### Neutrino interactions from the cosmos

#### Fermilab Theory Seminar



Structure formation with neutrinos. From arXiv:1003.2422

### Ivan Esteban



THE OHIO STATE UNIVERSITY

CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS



### <sup>2/39</sup> Neutrino self-interactions

Do neutrinos have sizable self-interactions? (Larger than weak interactions)

 $\mathcal{L}_{\mathrm{int}} \sim - g \bar{
u} 
u \phi$ 



#### Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

#### <sup>2 / 39</sup> Neutrino self-interactions

Do neutrinos have sizable self-interactions? (Larger than weak interactions)

 $\mathcal{L}_{\mathrm{int}} \sim - g \bar{
u} 
u \phi$ 

But, why should we care?

It is a fundamental question, may shed light into the neutrino mass origin.

Let's be practical: neutrinos are everywhere!





#### Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

### Neutrino self-interactions





Blinov, Kelly, Krnjaic, McDermott, 1905.02727; Brdar, Lindner, Vogl, Xu, 2003.05339



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

### Neutrino self-interactions and where to find them

Escudero, Witte, 1909.04044





Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

### 7/39 Big picture [Esteban, Salvado, 2101.05804]

φ, ν



- Neutrinos will source a scalar field, with
  - Strength  $\sim g$
  - Range  $\sim 1/M_\phi \sim 10^{-5}\,{
    m cm} imes ({
    m eV}/M_\phi)$



- The sourced field will *backreact on the neutrinos* as long as  $n_{\nu} \gtrsim M_{\phi}^{3}$  $E_{\nu} \lesssim m_{\nu} (\bar{\nu}\nu = \bar{\nu}_{L}\nu_{R} + \bar{\nu}_{R}\nu_{L})$
- To probe this, we need high-density, low energy neutrinos: the Early Universe!

At  $z\sim$  1000, when CMB was formed,  $n_{\nu}\sim$  10<sup>14</sup> cm<sup>-3</sup> and  $E_{\nu}\sim$  0.1eV.

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

<sup>7 / 39</sup> Overall picture



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

#### / 39 Signatures in cosmology

• Homogeneous cosmology  $\implies$  gravity  $\implies \rho$ , p (or  $w \equiv p/\rho$ ).

Generic assumption = *ideal gas*. But systems with long-range interactions are **not** ideal gases! *E.g.*, *Van der Walls gas* 

#### Can we consistently understand the whole evolution?

N.B.: though not discussed in the talk, we also study perturbations. Ask about it!

What are the observational consequences and possible signals/bounds?

- Cosmic Microwave Background anisotropies
- Large Scale Structure observations (Baryon Acoustic Oscillations)

### <sup>10 / 39</sup> Equations of motion

$$i \not D \nu - (m_0 + g \phi) \nu = 0$$
  $\implies$  Effective neutrino mass  $\tilde{m}(\phi) \equiv m_0 + g \phi$ .  
Time-dependent as  $\phi$  evolves.

$$\underbrace{-D_{\mu}D^{\mu}\phi}_{\supset 3H\dot{\phi}} + M_{\phi}^{2}\phi = -g\bar{\nu}\nu$$

#### <sup>10 / 39</sup> Equations of motion

$$i\not\!\!D\nu - (m_0 + g\phi)\nu = 0$$
  $\implies$  Effective neutrino mass  $\tilde{m}(\phi) \equiv m_0 + g\phi$ .  
Time-dependent as  $\phi$  evolves.

$$\underbrace{-D_{\mu}D^{\mu}\phi}_{\supset 3H\dot{\phi}} + \frac{M_{\phi}^{2}\phi}{= -g\bar{\nu}\nu} \implies$$

Klein-Gordon equation with Hubble friction and **source term**. For  $M_{\phi} \gg H$  and average rhs over neutrino (+antineutrino) distribution f(p),  $M_{\phi}^2 \phi = -g \int d^3p \frac{\tilde{m}(\phi)}{\sqrt{p^2 + \tilde{m}(\phi)^2}} f(p)$ 

N.B.:  $M_{\phi} \gg H$  means  $M_{\phi} \gtrsim 10^{-25} \, \text{eV}$ . I.e., we are exploring interaction ranges  $\ll Mpc$ . Otherwise, we recover quintessence.

