8^{+1.6}_{-1.7}$	$70.71\substack{+0.97 \\ -0.98}$
σ_8	$0.8231\substack{+0.015\\-0.015}$	$0.82\substack{+0.01\\-0.01}$	$0.8302\substack{+0.009\\-0.0092}$
$10^{+9}A_s$	$2.079\substack{+0.045\\-0.049}$	$2.087\substack{+0.036\\-0.038}$	$2.105\substack{+0.033\\-0.034}$
n_s	$0.9828\substack{+0.017\\-0.017}$	$0.9654\substack{+0.0091\\-0.0092}$	$0.9741\substack{+0.0068\\-0.0068}$
$n_{ m iso}$	$1.72\substack{+0.36 \\ -0.32}$	$1.52\substack{+0.35 \\ -0.29}$	$1.61\substack{+0.32 \\ -0.28}$
$f_{ m iso}$	$17.4^{+7.0}_{-17}$	$11.9^{+5.2}_{-11}$	$13.0^{+5.3}_{-12}$
$N_{ m tot}$	$3.66\substack{+0.4\\-0.54}$	$3.097\substack{+0.21 \\ -0.21}$	$3.376\substack{+0.15\\-0.16}$
$f_{ m dr}$	$0.3285\substack{+0.097\\-0.33}$	$0.3444\substack{+0.1\\-0.34}$	$0.3293\substack{+0.095\\-0.33}$
$\chi^2 - \chi^2_{\Lambda { m CDM}}$	-0.36	-3.54	-9.24
AIC	+7.64	+4.46	-1.24

4 extra parameter compared to Λ CDM: $N_{dr}^2 P_{II}^{(1)}, N_{dr}^2 P_{II}^{(2)}, N_{dr}, N_{ur}$

$$AIC = \Delta \chi^2 + 2n$$

Parameter values: CDR DRID

CDR	D18 TT lowF	P18-TTTEEE	P18-TTTEEE+lowE+
CDR	F 10-1 1+10wE	+lowE+lensing	lensing+BAO+SH0ES
$100 \omega_b$	$2.267\substack{+0.039\\-0.05}$	$2.257\substack{+0.026\\-0.028}$	$2.285\substack{+0.018 \\ -0.018}$
ω_{cdm}	$0.1301\substack{+0.0053\\-0.011}$	$0.122\substack{+0.0034\\-0.004}$	$0.1272\substack{+0.0031\\-0.0035}$
$100*\theta_s$	$1.042\substack{+0.0011\\-0.0012}$	$1.043\substack{+0.00064\\-0.00075}$	$1.042\substack{+0.00065\\-0.00081}$
$ au_{ m reio}$	$0.05327\substack{+0.0079\\-0.0087}$	$0.0561\substack{+0.0075\\-0.0084}$	$0.05643\substack{+0.007\\-0.0077}$
$10^{10} P_{{\cal R}{\cal R}}^{(1)}$	$23.06\substack{+0.93 \\ -0.95}$	$23.46\substack{+0.55\\-0.57}$	$23.14\substack{+0.52 \\ -0.54}$
$10^{10} P_{{\cal R}{\cal R}}^{(2)}$	$20.32\substack{+0.69 \\ -0.67}$	$20.19\substack{+0.45 \\ -0.48}$	$20.34\substack{+0.45 \\ -0.44}$
$10^{10} N_{ m dr}^2 P_{{\cal I}{\cal I}}^{(1)}$	25.54^{+4}_{-26}	$16.43\substack{+2.9\\-16}$	$15.39^{+2.6}_{-15}$
$10^{10} N_{ m dr}^2 P_{{\cal I}{\cal I}}^{(2)}$	$662.7^{+91}_{-6.6e+02}$	$218.7^{+50}_{-2.2e+02}$	$390.6^{+1.6e+02}_{-3.2e+02}$
$N_{ m ur}$	$3.408\substack{+0.46\\-0.72}$	$2.938\substack{+0.24 \\ -0.26}$	$3.164\substack{+0.27\\-0.24}$
$N_{ m dr}$	$0.2589\substack{+0.051\\-0.26}$	$0.2444\substack{+0.064\\-0.24}$	$0.3372\substack{+0.14\\-0.27}$
H_0	$71.79^{+3}_{-4.7}$	$69.19\substack{+1.7 \\ -1.9}$	$71.27^{+1}_{-1.1}$
σ_8	$0.8341\substack{+0.017\\-0.023}$	$0.8205\substack{+0.01\\-0.011}$	$0.8298\substack{+0.0096\\-0.0096}$
$10^{+9}A_s$	$2.077\substack{+0.054\\-0.051}$	$2.073\substack{+0.038\\-0.04}$	$2.081\substack{+0.038\\-0.038}$
n_s	$0.9677\substack{+0.016\\-0.016}$	$0.9617\substack{+0.0092\\-0.0094}$	$0.9671\substack{+0.0086\\-0.0079}$
$n_{ m iso}$	$1.83\substack{+0.45\\-0.41}$	$1.66\substack{+0.43\\-0.35}$	$1.87\substack{+0.39 \\ -0.29}$
$f_{ m iso}$	< 31.7	58^{+22}_{-53}	49^{+23}_{-44}
$N_{ m tot}$	$3.666\substack{+0.37\\-0.71}$	$3.182\substack{+0.22\\-0.26}$	$3.501\substack{+0.17 \\ -0.19}$
$f_{ m dr}$	$0.07186\substack{+0.014\\-0.072}$	$0.07591\substack{+0.021\\-0.076}$	$0.09615\substack{+0.04\\-0.077}$
$\chi^2-\chi^2_{\Lambda {\rm CDM}}$	2.72	0.46	-5.8
AIC	+10 72	+8.46	+2.2

4 extra parameter compared to Λ CDM: $N_{dr}^2 P_{II}^{(1)}, N_{dr}^2 P_{II}^{(2)}, N_{dr}, N_{ur}$

$$AIC = \Delta \chi^2 + 2n$$

Constraint on isocurvature parameters

 $Planck \equiv TTTEEE + lowE + lensing$

$$P_{II}^{(2)} = A_{\rm iso} \ (k = 0.1 \,{\rm Mpc^{-1}})$$

Part II : Conclusion: DR isocurvature alleviates Hubble tension

- DR isocurvature is a very generic in multi field inflation models
- In presence of isocurvature perturbation : FDR gives more anisotropy than CDR
- Blue tilted isocurvature accommodates a larger Hubble constant
- For CDR isocurvature the Hubble tension is reduced to 1.5σ

ΤΗΑΝΚΥΟυ