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Bubbles of Nothing (BON)

A collapsing extra dimension can destroy spacetime

This can happen even 1f the extra dimension 1s stabilized by some potential
Given some potential U(g), 1s there a BON instability?
What does the bubble look like? What 1s the tunneling probability?

This talk:
Review: Coleman—De Luccia tunneling, Witten BON
Analytic bounce solutions for BON with U(¢)
Numeric methods and results

Focus on (4 + 1)d with compact S!, non-SUSY
Our methods can be applied to (4 + n) dimensions, e.g. with compact §”
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Extra Dimensions:

+  Simplest example: one compact (periodic) extra dimension

ds® = —dt* + dz* + dy* + dz* + dx;
Ty ~ Ty + 2T R

»  Setting the size of L dynamically: L — L(¢), for some modulus ¢.

- Radius stabilization: Give ¢ some scalar potential, U(¢), with a
minimum at some L({¢)) = 2zR.



Extra Dimensions: Connection to de Sitter

Speaking of potentials...

‘The universe today appears to have a positive cosmological constant,

A ~ (meV)*. A constraint on viable potentials: A ~ (U)
U(p)

dS vacuum may be merely metastable:

U(¢) U() »

<¢.>...,....

Tunneling processes include normal (4d) Coleman-De Luccia (GDL);
Hawking-Moss (HM); and (for (4 + n)d theories) the Witten BON



S.R. Coleman and F. De Luccia, PRD 21 (1980) 3305

Coleman—De Lucca

Tunneling proceeds by nucleating a bubble of the true vacuum, with
probability I" & viexp(—Sg/h)

U(o) U(e)

Drv

After the bubble forms, 1t expands at an accelerating rate.



E. Witten, Nucl. Phys. B 195 (1982) 481

Witten’s Bubble of Nothing

Previous discussion was for generic scalar ¢ coupled to gravity, with
some U(¢).

Exotic possibility: if ¢ 1s the modulus that sets the size of an extra
dimension, then ¢g, = ¢, 1mplies a change in L, from L = 2zR to
something else:

+ L — 0: bubble of nothing (BON) «—— (this talk)
* L — L changemR

+ L — L' — oo: spontaneous decompactification
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E. Witten, Nucl. Phys. B 195 (1982) 481

Witten BON: as 5D gravitational instanton

Witten BON solution 1s 5D Euclidean Schwarzschild:

dsg = fdt® + f~ dr? 4 r2dQ3 f=1—(R/r)’

(Defined on r > R)
Smooth as r — R 1f 7 1s periodic, with ¢ ~ ¢ + 2zR.

Identity # with KK circle coordinate xs:

Euclidean action: S = — ! /d4x Vh(K — K;)
87TG5

— 12 R2 Mg (from GHY boundary term)




M. Dine, PJ. Fox, E. Gorbatov, JHEP 09 (2004) 037 [hep-th/0405190]

Witten BON: as CGDL problem

Dimensional reduction: 5D theory — 4D theory with massless scalar ¢

_\/2_ 2 29./2_2_
ds: = e \/gMpdsiJre \/;Mpdxg

M,
_ 1
. For Witten BON:  ©~ \[ o8 J
ds? = 1/2dr + 129240,

()

Looks singular near r — R, but actually caps oftf smoothly.
At the cap, R*x S! — §° x R?.

2 ¢
L(¢p) = 2nR exp (\/; Y >

asr>R: ¢ —> —o0c0, L—O.




M. Dine, PJ. Fox, E. Gorbatov, JHEP 09 (2004) 037 [hep-th/0405190]

Witten BON: as CGDL problem

Spherically symmetric ds; matches CDL ansatz of O(4) symmetry:
ds;y = f~12dr* + f2r2dQ3 = dE* + p(€)*dQ3
forr>Ror&>0

+ CDL equations of motion for ¢ and p:

30’ dU it U = const,
¢//_|_7 /_% :O p3¢,=COHSt.