#### <sup>10 / 39</sup> Equations of motion

$$i \not D \nu - (m_0 + g \phi) \nu = 0$$
  $\implies$  Effective neutrino mass  $m(\phi) \equiv m_0 + g \phi$ 

Time-dependent as  $\phi$  evolves.

$$\underbrace{-D_{\mu}D^{\mu}\phi}_{\supset 3H\dot{\phi}} + \frac{M_{\phi}^{2}\phi}{= -g\bar{\nu}\nu} \implies$$

Klein-Gordon equation with Hubble friction and source term. For  $M_{\phi} \gg H$  and average rhs over neutrino (+antineutrino) distribution f(p),

$$M_{\phi}^2 \phi = -g \int \mathrm{d}^3 p rac{ ilde{m}(\phi)}{\sqrt{p^2 + ilde{m}(\phi)^2}} f(p)$$

N.B.:  $M_{\phi} \gg H$  means  $M_{\phi} \gtrsim 10^{-25} \, \text{eV}$ . I.e., we are exploring interaction ranges  $\ll \text{Mpc}$ . Otherwise, we recover quintessence.

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

#### 1/39 Some results [Esteban, Salvado, 2101.05804]



Neutrinos will stay *relativistic* as long as there are many neutrinos within the interaction range.

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

Some results [Esteban, Salvado, 2101.05804]



The equation of state  $w \equiv \frac{\rho}{\rho}$  is relevant as  $\frac{1}{\rho} \frac{d\rho}{dt} = -3H(1+w)$  (i.e., how fastly  $\rho$  changes)

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

#### Effects on CMB: Neutrino masses



- J. Lesgourgues, G. Mangano, G. Miele,
  - S. Pastor, Neutrino Cosmology (2013)

For fixed 
$$\theta_{S} = \frac{\int_{z_{rec}}^{\infty} c_{s} \frac{dz'}{H(z')}}{\int_{0}^{2_{rec}} \frac{dz'}{H(z')}}$$
,  
 $\sum m_{\nu} \neq 0$  has 3 main effects:

- **EISW**, which directly tests the *equation of state*.
- 2 To keep  $\theta_S$  fixed,  $H_0$  decreases  $\Rightarrow \Omega_{\Lambda}$  decreases  $\Rightarrow$  less LISW.

$$\theta_D \sim \frac{\sqrt{\int_{z_{\rm rec}}^{\infty} \frac{1}{an_e\sigma_T} \frac{\mathrm{d}z'}{H(z')}}}{\int_{0}^{z_{\rm rec}} \frac{\mathrm{d}z'}{H(z')}}$$

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568



Fixed  $\theta_{s}$ ,  $\omega_{CDM}$ ,  $\omega_{B}$ ,  $A_{s}$ ,  $n_{s}$ ,  $\tau_{reio}$ 

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

<sup>2 / 39</sup> Effects on CMB: Data



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

/ 39 Results: Planck



All the allowed region has essentially the same behavior before recombination: neutrinos with w = 1/3.

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

4 / 39 BAO constraints



Fixed  $\theta_{S}$ ,  $\omega_{CDM}$ ,  $\omega_{B}$ ,  $A_{s}$ ,  $n_{s}$ ,  $\tau_{reio}$ 

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

/ 39 BAO constraints



As neutrinos become non-relativistic late, BAO is quite sensitive.

#### Neutrino mass bound still *fully avoided*. KATRIN could see something!

#### <sup>16 / 39</sup> Future: Large Scale Structure

As we have seen, late-time probes can efficiently explore neutrino long-range interactions.

