Bubbles of Nothing in de Sitter

Collapsing extra dimensions destroy spacetime

BEN LILLARD UNIVERSITY OF ILLINOIS, URBANA-CHAMPAIGN

September 2021

Based on work with Patrick Draper and Isabel Garcia Garcia

 $\begin{array}{c} 2105.08068 \\ 2105.10507 \end{array}$

Bubbles of Nothing (BON)

A collapsing extra dimension can destroy spacetime

This can happen even if the extra dimension is stabilized by some potential

- Given some potential $U(\phi)$, is there a BON instability?
- What does the bubble look like? What is the tunneling probability?

This talk:

- Review: Coleman-De Luccia tunneling, Witten BON
- Analytic bounce solutions for BON with $U(\phi)$
- Numeric methods and results

Focus on (4 + 1)d with compact S^1 , non-SUSY Our methods can be applied to (4 + n) dimensions, e.g. with compact S^n

Extra Dimensions:

• Simplest example: one compact (periodic) extra dimension

- Setting the size of *L* dynamically: $L \longrightarrow L(\phi)$, for some modulus ϕ .
- **Radius stabilization:** Give ϕ some scalar potential, $U(\phi)$, with a minimum at some $L(\langle \phi \rangle) = 2\pi R$.

Extra Dimensions: Connection to de Sitter

Speaking of potentials...

• The universe today appears to have a positive cosmological constant, $\Lambda \sim (\text{meV})^4$. A constraint on viable potentials: $\Lambda \sim \langle U \rangle$

• Tunneling processes include normal (4d) Coleman-De Luccia (CDL); Hawking-Moss (HM); and (for (4 + *n*)d theories) the Witten BON

Coleman–De Luccia

Tunneling proceeds by nucleating a bubble of the true vacuum, with probability $\Gamma \approx v^4 \exp(-S_E/\hbar)$

After the bubble forms, it expands at an accelerating rate.

Witten's Bubble of Nothing

• Previous discussion was for generic scalar ϕ coupled to gravity, with some $U(\phi)$.

Exotic possibility: if ϕ is the modulus that sets the size of an extra dimension, then $\phi_{f_V} \rightarrow \phi_{t_V}$ implies a change in *L*, from $L = 2\pi R$ to *something else*:

- $L \rightarrow 0$: bubble of nothing (BON) \leftarrow (this talk)
- $L \to L'$: change in R
- $L \rightarrow L' \rightarrow \infty$: spontaneous decompactification

Witten BON: as 5D gravitational instanton

Witten BON solution is 5D Euclidean Schwarzschild:

$$ds_5^2 = f dt^2 + f^{-1} dr^2 + r^2 d\Omega_3^2 \qquad \qquad f = 1 - (R/r)^2$$

(Defined on $r \ge R$)

Smooth as $r \to R$ if t is periodic, with $t \sim t + 2\pi R$.

• Identify *t* with KK circle coordinate *x*₅:

• Euclidean action: $S = -\frac{1}{8\pi G_5} \int d^4x \sqrt{h}(K - K_0)$ = $\pi^2 R^2 M_p^2$ (from GHY boundary term)

Dimensional reduction: 5D theory \rightarrow 4D theory with massless scalar ϕ

$$ds_5^2 = e^{-\sqrt{\frac{2}{3}}\frac{\phi}{M_p}}ds_4^2 + e^{2\sqrt{\frac{2}{3}}\frac{\phi}{M_p}}dx_5^2$$

• For Witten BON:

$$\phi = \frac{M_p}{2} \sqrt{\frac{3}{2}} \log f$$
$$ds_4^2 = f^{-1/2} dr^2 + f^{1/2} r^2 d\Omega_3$$
$$f = 1 - \left(\frac{R}{r}\right)^2$$

Looks singular near $r \to R$, but actually caps off smoothly. At the cap, $R^4 \times S^1 \to S^3 \times R^2$.

$$L(\phi) = 2\pi R \exp\left(\sqrt{\frac{2}{3}}\frac{\phi}{M_p}\right)$$

as
$$r \to R$$
: $\phi \to -\infty$, $L \to 0$.

