Bubbles of Nothing in de Sitter

Collapsing extra dimensions destroy spacetime
Ben Lillard
September 2o2I
University of Illinois, Urbana-Champaign

Based on work with Patrick Draper

 and Isabel Garcia Garcia2105.08068
2105.10507

Bubbles of Nothing (BON)

A collapsing extra dimension can destroy spacetime
This can happen even if the extra dimension is stabilized by some potential

- Given some potential $U(\phi)$, is there a BON instability?
- What does the bubble look like? What is the tunneling probability?

This talk:

- Review: Coleman-De Luccia tunneling, Witten BON
- Analytic bounce solutions for BON with $U(\phi)$
- Numeric methods and results

Focus on $(4+1) d$ with compact S^{1}, non-SUSY
Our methods can be applied to $(4+n)$ dimensions, e.g. with compact S^{n}

Extra Dimensions:

- Simplest example: one compact (periodic) extra dimension

- Setting the size of L dynamically: $L \longrightarrow L(\phi)$, for some modulus ϕ.
- Radius stabilization: Give ϕ some scalar potential, $U(\phi)$, with a minimum at some $L(\langle\phi\rangle)=2 \pi R$.

Extra Dimensions: Connection to de Sitter

Speaking of potentials...

- The universe today appears to have a positive cosmological constant, $\Lambda \sim(\mathrm{meV})^{4}$. A constraint on viable potentials: $\Lambda \sim\langle U\rangle$
dS vacuum may be merely metastable:

- Tunneling processes include normal (4d) Coleman-De Luccia (CDL); Hawking-Moss (HM); and (for $(4+n)$ d theories) the Witten BON

Coleman-De Luccia

Tunneling proceeds by nucleating a bubble of the true vacuum, with probability $\Gamma \approx v^{4} \exp \left(-S_{E} / \hbar\right)$

After the bubble forms, it expands at an accelerating rate.

Witten's Bubble of Nothing

- Previous discussion was for generic scalar ϕ coupled to gravity, with some $U(\phi)$.

Exotic possibility: if ϕ is the modulus that sets the size of an extra dimension, then $\phi_{\mathrm{fv}} \rightarrow \phi_{\mathrm{tv}}$ implies a change in L, from $L=2 \pi R$ to something else:

- $L \rightarrow 0$: bubble of nothing (BON) \longleftarrow (this talk)
- $L \rightarrow L^{\prime}$: change in R
- $L \rightarrow L^{\prime} \rightarrow \infty$: spontaneous decompactification

Witten BON: as 5D gravitational instanton

Witten BON solution is 5D Euclidean Schwarzschild:

$$
d s_{5}^{2}=f d t^{2}+f^{-1} d r^{2}+r^{2} d \Omega_{3}^{2} \quad f=1-(R / r)^{2}
$$

(Defined on $r \geq R$)
Smooth as $r \rightarrow R$ if t is periodic, with $t \sim t+2 \pi R$.

- Identify t with KK circle coordinate x_{5} :

- Euclidean action: $S=-\frac{1}{8 \pi G_{5}} \int d^{4} x \sqrt{h}\left(K-K_{0}\right)$

$$
=\pi^{2} R^{2} M_{p}^{2}
$$

Witten BON: as CDL problem

Dimensional reduction: 5D theory $\longrightarrow 4 \mathrm{D}$ theory with massless scalar ϕ

$$
d s_{5}^{2}=e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{p}}} d s_{4}^{2}+e^{2 \sqrt{\frac{2}{3}} \frac{\phi}{M_{p}}} d x_{5}^{2}
$$

- For Witten BON:

$$
\begin{aligned}
\phi & =\frac{M_{p}}{2} \sqrt{\frac{3}{2}} \log f \\
d s_{4}^{2} & =f^{-1 / 2} d r^{2}+f^{1 / 2} r^{2} d \Omega_{3} \\
f & =1-\left(\frac{R}{r}\right)^{2}
\end{aligned}
$$

Looks singular near $r \rightarrow R$, but actually caps off smoothly. At the cap, $R^{4} \times S^{1} \rightarrow S^{3} \times R^{2}$.

$$
L(\phi)=2 \pi R \exp \left(\sqrt{\frac{2}{3}} \frac{\phi}{M_{p}}\right)
$$

as $r \rightarrow R: \quad \phi \rightarrow-\infty, L \rightarrow 0$.