- This decade, we expect precise LSS probes of the matter power spectrum!
- L. Amendola et al. [Euclid Theory WG], "Cosmology and fundamental physics with the Euclid satellite," arXiv:1606.00180.
- R. Maartens et al. [SKA Cosmology SWG], "Overview of Cosmology with the SKA," arXiv:1501.04076.
- J. Pritchard et al. [Cosmology-SWG and EoR/CD-SWG], "Cosmology from EoR/Cosmic Dawn with the SKA," arXiv:1501.04291.
- P. A. Abell et al. [LSST Science and LSST Project], "LSST Science Book, Version 2.0," arXiv:0912.0201.
- T. Sprenger et al., "Cosmology in the era of Euclid and the Square Kilometre Array," arXiv:1801.08331.

#### <sup>7/39</sup> Impact on matter power spectrum



Fixed  $\Omega_M$ ,  $\omega_{CDM}$ ,  $\omega_B$ ,  $A_s$ ,  $n_s$ ,  $\tau_{reio}$ . z = 0.

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

#### 7/39 Impact on matter power spectrum



 $\sum m_{
u} 
eq 0$  has two main effects:

- I Small enhancement at  $k \sim 10^{-3} \, h/{
  m Mpc}$ , due to clustering.
- <sup>2</sup> Suppression at large k, as for w < 1/3 neutrinos redshift slower and contribute more to Hubble friction.

Sensitive to energy density in neutrinos and **equation of state**!

Fixed  $\Omega_M$ ,  $\omega_{CDM}$ ,  $\omega_B$ ,  $A_s$ ,  $n_s$ ,  $\tau_{reio}$ . z = 0.

#### **Euclid**

T. Sprenger et al., "Cosmology in the era of Euclid and the Square Kilometre Array," arXiv:1801.08331.

Euclid should have  $\sim 2-3\sigma$  sensitivity to  $\sum m_{\nu} = 0.06 \,\mathrm{eV}$ , the smallest value allowed by oscillations.

### Scenario 1: Euclid compatible with $\sum m_{\nu} = 0$



<sup>39</sup> Euclid

Interesting complementarity with KATRIN! Scenario 1: Euclid compatible with  $\sum m_{\nu} = 0$ 





#### <sup>19</sup>/<sup>39</sup> Take-home messages

Cosmology can probe long-range neutrino self-interactions!

**2** These change the *effective neutrino mass* and *equation of state*.

Cosmological  $\sum m_{\nu}$  measurements are mostly measurements of the neutrino equation of state: *degeneracy with self-interactions!*:

- Long-range interactions remove the cosmological neutrino mass bound. KATRIN could see  $\sum m_{\nu} \neq 0$ ! EUCLID could test this!
- In the future, cosmology could see no neutrino mass, in contradiction with oscillations!

A very rich cosmo-lab *interplay*.

### Back to the big picture

#### Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

20 / 39



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

Supernovae

S. Shalgar, I. Tamborra, M. Bustamante, "Core-collapse supernovae stymie secret neutrino interactions" arXiv:1912.09115.





Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

<sup>39</sup> Supernovae

S. Shalgar, I. Tamborra, M. Bustamante, "Core-collapse supernovae stymie secret neutrino interactions" arXiv:1912.09115.



And  $\sigma_{\nu N} \propto \langle E_{\nu} \rangle^2$ , so neutrino energy deposition on the shock would be more rare!

 $2\nu \rightarrow 4\nu \Longrightarrow \langle E_{\nu} \rangle \rightarrow \langle E_{\nu} \rangle/2$ 

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

Supernovae

S. Shalgar, I. Tamborra, M. Bustamante, "Core-collapse supernovae stymie secret neutrino interactions" arXiv:1912.09115.



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

### <sup>39</sup> Cosmology

In this context, the interaction turns a system of free particles into a *strongly coupled fluid*. How can this affect, e.g., the Early Universe?

- $\blacksquare$  When the CMB is formed, neutrinos are  $\sim 40\%$  of the energy density of the Universe!
- At those times
  - Photons and baryons oscillate (tightly-coupled acoustic waves, at  $c/\sqrt{3}$ )
  - Neutrinos just freely propagate (free-stream, at c)

#### Neutrinos will gravitationally pull! Bashinsky, Seljak, astro-ph/0310198

Or, will they? self-interactions can make neutrinos a tightly-coupled fluid too.