• Spherically symmetric ds_4^2 matches CDL ansatz of O(4) symmetry: $ds_4^2 = f^{-1/2}dr^2 + f^{1/2}r^2d\Omega_3^2 = d\xi^2 + \rho(\xi)^2d\Omega_3^2$

for $r \ge R$ or $\xi \ge 0$

• CDL equations of motion for ϕ and ρ :

$$\begin{bmatrix} \phi'' + \frac{3\rho'}{\rho}\phi' - \frac{dU}{d\phi} = 0 & \text{if } U = \text{const}, \\ \rho'^2 - \left[1 + \frac{1}{3M_p^2}\rho^2\left(\frac{1}{2}\phi'^2 - U(\phi)\right)\right] = 0 \end{bmatrix}$$

- Witten BON has the same EOM, just with U = 0. The EOM can be integrated, to find exact solutions for $\phi(\xi)$ and $\rho(\xi)$.
- Main difference between BON and CDL: **initial conditions**

- CDL: near $\xi \sim 0$: $\phi = \phi_0, \phi' = 0$
- BON: near $\xi \sim 0 \ (r \simeq R): \phi \to -\infty, \ \phi' \to +\infty$

- Exactly solvable. Near the horizon, $\rho^{3}\phi' = \text{const}$ $\phi_{\text{bon}}(\xi \ll R) \simeq M_{p}\sqrt{\frac{2}{3}}\log\left(\frac{3\xi}{2R}\right), \quad \rho_{\text{bon}}(\xi \ll R) \simeq R\left(\frac{3\xi}{2R}\right)^{1/3}, \quad \rho^{3}\phi' = \sqrt{\frac{3}{2}}M_{p}R^{2}$
- Far away from the bubble, $\phi \approx \phi_{\text{fv}}$ is constant, and $\rho \approx \xi$ is flat

BON for the stabilized modulus

• The CDL formalism provides a natural way to include the effects from modulus stabilization and the de Sitter vacuum: $U(\phi)$

• Use CDL equations of motion with BON boundary conditions:

BON for the stabilized modulus

- Unlike CDL, the BON does not require $U(\phi) < U_{f_V}$ at any point. $U(\phi_{f_V})$ can be a global minimum, for example
- In fact, $U(\phi)$ can grow **exponentially large** as $\phi \to -\infty$, as long as it grows more slowly than $U \propto \exp\left(-\sqrt{6}\phi/M_p\right)$.
- For $M_p/\phi \cdot \log U > -\sqrt{6}$, the leading small ξ behavior is unchanged

Bubbles and bounce solutions

Solving the CDL EOM is similar to a kinematic problem in classical mechanics: a particle rolling in the inverted potential, with some friction

Bubbles and bounce solutions

Generic initial conditions either approach $\phi \to \phi_{\text{fv}}$ with the wrong $\phi' \neq 0$, or never approach $\phi \to \phi_{\text{fv}}$ at all.

Simple solution method: "point-and-shoot"

- **undershoot** solutions turn around before reaching the FV
- **overshoot** solutions pass the FV with too much "speed", $\phi' \neq 0$
- **bounce** solutions lie on the boundary in parameter space between overshoot and undershoot solutions. They approach the FV with $\phi' \rightarrow 0$

(This is how our numeric calculation works)

$$\phi(\xi) \simeq M_p \sqrt{\frac{2}{3}} \log\left(\frac{3\xi}{2R_5}\right), \quad \text{and} \quad \rho(\xi) \simeq \eta R_5 \left(\frac{3\xi}{2R_5}\right)^{1/3}$$

• Treating R_5 as a fixed property of the UV theory, the bubble size $R_3 = \eta R_5$ defines the initial conditions, and determines whether the eventual solution is of overshoot, undershoot, or bounce type

Solving the EOM: Analytic method

- 1. as $\xi \to 0$, the U-dependent terms are small compared to ϕ'' and $\phi' \rho' / \rho$
- 2. when U is constant, there is an exactly conserved quantity, $(\rho^3 \phi')$.
- 3. when $\rho' \simeq 1$, the EOM may solved exactly, even for nontrivial *U*

Solving the EOM: Necessary assumptions

For BON existence:

1. $U(\phi \to -\infty)$ does not grow faster than $U \propto \exp\left(-\sqrt{6}\phi/M_p\right)$

For analytic solubility:

- 2. $\rho' \simeq 1$ in the transition region (implying $U_0 R_5^2 \leq M_p^2$)
- 3. $U(\phi)$ is approximately quadratic (or linear) in the transition region

• Bubble "wall": $\phi(\xi) \approx \text{Bessel } K_1$

- Bounce solution: only $K_1(z)$, no $I_1(z)$
- This selects the "correct" value of R_3

•

Solving the EOM: Analytic results

• Solution for $\rho(\xi)$ has the form: BON $\rightarrow (\rho' \simeq 1) \rightarrow \rho_{dS}$

• Now that we know $\phi(\xi)$ and $\rho(\xi)$, we can calculate the action...