Witten BON: as CDL problem

- Spherically symmetric $d s_{4}^{2}$ matches CDL ansatz of $O(4)$ symmetry:

$$
\begin{aligned}
& d s_{4}^{2}=f^{-1 / 2} d r^{2}+f^{1 / 2} r^{2} d \Omega_{3}^{2}=d \xi^{2}+\rho(\xi)^{2} d \Omega_{3}^{2} \\
& \text { for } r \geq R \text { or } \xi \geq 0
\end{aligned}
$$

- CDL equations of motion for ϕ and ρ :

$$
\begin{array}{ll}
\phi^{\prime \prime}+\frac{3 \rho^{\prime}}{\rho} \phi^{\prime}-\frac{d U}{d \phi}=0 \\
\rho^{\prime 2}-\left[1+\frac{1}{3 M_{p}^{2}} \rho^{2}\left(\frac{1}{2} \phi^{2}-U(\phi)\right)\right]=0
\end{array} \quad \begin{aligned}
& \text { if } U=\text { const } \\
& \rho^{3} \phi^{\prime}=\text { const. }
\end{aligned}
$$

- Witten BON has the same EOM, just with $U=0$.

The EOM can be integrated, to find exact solutions for $\phi(\xi)$ and $\rho(\xi)$.

- Main difference between BON and CDL: initial conditions

Witten BON: as CDL problem

- CDL: near $\xi \sim 0: \phi=\phi_{0}, \phi^{\prime}=0$
- BON: near $\xi \sim 0(r \simeq R): \phi \rightarrow-\infty, \phi^{\prime} \rightarrow+\infty$

CDL: bubble interior is false vacuum

BON: spacetime ends at $r=R$ No interior

Witten BON: as CDL problem

- Exactly solvable. Near the horizon,

$$
\rho^{3} \phi^{\prime}=\text { const }
$$

$\phi_{\mathrm{bon}}(\xi \ll R) \simeq M_{p} \sqrt{\frac{2}{3}} \log \left(\frac{3 \xi}{2 R}\right), \quad \rho_{\mathrm{bon}}(\xi \ll R) \simeq R\left(\frac{3 \xi}{2 R}\right)^{1 / 3}, \quad \rho^{3} \phi^{\prime}=\sqrt{\frac{3}{2}} M_{p} R^{2}$

- Far away from the bubble, $\phi \approx \phi_{\mathrm{fv}}$ is constant, and $\rho \approx \xi$ is flat

BON for the stabilized modulus

- The CDL formalism provides a natural way to include the effects from modulus stabilization and the de Sitter vacuum: $U(\phi)$

- Use CDL equations of motion with BON boundary conditions:

$$
\begin{aligned}
& \phi(\xi \sim 0) \simeq M_{p} \sqrt{\frac{2}{3}} \log \frac{3 \xi}{2 R} \\
& \rho(\xi \sim 0) \simeq R\left(\frac{3 \xi}{2 R}\right)^{1 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& \phi^{\prime \prime}+\frac{3 \rho^{\prime}}{\rho} \phi^{\prime}-\frac{d U}{d \phi}=0 \\
& \rho^{\prime 2}-\left[1+\frac{1}{3 M_{p}^{2}} \rho^{2}\left(\frac{1}{2} \phi^{\prime 2}-U(\phi)\right)\right]=0
\end{aligned}
$$