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

### <sup>39</sup> Cosmology

In this context, the interaction turns a system of free particles into a *strongly coupled fluid*. How can this affect, e.g., the Early Universe?

- $\blacksquare$  When the CMB is formed, neutrinos are  $\sim 40\%$  of the energy density of the Universe!
- At those times
  - Photons and baryons oscillate (tightly-coupled acoustic waves, at  $c/\sqrt{3}$ )
  - Neutrinos just **freely propagate** (free-stream, at *c*)

#### Neutrinos will gravitationally pull! Bashinsky, Seljak, astro-ph/0310198

Or, will they? self-interactions can make neutrinos a tightly-coupled fluid too.



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

<sup>5/39</sup> The Moderately Interacting Neutrino (MI $\nu$ ) solution



Cyr-Racine, Sigurdson, 1306.1536; Lancaster, Cyr-Racine, Knox, Pan, 1704.06657; Oldengott, Tram, Rampf, Wong, 1706.02123; Kreisch, Cir-Racine, Dor, 1902.00534; Barenboim, Denton, Oldengott, 1903.02036; ... Non-free-streaming neutrinos may affect how we infer cosmological parameters from CMB anisotropies! **Most notably**  $H_0$ ,  $\sigma_8$ , and inflationary parameters N.B.: beware of polarization data, though

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

The Moderately Interacting Neutrino (MI $\nu$ ) solution



Cyr-Racine, Sigurdson, 1306.1536; Lancaster, Cyr-Racine, Knox, Pan, 1704.06657; Oldengott, Tram, Rampf, Wong, 1706.02123; Kreisch, Cir-Racine, Dor, 1902.00534; Barenboim, Denton, Oldengott, 1903.02036; ... Non-free-streaming neutrinos may affect how we infer cosmological parameters from CMB anisotropies! **Most notably**  $H_0$ ,  $\sigma_8$ , and inflationary parameters N.B.: beware of polarization data, though  $\nu$ SI in the  $\nu_{\tau}$  sector

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

<sup>7/39</sup> Esteban, Pandey, Brdar and Beacom [2107.13568]



An opportunity opens to explore  $\nu_{\tau}$  self-interactions. As we show in our paper, we can catch it!  $\nu_{\tau}$  are hard to *directly* produce, but oscillations can help us.



For  $M_{\phi} \sim 10 \,\mathrm{MeV}$ ,  $E_{\nu} \sim 10^5 \,\mathrm{GeV}$ : astrophysical neutrinos at IceCube!

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

#### Figure 139 Effect on astrophysical neutrinos: the big picture

Hooper, hep-ph/0701194; Ng, Beacom, 1404.2288; loka, Murase, 1404.2279; ...  $E_{\nu}^{\text{res}} = \frac{M_{\phi}^2}{2m_{\nu}}$ 



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804. arXiv:2107.13568



What do we know about the neutrino spectrum?



$$\sum_{\substack{\mu\nu \in \mathbf{R}, i \\ \nu}} m_{\nu} < 0.12 \text{ eV}, \ \sqrt{\Delta m_{32}^2} \sim \sqrt{\Delta m_{31}^2} \sim 0.05 \text{ eV}$$

Look for (close) double dips! And stay tuned on oscillations + cosmology!



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

Focusing on  $u_{ au}$  + 2021 [Esteban et al, 2107.13568]

Esteban, Pandey, Brdar, Beacom, arXiv:2107.13568.

What do we know about the neutrino spectrum?



$$\sum_{\mu_{\nu}} m_{\nu} < 0.12 \,\mathrm{eV}, \ \sqrt{\Delta m_{32}^2} \sim \sqrt{\Delta m_{31}^2} \sim 0.05 \,\mathrm{eV}$$
  
 $E_{\nu}^{\mathrm{res},i} = M_{\phi}^2/2m_i$ 

Look for (close) double dips! And stay tuned on oscillations + cosmology!

Look for all flavors!



Focusing on  $\nu_{ au}$  + 2021

What do we know about the neutrino spectrum?