Solving the EOM: Action

- Euclidean action: $S_E = -\frac{1}{16\pi G_{n+4}} \int \sqrt{g} \left(\mathcal{R} 2\Lambda_{n+4}\right)$ dimensional reduction: $S_E = \int d^4x \sqrt{g} \left\{-\frac{M_p^2}{2}\mathcal{R} + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{M_p}{\sqrt{6}}\Box\phi + U(\phi)\right\}$
- On-shell, reduces to the CDL action plus an additional contribution:

$$\begin{split} \Delta S &\equiv S_E^{(\text{bon})} - S_E^{(\text{dS})} \\ &= \pi^2 M_p \sqrt{\frac{2}{3}} \rho^3 \phi' \Big|_{\xi=0}^{\xi=\xi_{\text{max}}} - 2\pi^2 \int_0^{\xi_{\text{max}}} d\xi \, \rho^3 U + 2\pi^2 \int_0^{\pi\Lambda} d\xi \, \rho_{\text{dS}}^3 U_{\text{fv}} \\ &= \pi^2 M_p^2 \frac{R_3^3}{R_5} - 2\pi^2 \int_0^{\xi_{\text{max}}} d\xi \, \rho^3 U + 2\pi^2 \int_0^{\pi\Lambda} d\xi \, \rho_{\text{dS}}^3 U_{\text{fv}} \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Witten solution (U = 0): $R_3 = R_5 \equiv R$, and $\Delta S = \pi^2 M_p^2 R^2$.

Bubble Size and Euclidean Action

• Results for R_3 and ΔS : as series expansions in small (mR_5) :

$$R_3 \simeq R_5 \left(1 - \frac{1}{4} m^2 R_5^2 \log(mR_5) + \mathcal{O}(m^2 R_5^2) \right)$$
$$\Delta S \simeq \pi^2 M_p^2 R_5^2 \left(1 - \frac{3}{8} m^2 R_5^2 \log(mR_5) + \mathcal{O}(m^2 R_5^2) \right)$$

where we have assumed $U_0 R_5^2 \ll M_p^2$

• Note: ΔS not sensitive to U_{fv} (unlike CDL)

- In this limit $(mR_5 \ll 1)$, results from the piecewise model also apply to other $U(\phi)$, if they are approximately ^{1.5} quadratic for $-M_p m^2 R_5^2 \leq \phi \leq 0$.
 - If $U_0 R_5^2 \gtrsim M_p^2$, need to use numerics:

Numerics For "Realistic" Potential

For concreteness, we study a two-parameter potential:

23/32

Numerics For "Realistic" Potential

Results: At small $U_0 R_5^2 \ll M_p^2$: $\Delta S \approx \pi^2 M_p^2 R_5^2$, and $R_3 \approx R_5$, as in the Witten BON

Interesting new feature: a second branch of solutions at small $U_0 R_5^2$

- On this branch, ΔS approaches the CDL action, S_{cdl}
- Also, $R_3 < R_5$ by $\mathcal{O}(1)$ fraction

• Interpretation: hybrid bounce solution, combining a BON core and a CDL bubble

24/32

Aside: Hybrid BON-CDL bounce solutions

- For $\xi \leq R_5$, the solution for $\phi(\xi)$ is BON-like.
- But, for $\xi \gg R_5$, the bounce solution closely matches CDL

- Of course, this is an *O*(4) symmetric solution compatible with CDL ansatz and BON boundary condition
- We can expect these for any Figure 21: BON-CdL $\phi(\xi)$, function of ξ/R_5 $U(\phi)$ that has a CDL solution
 - Standard BON has smaller ΔS

10

Aside: Hybrid BON-CDL bounce solutions

- Numerics show the BON-CDL hybrid bounce merges with the BON solution at large $U_0R_5^2$
- Implies a maximum value of $U_0 R_5^2$, above which there is no BON instability