BON for the stabilized modulus

- Unlike CDL, the BON does not require $U(\phi)<U_{\mathrm{fv}}$ at any point. $U\left(\phi_{\mathrm{fv}}\right)$ can be a global minimum, for example
- In fact, $U(\phi)$ can grow exponentially large as $\phi \rightarrow-\infty$, as long as it grows more slowly than $U \propto \exp \left(-\sqrt{6} \phi / M_{p}\right)$.
- For $M_{p} / \phi \cdot \log U>-\sqrt{6}$, the leading small ξ behavior is unchanged

Bubbles and bounce solutions

Solving the CDL EOM is similar to a kinematic problem in classical mechanics: a particle rolling in the inverted potential, with some friction

- Normal CDL: start at rest, with $\rho^{3} \phi^{\prime}=0$, at some $\phi(0)=\phi_{0}$
- BON: start with infinite velocity at $\phi(0) \rightarrow-\infty$, with $\rho^{3} \phi^{\prime} \propto R^{2}$

CDL and BON solutions end with $\phi^{\prime} \rightarrow 0$,

Bubbles and bounce solutions

Generic initial conditions either approach $\phi \rightarrow \phi_{\mathrm{fv}}$ with the wrong $\phi^{\prime} \neq 0$, or never approach $\phi \rightarrow \phi_{\mathrm{fv}}$ at all.

Simple solution method: "point-and-shoot"

- undershoot solutions turn around before reaching the FV
- overshoot solutions pass the FV with too much "speed", $\phi^{\prime} \neq 0$
- bounce solutions lie on the boundary in parameter space between overshoot and undershoot solutions. They approach the FV with $\phi^{\prime} \rightarrow 0$
(This is how our numeric calculation works)

Bubbles and bounce solutions

- For the $U=0$ Witten solution, the size of the bubble (in 3D space) and the radius of the KK extra dimension are equal: both radii are R.
- With $U \neq 0$, these two quantities are no longer necessarily equal:

- BON initial conditions:

$$
\phi(\xi) \simeq M_{p} \sqrt{\frac{2}{3}} \log \left(\frac{3 \xi}{2 R_{5}}\right), \quad \text { and } \quad \rho(\xi) \simeq \eta R_{5}\left(\frac{3 \xi}{2 R_{5}}\right)^{1 / 3}
$$

- Treating R_{5} as a fixed property of the UV theory, the bubble size $R_{3}=\eta R_{5}$ defines the initial conditions, and determines whether the eventual solution is of overshoot, undershoot, or bounce type

Solving the EOM: Analytic method

1. as $\xi \rightarrow 0$, the U-dependent terms are small compared to $\phi^{\prime \prime}$ and $\phi^{\prime} \rho^{\prime} / \rho$
2. when U is constant, there is an exactly conserved quantity, $\left(\rho^{3} \phi^{\prime}\right)$.
3. when $\rho^{\prime} \simeq 1$, the EOM may solved exactly, even for nontrivial U

Split into three regions:

$$
\frac{1}{\rho^{3}} \frac{d}{d \xi}\left(\rho^{3} \phi^{\prime}\right)=\frac{d U}{d \phi} \quad \rho^{\prime 2}=1+\frac{3 \rho^{2}}{M_{p}^{2}}\left(\frac{1}{2} \phi^{\prime 2}-U(\phi)\right)
$$

1. inner "core":
$U(\phi)$ is unimportant, $\rho^{3} \phi^{\prime} \simeq$ const $\propto R^{2}$
2. bubble "wall": $U(\phi)$ causes $\rho^{3} \phi^{\prime}$ to decrease, $\rho^{3} \phi^{\prime} \rightarrow 0$
3. bubble exterior: $\phi \simeq \phi_{\mathrm{fv}}$ asymptotes to de Sitter false vacuum

Solving the EOM: Necessary assumptions

For BON existence:

1. $U(\phi \rightarrow-\infty)$ does not grow faster than $U \propto \exp \left(-\sqrt{6} \phi / M_{p}\right)$