- Look for (close) double dips! And stay tuned on oscillations + cosmology!
- Look for all flavors!

To compare with data, we need a realistic treatment

- Detector effects
- Proper theoretical ν-ν scattering calculation (Scattering off the resonance is relevant!)





ivan-esteban-phys/nuSlprop

#### IceCube?

(HESE. Predictions generated with content in Abbasi et al, 2011.03545. We thank C. Arguelles & A. Schneider)



No  $\nu$ SI:  $\phi \propto E^{-2.9}$  $\nu$ SI:  $\phi \propto E^{-2}$ , g = 0.1,  $M_{\phi} = 7$  MeV

Ivan Esteban, Ohio State University

Current IceCube data is not good because

- Low statistics ⇒ fluctuations
- Small energy range ⇒ degeneracy with unknown astrophysical neutrino flux

esteban.6@osu.edu

arXiv:2101.05804. arXiv:2107.13568

# We need IceCube-Gen2

IceCube?

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

(HESE. Predictions generated with content in Abbasi et al, 2011.03545. We thank C. Arguelles & A. Schneider)



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

IceCube-Gen2



- For  $M_{\phi} = 10 \, \text{MeV}$ .
- Dashed line  $\Rightarrow \sim 1$  scattering across the entire Universe! It will be *very challenging* to improve upon Gen2!

#### Present constraints and future sensitivity

(HESE analysis generated with content in Abbasi et al, 2011.03545. We thank C. Arguelles & A. Schneider)



$$E_{
u}^{
m res} = rac{M_{\phi}^2}{2m_{
u}}$$

- IceCube-Gen2 will be very powerful! Could even be sensitive to self-interactions among other flavors!
- Gen2 will exploit the full potential of neutrino astronomy to probe νSI.

#### Present constraints and future sensitivity

(HESE analysis generated with content in Abbasi et al, 2011.03545. We thank C. Arguelles & A. Schneider)



$$E_{
u}^{
m res}=rac{M_{\phi}^2}{2m_{
u}}$$

- IceCube-Gen2 will be very powerful! Could even be sensitive to self-interactions among other flavors!
- Gen2 will exploit **the full potential** of neutrino astronomy to probe *ν*SI.

#### 35 / 39

#### Take-home messages



- Neutrino self-interactions are not only fundamentally interesting, they affect our understanding of the Early Universe. Unexplored ν<sub>τ</sub> sector ⇒ opportunity for neutrino telescopes.
  We define a roadmap for making decisive progress:

  IceCube-Gen2
  Improved theoretical treatment
  Realistic treatment of detection effects

  Gen2 will realize the full potential. It can also probe ν<sub>e</sub>, ν<sub>μ</sub>!
  This is just the beginning: hints will be testable. Improvements in

  Astrophysics, point sources, cosmology
  - Flavor
  - Ultra-High Energy neutrinos
  - ...

#### are welcome!

https://github.com/ivan-esteban-phys/nuSIprop

Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

#### /<sup>39</sup> Future: point sources



Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

Future: flavor

Song, Li, Argüelles, Bustamante, Vincent, arXiv:2112.12893.





Ivan Esteban, Ohio State University esteban.6@osu.edu arXiv:2101.05804, arXiv:2107.13568

### Future: Ultra-High Energy neutrinos

$$E_{
u}^{
m res} = rac{M_{\phi}^2}{2m_{
u}}$$



## Conclusions

39 / 39

- Exploring neutrino self-interactions is a good example of particle physics astrophysics interplay:
  - Particle physics results (theory & experiment) with consequences in astrophysics.
  - Astrophysical observations can explore particle physics!

In general, very rich physics arises.

Long-range effects can modify neutrino mass & equation of state. They spoil cosmology neutrino mass measurements!

We need the interplay with particle physics to get a global picture.

 Short-range effects can bias our understanding of astrophysical & cosmological environments (supernovae, precision cosmology).
 But, in turn, astrophysical neutrinos offer an independent probe.

IceCube-Gen2 will inaugurate the era of **precision** high-energy astrophysical exploration of neutrino self-interactions!