12 | 1 2 1/2_ _
p-— {1 "3’ <2¢ U(qﬁ)ﬂ =0

+ Witten BON has the same EOM, just with U = 0.
The EOM can be integrated, to find exact solutions for ¢(&) and p(¢).

« Main difference between BON and CDL: initial conditions



M. Dine, PJ. Fox, E. Gorbatov, JHEP 09 (2004) 037 [hep-th/0405190]

Witten BON: as CGDL problem

+ CDILinearé~0:¢p=¢y, ¢'=0
- BON:nearé ~0(r ~R):¢p > — 0, ¢ = + ©

CDL: bubble
Interior 1s
false vacuum

Pry

BON: spacetime nothing
ends at = R spacetime
No 1nterior

ends here
/
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Witten BON: as CGDL problem

p°¢' = const

- Exactly solvable. Near the horizon,

2 3 3¢\ /3 5
¢bon(§ < R) ~ Mp\/;log (22> : pbon(é- < R) ~ R <22> ’ p3¢/ _ §MpR2

+  Far away from the bubble, ¢ ~ ¢, 1s constant, and p ~ £ is flat

p(&)/R
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The CDL formalism provides a natural way to include the eftects from

P. Draper, I. Garcia Garcia, BL,, 2105.08068 and 2105.10507

BON for the stabilized modulus

modulus stabilization and the de Sitter vacuum: U(¢)

U(¢)

L—0

compactification

A

L — o
decompactification

L =27zR

> ¢
—+ 00

+  Use GDL equations of motion with BON boundary conditions:

¢” + 3_'0/¢’ _
0

1
pl2 . [1_|_

alu
=~ =0

dg

N 2. 3
¢ ~0) ~ M, glogﬁ

e
p(E~0)~R (ﬁ

(300 -V@) | =0



BON for the stabilized modulus

Unlike CDL, the BON does not require U(¢) < Ug, at any point.

U(¢pg,) can be a global minimum, for example

In fact, U(¢) can grow exponentially large as ¢ - — o0, as long as it
grows more slowly than U « exp (—\/ggb/Mp).

» For M,/ -logU > — 1/6, the leading small & behavior is unchanged

may grow

exponentially
< >

compactification decompactification




Bubbles and bounce solutions

Solving the GCDL EOM 1s similar to a kinematic problem 1n classical
mechanics: a particle rolling in the inverted potential, with some friction

Normal CDL: start at rest, with p3¢’ = 0, - U(¢)
at some ¢(0) = ¢,

7
v,
.
.
.
.
.,
»

BON: start with infinite velocity
at ¢(0) - — oo, with p°¢p’ « R?

CDL and BON solutions end with ¢’ — 0,
and with ¢ 1n the vicinity of ¢ ~ ¢,




Bubbles and bounce solutions

Generic mitial conditions either approach ¢ — ¢, with the wrong ¢’ # 0,
or never approach ¢ — ¢, at all.

Simple solution method: “point-and-shoot”

« undershoot solutions turn around

before reaching the FV b

- overshoot solutions pass the F'V
with too much “speed”, ¢’ # 0

+  bounce solutions lie on the boundary in
parameter space between overshoot and
undershoot solutions. They approach the FV
with ¢’ = 0

(1'h1s 1s how our numeric calculation works)



Bubbles and bounce solutions

For the U = 0 Witten solution, the size of the bubble (1in 3D space) and
the radius of the KK extra dimension are equal: both radu are R.

With U # 0, these two quantities are no longer necessarily equal:
Rs : proper radius of KK direction
R <
R5 : size of bubble, R; = nR;
BON 1mitial conditions:

M\[log<2R5) and p(&)ﬁ?ﬂ%(

ITreating Rs as a fixed property of the UV theory, the bubble size
R; = nR5 defines the 1nitial conditions, and determines whether the
eventual solution 1s of overshoot, undershoot, or bounce type

P Draper, I Garcia Garcia, BL, 2105.08068 and 2105.10507  SEP1 20211 16/32



Solving the EOM: Analytic method

1. as & — 0, the U-dependent terms are small compared to ¢” and ¢'p’/p
2. when U is constant, there is an exactly conserved quantity, (p>¢").