For analytic solubility:
2. $\rho^{\prime} \simeq 1$ in the transition region (implying $U_{0} R_{5}^{2} \lesssim M_{p}^{2}$)
3. $U(\phi)$ is approximately quadratic (or linear) in the transition region

Example (2105.10507): piecewise quadratic $U(\phi)=U_{\mathrm{fv}}+\frac{1}{2} m^{2} \phi^{2}$

- $U(\phi)$ becomes important around $\phi \sim-m^{2} R_{5}^{2} M_{p}$
- If a $U(\phi)$ is ~ quadratic for $\phi \gtrsim-m^{2} R_{5}^{2} M_{p}$, then it is well approximated by the piecewise model

Solving the EOM: Analytic results

- Bubble "core": $\phi(\xi) \approx \phi_{\text {bon }}$

$$
\phi_{\mathrm{bon}}\left(\xi \gg R_{5}\right) \simeq-\frac{M_{p}}{2} \sqrt{\frac{3}{2}}\left(\frac{R_{5}}{\xi}\right)^{2}
$$

- Bubble "wall": $\phi(\xi) \approx$ Bessel K_{1}

$$
\begin{aligned}
& \phi\left(\xi \ll m^{-1}\right) \approx-M_{p} \sqrt{\frac{3}{2}} \frac{R_{5}^{2}}{\xi^{2}} \\
& \phi\left(\xi \gg m^{-1}\right) \propto-\frac{e^{-m \xi}}{(m \xi)^{3 / 2}}
\end{aligned}
$$

Interpolates between Witten solution ($U=0$) and an exponentially damped approach to the false vacuum

- Outside the bubble: $\phi(\xi) \approx \phi_{\mathrm{fv}}$ for $\xi \gg \mathcal{O}(\mathrm{few}) \times \mathrm{m}^{-1}$

Solving the EOM: Analytic results

- Solution for $\rho(\xi)$ has the form: $\mathrm{BON} \rightarrow\left(\rho^{\prime} \simeq 1\right) \rightarrow \rho_{\mathrm{dS}}$

- Now that we know $\phi(\xi)$ and $\rho(\xi)$, we can calculate the action...

Solving the EOM: Action

- Euclidean action: $\quad S_{E}=-\frac{1}{16 \pi G_{n+4}} \int \sqrt{g}\left(\mathcal{R}-2 \Lambda_{n+4}\right)$
dimensional reduction: $S_{E}=\int d^{4} x \sqrt{g}\left\{-\frac{M_{p}^{2}}{2} \mathcal{R}+\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{M_{p}}{\sqrt{6}} \square \phi+U(\phi)\right\}$
- On-shell, reduces to the CDL action plus an additional contribution:

$$
\begin{aligned}
\Delta S & \equiv S_{E}^{(\mathrm{bon})}-S_{E}^{(\mathrm{dS})} \\
& =\left.\pi^{2} M_{p} \sqrt{\frac{2}{3}} \rho^{3} \phi^{\prime}\right|_{\xi=0} ^{\xi=\xi_{\max }}-2 \pi^{2} \int_{0}^{\xi_{\max }} d \xi \rho^{3} U+2 \pi^{2} \int_{0}^{\pi \Lambda} d \xi \rho_{\mathrm{dS}}^{3} U_{\mathrm{fv}} \\
& =\pi^{2} M_{p}^{2} \frac{R_{3}^{3}}{R_{5}}-2 \pi^{2} \int_{0}^{\xi_{\max }} d \xi \rho^{3} U+2 \pi^{2} \int_{0}^{\pi \Lambda} d \xi \rho_{\mathrm{dS}}^{3} U_{\mathrm{fv}} \\
& \begin{array}{c}
\text { new BON } \\
\text { contribution }
\end{array}
\end{aligned}
$$

Witten solution $(U=0): R_{3}=R_{5} \equiv R$, and $\Delta S=\pi^{2} M_{p}^{2} R^{2}$.