BON vs CDL Rates

- In the $U_{\rm fv} \rightarrow 0$ limit ($\delta \rightarrow 0$), the CDL action diverges as $S_{\rm cdl} \propto 1/U_{\rm fv}$
- BON action remains finite, $\Delta S \propto R^2$, and largely independent of δ

27/32

Exponentially Growing Potentials

- BON existence conditions allow for $U \propto \exp(a\phi/M_p)$ in the compactification limit, as long as $a > -\sqrt{6}$
- In the $mR_5 \ll 1$ limit, these $U(\phi)$ should still be approximated by the simple piecewise model
- For example, a 5d cosmological constant, after dimensional reduction, has $a = -\sqrt{2/3}$:

$$U \to U + U_0 \lambda \exp\left(-\sqrt{\frac{2}{3}}\frac{\phi}{M_p}\right)$$
$$\lambda \equiv \frac{\Lambda_5^{\rm CC} M_p^2}{U_0}$$

Exponentially Growing Potentials

How well do our analytic predictions match the numeric results?

• Actually quite well, for small $U_0 R_5^2 \ll M_p^2$.

From analytic model: $\eta \simeq 1 - \frac{1}{4}m^2 R_5^2 \log(mR_5) + \mathcal{O}(m^2 R_5^2)$

Exponentially Growing Potentials

• BON action is still well approximated by $\Delta S \approx \pi^2 M_p^2 R_5^2$:

Familiar behavior:

- Solution for $\phi(\xi)$ still approximately Witten-like at small ξ
- Approaches the false vacuum exponentially fast at $\xi \gg R_5$

Conclusions

• If $L = 2\pi R_5$ is particularly small, spacetime can undergo a catastrophic decay, with a rate (per Hubble volume)

$$\frac{\Gamma}{H_0^4} \sim \frac{v^4 e^{-\Delta S}}{H_0^4}$$

• The fact that the apocalypse has not happened (yet) to our corner of the universe implies

 $\Delta S \gtrsim 560 - \log\left(M_p^4/v^4\right) \qquad \qquad L \gtrsim 50 M_p^{-1}$

unless the extra dimension is stabilized by a potential that grows more quickly than $U \propto \exp\left(-\sqrt{6}\phi/M_p\right)$, or by a potential with $U_0 \gg M_p^2/R_5^2$ large enough to remove the BON branch of solutions

• Conclusion applies to wide range of stabilizing potentials, even some that grow exponentially in the compactification limit

Ongoing/Future Research

• Given a particular model of modulus stabilization, what is the BON rate?

Can extend the $\rho' \simeq 1$ approximation to more complicated potentials, modeling a specific $U(\phi)$ by concatenating several quadratic or linear functions

- Can analyze higher-dimensional compact spaces, e.g. (4 + n)d with shrinking *n*-sphere
- Potentials with too-fast exponential growth, e.g. $U_{\rm flux}(\phi) \propto e^{-3\sqrt{\frac{2n}{n+2}}\frac{\phi}{M_p}}$ may still have BON instabilities: depends on other degrees of freedom, which might screen the flux

Aside: Flux Compactification

• In n = 1, adding flux on the S^1 circle generates potential that grows as

$$U_{\rm flux}(\phi) \propto e^{-3\sqrt{\frac{2n}{n+2}}\frac{\phi}{M_p}} \longrightarrow e^{-\sqrt{6}\frac{\phi}{M_p}}$$

- For this potential, BON initial conditions incompatible with EOM
- For *n*-form flux on S^n , same conclusion: $U_{\text{flux}}(\phi)$ prevents BON

This isn't necessarily the final word on the matter: if the flux is screened by pointlike charges, for example, $U(\phi)$ exponent may be less large, and BON could still form. See refs. (Addressing this in followup work)

Aside II: SUSY

• For n = 1, SUSY boundary conditions provide topological obstruction to shrinking S^1 . Not a problem for n > 1

 $U(\phi)$

Coleman–De Luccia (TWA)

- Nucleation rate $\Gamma \approx v^4 \exp(-S_E/\hbar)$, with Euclidean action S_E
- Ansatz: spherical bubble, $ds_4^2 = d\xi^2 + \rho(\xi)^2 d\Omega_3^2$
- In the thin-wall limit, S_E has closed-form approximate solution