3. when p’ ~ 1, the EOM may solved exactly, even for nontrivial U

Split into three regions:

1. inner “core’: 12p
U(¢) 1s unimportant,
p3¢’ ~ const x R?

2. bubble “wall”:

U(¢) causes p ¢’ to i 6
decrease, p°¢’ — 0 Al

10k

3. bubble exterior: 2 |
¢ =~ ¢g, asymptotes to oi/. - R

de Sitter false vacuum o 5 10 15 20
¢/ Rs




Solving the EOM: Necessary assumptions

For BON existence:

1. U(¢p - — o) does not grow faster than U « exp (—\/gqb/Mp)
For analytic solubility:

2. p'~ 11n the transition region (implying U0R52 < Mg)

3. U(g) 1s approximately quadratic (or linear) in the transition region

1.5

U(¢) becomes important
around ¢ ~ — m2R52Mp

1.0-
o It a U(¢) 1s ~ quadratic
S
= | for ¢ 2 —m*RsM,, then
= 05f it 1s well approximated

by the piecewise model

0.0 0.0{ | U(¢p) unimportant | U®) important
e [ ]
-0.8 -0.6 -04 -0.2 0.0 0.2 -0.8 -0.6 -04 -0.2 0.0 0.2
O/My O/My



Solving the EOM: Analytic results

+  Bubble “wall”: ¢(&) ~ Bessel K;

L 3 R2
P <m )~ _Mp\/;gg
e~ m&

PE>m™") o —

(mE)”

Interpolates between Witten solution
(U = 0) and an exponentially damped
approach to the false vacuum

» Outside the bubble: ¢(&) = ¢,
for & > O(few) x m™!

-1-43'. | ................ —Uﬁqb)

» Bounce solution: only K;(z), no /;(z)

» 'This selects the “correct” value of R,




Solving the EOM: Analytic results

» Solution for p(§) has the form: BON — (p"'~ 1) - p4g

12

— p1 2 Rs ~02 00 02 04 06 08 1.0 12 -
¢/ Rs '
0 5 10 15 20

¢/ Rs

- Now that we know ¢ (&) and p(&), we can calculate the action...



Solving the EOM: Action

L] L[] 1
y ; = — —2A,
Euclidean action: Sg 167Gt / V(R 4)

2

. . . M M
dimensional reduction: Sg = / d*z\/g {;R + %g‘“’(%qﬁ@usb — Tgﬂcb +U (cb)}
*  On-shell, reduces to the CGDL action plus an additional contribution:

AS = S (bon) S(dS)

= 1M \/7 S

gmax 7TA
— WszQ— — 27 / d¢ p*U + 217 / d¢ pgUsy
R 0 0

g €max gmax TrA
— 27? / dé p°U + 2r° / d¢ pisUs,
0 0

regular CDL action

new BON

contribution

Witten solution (U = 0): R; = Rs = R, and AS = ﬂzM]fRz.



Bubble Size and Euclidean Action

+  Results for R; and AS: as series expansions in small (mRs):

1.55—

1
Rs ~ Rj (1 - Zm2R§ log(mRs) + C’)(m2R§)>

1.0

0.5¢

3
AS ~ m*M2R? (1 — Sm* R log(mRs) + O(m2R§)>

=]
~
=
>

where we have assumed UyR: < Mg

0'0: U(¢) unimportant |
« Note: AS not sensitive to Ug, (unlike CGDL) 08 06 -6;/;\416-'2‘ To0 02

» In this hmit (mRs < 1), results from the piecewise model
also apply to other U(¢), it they are approximately rsp—r———
quadratic for —Mpmzl’QS2 <S¢ <O0. N\

1.0

U(e)/Uso

0.5}

.« If UyRZ > Mlg, need to use numerics:

00y | U(¢p) important 7
- .
08 -06 -04 -02 00 02




Numerics For “Realistic” Potential

For concreteness, we study a two-parameter potential:

mao=1 ma=2 ma=>5

« O controls Ug, 1-2;'

105 =02
+ g controls m? !
. = I
and L — 0 scaling =
oS 04p |
« U@ - 0asL -0 0.2 o
0.0 L:27TR5 ‘

(U — Upe™?™)

00 02 04 06 08 10 12

L/27 R
""""""""""""""" | |BON-FV
+ As expected, ¢(£ S Rs) matches | Up = 0.01 M/ R
the Witten solution =5 : 228332
0.100} M 6=0.98
* ¢ > Rs) approaches I'V. =] m 5-038
exponentially fast < o010 5 0=05
. . < z m 6=0.2
(unlike Witten BON), | | = 6=0.02
0.001 B 6=0.005
as ¢ o exp(—m |
¢ p(=m¢) |  5=0.001
107

£/ Rs
"~ BENJAMIN LILLARD — UIUC P Draper, L. Garcia Garcia, BL, 2105.08068 and 2105. )



Numerics For “Realistic” Potential

Results: At small UjRZ < M]%: AS = JrzM]%RSZ, and R; = Rs, as in the Witten BON

Interesting new feature: a second 10°f
. a=2>
branch of solutions at small U0R52 104
. ~ o 103 W 6=0.001
*  On this branch, AS approaches = W 6=0.005
. = 102 5 6=0.02
the CDL action, S_q; =~ B 6-0.2
Cé]z 10t} W 6=05
. H 6=0.8
»  Also, R; < Rs by O(1) fraction 100} S 5-0.08
101 B 6=0.995
14—
s -
1of| M 6=0001 M 6=0.2
| M 6=0.005 M 6=05 1073 o o
10F| ® 6=0.02 M =08 0.01 0.05 0.10 0.50 1 5 10
AN
N q, sl R5w/UO/Mg
= | a=5
S 4l . . .
°l * Interpretation: hybrid bounce solution,
=4 combining a BON core and a CDL bubble
2f r
AR V=Y
0.5 1 2 5
R3/Rs



Aside: Hybrid BON-GCDL bounce solutions

: Up = 0.01 M2/R2|] )
+ For & < Rs, the solution for \ 2 ; |- 218-821
. . 1.5' a = - —M
$(&) 1s BON-like. | { | me=02
S PR N B 5-05
~ i ] m 6=0.8
«  But, for & > Rs, the bounce % 1'0: ..................... | | m 6=0.98
solution Closely matches | 05; _______________________ | | B 6=0.999
CDL N T i BON-CDL
; || ==--- CcDL
0.1 05 1 5 10 50 100

¢/ Rs

+ Ot course, this 1s an O(4)
symmetric solution compatible
with CDL ansatz and BON

boundary condition

We can expect these for any

U(¢) that has a CDL solution
«  Standard BON has smaller AS




Aside: Hybrid BON-GCDL bounce solutions

14 ———my

[l 6=0.001 W 6I=o.2l - *  Numerics show the BON-CDL hYbI'ld bounce

12}
[| B 6=0.005 M 6=0.5

1of| M 5002 W s=0s .5 merges with the BON solution at large U0R52
[\ ]

o
——

Up/ M2

+ Implies a maximum value of UyRZ, above which
there 1s no BON 1nstability

Ry
& ()

6=0.001
6=0.005
6=0.02
6=0.2
6=0.5
6=0.8
6=0.98
6=0.995

HE T EEEE NN

0.50 1 5 10

Rsy /Uy /M2

" BENJAMIN LILLARD — UIUC P Draper, I Garcia Garcia, BL, 2105.08068 and 2105.10507

0.01 0.05 0.10
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BON vs CDL Rates