Bubble Size and Euclidean Action

- Results for R_{3} and ΔS : as series expansions in small $\left(m R_{5}\right)$:

$$
\begin{aligned}
R_{3} & \simeq R_{5}\left(1-\frac{1}{4} m^{2} R_{5}^{2} \log \left(m R_{5}\right)+\mathcal{O}\left(m^{2} R_{5}^{2}\right)\right) \\
\Delta S & \simeq \pi^{2} M_{p}^{2} R_{5}^{2}\left(1-\frac{3}{8} m^{2} R_{5}^{2} \log \left(m R_{5}\right)+\mathcal{O}\left(m^{2} R_{5}^{2}\right)\right)
\end{aligned}
$$

where we have assumed $U_{0} R_{5}^{2} \ll M_{p}^{2}$

- Note: ΔS not sensitive to U_{fv} (unlike CDL)

- In this limit $\left(m R_{5} \ll 1\right)$, results from the piecewise model also apply to other $U(\phi)$, if they are approximately quadratic for $-M_{p} m^{2} R_{5}^{2} \lesssim \phi \leq 0$.
- If $U_{0} R_{5}^{2} \gtrsim M_{p}^{2}$, need to use numerics:

Numerics For "Realistic" Potential

For concreteness, we study a two-parameter potential:

- δ controls U_{fv}
- a controls m^{2} and $L \rightarrow 0$ scaling
- $U(\phi) \rightarrow 0$ as $L \rightarrow 0$ $\left(U \rightarrow U_{0} e^{a \phi / M_{p}}\right)$

- As expected, $\phi\left(\xi \lesssim R_{5}\right)$ matches the Witten solution
- $\phi\left(\xi \gg R_{5}\right)$ approaches FV exponentially fast (unlike Witten BON), as $\phi \propto \exp (-m \xi)$

Numerics For "Realistic" Potential

Results: At small $U_{0} R_{5}^{2} \ll M_{p}^{2}: \Delta S \approx \pi^{2} M_{p}^{2} R_{5}^{2}$, and $R_{3} \approx R_{5}$, as in the Witten BON

Interesting new feature: a second branch of solutions at small $U_{0} R_{5}^{2}$

- On this branch, ΔS approaches the CDL action, S_{Cdl}
- Also, $R_{3}<R_{5}$ by $\mathcal{O}(1)$ fraction

- Interpretation: hybrid bounce solution, combining a BON core and a CDL bubble

Aside: Hybrid BON-CDL bounce solutions

- For $\xi \lesssim R_{5}$, the solution for $\phi(\xi)$ is BON-like.
- But, for $\xi \gg R_{5}$, the bounce solution closely matches CDL

- Of course, this is an $O(4)$ symmetric solution compatible with CDL ansatz and BON boundary condition
- We can expect these for any $U(\phi)$ that has a CDL solution
- Standard BON has smaller ΔS

Aside: Hybrid BON-CDL bounce solutions

- Numerics show the BON-CDL hybrid bounce merges with the BON solution at large $U_{0} R_{5}^{2}$
- Implies a maximum value of $U_{0} R_{5}^{2}$, above which there is no BON instability

BON vs CDL Rates

- In the $U_{\mathrm{fv}} \rightarrow 0$ limit $(\delta \rightarrow 0)$, the CDL action diverges as $S_{\mathrm{cdl}} \propto 1 / U_{\mathrm{fv}}$
- BON action remains finite, $\Delta S \propto R^{2}$, and largely independent of δ

Exponentially Growing Potentials

- BON existence conditions allow for $U \propto \exp \left(a \phi / M_{p}\right)$ in the compactification limit, as long as $a>-\sqrt{6}$
- In the $m R_{5} \ll 1$ limit, these $U(\phi)$ should still be approximated by the simple piecewise model
- For example, a 5d cosmological constant, after dimensional reduction, has $a=-\sqrt{2 / 3}$:

$$
\begin{aligned}
& U \rightarrow U+U_{0} \lambda \exp \left(-\sqrt{\frac{2}{3}} \frac{\phi}{M_{p}}\right) \\
& \lambda \equiv \frac{\Lambda_{5}^{\mathrm{CC}} M_{p}^{2}}{U_{0}}
\end{aligned}
$$

Exponentially Growing Potentials

How well do our analytic predictions match the numeric results?

- Actually quite well, for small $U_{0} R_{5}^{2} \ll M_{p}^{2}$.

From analytic model: $\quad \eta \simeq 1-\frac{1}{4} m^{2} R_{5}^{2} \log \left(m R_{5}\right)+\mathcal{O}\left(m^{2} R_{5}^{2}\right)$

Exponentially Growing Potentials

- BON action is still well approximated by $\Delta S \approx \pi^{2} M_{p}^{2} R_{5}^{2}$:

Familiar behavior:

- Solution for $\phi(\xi)$ still approximately Witten-like at small ξ
- Approaches the false vacuum exponentially fast at $\xi \gg R_{5}$

Conclusions

- If $L=2 \pi R_{5}$ is particularly small, spacetime can undergo a catastrophic decay, with a rate (per Hubble volume)

$$
\frac{\Gamma}{H_{0}^{4}} \sim \frac{v^{4} e^{-\Delta S}}{H_{0}^{4}}
$$

- The fact that the apocalypse has not happened (yet) to our corner of the universe implies

$$
\Delta S \gtrsim 560-\log \left(M_{p}^{4} / v^{4}\right) \quad L \gtrsim 50 M_{p}^{-1}
$$

unless the extra dimension is stabilized by a potential that grows more quickly than $U \propto \exp \left(-\sqrt{6} \phi / M_{p}\right)$, or by a potential with $U_{0} \gg M_{p}^{2} / R_{5}^{2}$ large enough to remove the BON branch of solutions

- Conclusion applies to wide range of stabilizing potentials, even some that grow exponentially in the compactification limit

Ongoing/Future Research

- Given a particular model of modulus stabilization, what is the BON rate?

Can extend the $\rho^{\prime} \simeq 1$ approximation to more complicated potentials, modeling a specific $U(\phi)$ by concatenating several quadratic or linear functions

- Can analyze higher-dimensional compact spaces, e.g. ($4+n$)d with shrinking n-sphere
- Potentials with too-fast exponential growth, e.g. $U_{\text {flux }}(\phi) \propto e^{-3 \sqrt{\frac{2 n}{n+2}} \frac{\phi}{M_{p}}}$ may still have BON instabilities: depends on other degrees of freedom, which might screen the flux

Aside: Flux Compactification

- In $n=1$, adding flux on the S^{1} circle generates potential that grows as

$$
U_{\text {flux }}(\phi) \propto e^{-3 \sqrt{\frac{2 n}{n+2} \frac{\phi}{M_{p}}}} \longrightarrow e^{-\sqrt{6} \frac{\phi}{M_{p}}}
$$

- For this potential, BON initial conditions incompatible with EOM
- For n-form flux on S^{n}, same conclusion: $U_{\text {flux }}(\phi)$ prevents BON

This isn't necessarily the final word on the matter: if the flux is screened by pointlike charges, for example, $U(\phi)$ exponent may be less large, and BON could still form. See refs. (Addressing this in followup work)

Aside II: SUSY

- For $n=1$, SUSY boundary conditions provide topological obstruction to shrinking S^{1}. Not a problem for $n>1$

Coleman-De Luccia (TWA)

- Nucleation rate $\Gamma \approx v^{4} \exp \left(-S_{E} / \hbar\right)$, with Euclidean action S_{E}
- Ansatz: spherical bubble, $d s_{4}^{2}=d \xi^{2}+\rho(\xi)^{2} d \Omega_{3}^{2}$
- In the thin-wall limit, S_{E} has closed-form approximate solution

bubble wall