+ In the Ug, —» 0 limit (6§ — 0), the CDL action diverges as S.q; < 1/Ug,

+ BON action remains finite, AS « R?, and largely independent of &

6=0.001
6=0.005
6=0.02
0=0.2
6=0.5
0=0.8
6=0.98
06=0.995

H O EENENSNNN

Rs\ /Uy /M



Exponentially Growing Potentials

- BON existence conditions allow for U « exp(a¢/M,) 1n the
compactification limit, as long as a > —1/6

* In the mR; < 1 limit, these U(¢) 4;

should still be approximated |

by the simple piecewise model

X

»  Tor example, a 5d cosmological = 1

constant, after dimensional |
reduction, has a = —+/2/3: i N

: T
U — U + U exp ( M%)
p

NSSVE:
Us

A
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Exponentially Growing Potentials

How well do our analytic predictions match the numeric results?

+ Actually quite well, for small UyR; < M;.

1
From analytic model: 7~ 1 — ZmzRé log(mRs) + O(m*R;)

7 a = 2
{ | U, = 0.10U,

R;
Us

U

H A=2.
H A=1.
B A=0.5
B A=0.25

0.001 n— 1~ —im?*R?log(mRs)

0.005 0.010 0.050 0.100 0.500 1

Rs\/Us/M?



Exponentially Growing Potentials

- BON action s still well approximated by AS ~ ﬂzMgRszl

0.100

0.010}

AS/ (w2M2R?)

& 0.001}

1074

107°

0.01 0.10 1 10 100

Familiar behavior:

10—

0.5

0.01 0.05 0.10

Rsy /U /M2

»  Solution for ¢(&) still approximately Witten-like at small &

+ Approaches the false vacuum exponentially fast at & > R;

0.50 1



Conclusions

It L = 2zR;5 15 particularly small, spacetime can undergo a catastrophic
decay, with a rate (per Hubble volume)

I vie—AS
1 ™ 1
Hy Hy

The fact that the apocalypse has not happened (yet) to our corner of
the universe implies

AS > 560 — log (M) /v*) LZz50M"

unless the extra dimension 1s stabilized by a potential that grows
more quickly than U « exp <—\/6¢/Mp>, or by a potential with

U, > Mlg/RS2 large enough to remove the BON branch of solutions

Conclusion applies to wide range of stabilizing potentials, even some
that grow exponentially in the compactification limit
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Ongoing/Future Research

1.07
+  Given a particular model of modulus % |
stabilization, what 1s the BON rate? S

Can extend the p’ ~ 1 approximation to more |
complicated potentials, modeling a specific %0} |
U(¢) by concatenating several quadratic or  _; Ty
linear functions /M,

+ (an analyze higher-dimensional compact spaces, e.g. (4 + n)d with

shrinking n-sphere

- Potentials with too-fast exponential growth, e.g. Ugux (@) ox €
may still have BON 1nstabilities: depends on other degrees of freedom,
which might screen the flux






JJ. Blanco-Pillado and B. Shlaer, PRD 62 (2010) 086015 [1002.4408]
A.R. Brown and A. Dahlen, PRD 84 (2011) 043518 [1010.5240]

Aside: Flux Compactification
In n = 1, adding flux on the S! circle generates potential that grows as
Uux (@) 6_3\/”2:47:2]\% N
For this potential, BON 1nitial conditions incompatible with EOM

For n-form flux on §", same conclusion: U, (¢) prevents BON

This 1sn’t necessarily the final word on the matter: it the flux 1s screened
by pointlike charges, for example, U(¢) exponent may be less large, and
BON could still form. See refs. (Addressing this in followup work)

Aside 1I: SUSY

For n = 1, SUSY boundary conditions provide topological obstruction
to shrinking S'. Not a problem for n > 1



S.R. Coleman and F. De Luccia, PRD 21 (1980) 3305

Coleman—De Luccia (TWA)

Nucleation rate I' % v*exp(—S;/#), with Euclidean action Sy

U(p)

Ansatz: spherical bubble, dsf =dE* + p(f)de%

* In the thin-wall limit, S; has closed-form
approximate solution

($)

)
/

bubble wall






