Toward first-principles calculation of shear viscosity - classical and quantum approaches

Yukari Yamauchi

arXiv:2101.05755 with S. Lawrence arXiv:2104.02024 with T. Cohen, H. Lamm, S. Lawrence and two projects in progress

26 October 2021, Fermi National Accelerator Laboratory

What is shear viscosity? - Theoretically

Low energy constant in the hydrodynamic description of an underlying theory The underlying theory of molecule dynamics

The hydrodynamic description of this system via \vec{u} (velocity field) Navier-Stokes Equation: $\rho \frac{\partial \vec{u}}{\partial t} + \rho(\vec{u} \cdot \nabla)\vec{u} = \rho \vec{a} - \nabla p + \eta \nabla^2 \vec{u}$ (ρ : mass density, \vec{a} : external force, p: pressure)

Shear viscosity η is obtained from $(\vec{r}(t), \vec{v}(t))$ by $C(k,t) = \langle u(k,t)u(k,0) \rangle \sim e^{-\frac{\eta k^2}{\rho}t}$ with $u(k,t) = \sum_{j=1}^{N} \vec{v}^j(t) e^{-i\vec{k}\cdot\vec{r}^j(t)}$

Shear Viscosity from Molecule Dynamics¹

- Prepare a box (volume L^3) of particles in thermal equilibrium $|F(r)| = e^{-2r}$, repulsive force
- 2 Measure transverse velocity field $\vec{u}(\vec{k},0)$
- S Time-evolve the system via molecular dynamics simulation
- Measure $\vec{u}(\vec{k},t)$ and compute $\vec{u}(\vec{k},t)\vec{u}(\vec{k},0)$

 $C(k,t) = \langle \vec{u}(\vec{k},t)\vec{u}(\vec{k},0) \rangle \sim e^{-\frac{\eta k^2}{\rho}t} \ (\rho : \text{mass density})$

¹B.Palmer, Phys.Rev.E 49(1994)359, B.Hess, J.Chem.Phys.116,209(2002)

Roadmap

Shear Viscosity of QFT

Non-relativistic gas of particles

QCD on a lattice

From T_{01} correlator:

 $\int_{V} d\vec{x} \ e^{i\vec{k}\cdot\vec{x}} \langle \phi(\beta) | \left[\mathcal{T}_{01}(t,\vec{x}), \mathcal{T}_{01}(0,0) \right] | \phi(\beta) \rangle \sim e^{-\frac{\eta(\beta)k^{2}}{\epsilon}t}$ (ϵ : energy density)

From T_{12} correlator:

 $\eta(\beta) = \frac{1}{T} \int_{V} dx \int_{0}^{\infty} dt \langle \phi(\beta) | [T_{12}(x,t), T_{12}(0,0)] | \phi(\beta) \rangle$

Sign Problem Goal: compute $\langle \phi(\beta) | [T_{\mu\nu}(t, \vec{x}), T_{\mu\nu}(0, 0)] | \phi(\beta) \rangle$

Method: Non-perturbative calculation on a lattice

$$\langle \mathcal{O}(t,\vec{x})\rangle = \frac{1}{Z} \int \mathcal{D}[\psi,U] e^{-S} \mathcal{O}(t,\vec{x})$$
The action S is complex \rightarrow define "quenched distribution" $e^{-\operatorname{Re} S}$

$$\langle \mathcal{O}(t,\vec{x})\rangle = \frac{\int \mathcal{D}[\psi,A] e^{-\operatorname{Re} S} e^{-i\operatorname{Im} S} \mathcal{O}(t,\vec{x})}{\int \mathcal{D}[\psi,A] e^{-\operatorname{Re} S}} = \frac{\langle e^{-i\operatorname{Im} S} \mathcal{O} \rangle_{e^{-\operatorname{Re} S}}}{\langle e^{-i\operatorname{Im} S} \rangle_{e^{-\operatorname{Re} S}}}$$

Especially the "average sign" is challenging:

$$\langle \sigma
angle = \langle e^{-i \, \mathrm{Im} \, S}
angle_{e^{-\,\mathrm{Re} \, S}} \propto a^V, \ a \leq 1$$

B

Trivializing Map²

Trivializing map:

$$dy \ e^{-S(y)} = dx \ \frac{dy(x)}{dx} \ e^{-S(y(x))} = dx \ \mathcal{N}e^{-x^2/2}$$

Expectation values:

$$\langle \mathcal{O} \rangle = \frac{\int dy \ e^{-S(y)} \mathcal{O}(y)}{\int dy \ e^{-S(y)}} = \frac{\int dx \ e^{-x^2/2} \mathcal{O}(y(x))}{\int dx \ e^{-x^2/2}}$$

²M. Albergo et.el. Phys. Rev. D 100, 034515(2019)
 K. A. Nicoli, et.el. Phys. Rev. E 101, 023304(2020)

Complex Trivializing Map

Application to complex actions:

$$\frac{\int_{\mathbb{R}} dx \ e^{-x^2/2} \mathcal{O}(y(x))}{\int_{\mathbb{R}} dx \ e^{-x^2/2}} = \frac{\int_{y(\mathbb{R})} dy \ e^{-S(y)} \mathcal{O}(y)}{\int_{y(\mathbb{R})} dy \ e^{-S(y)}} \stackrel{?}{=} \langle \mathcal{O} \rangle$$

Contour of integration changes!

Constraints on Trivializing Map³

Trivializing maps give the correct $\langle \mathcal{O} \rangle$

$$\langle \mathcal{O} \rangle = \frac{\int_{\mathbb{R}} dy \ e^{-S(y)} \mathcal{O}(y)}{\int_{\mathbb{R}} dy \ e^{-S(y)}} = \frac{\int_{y(\mathbb{R})} dy \ e^{-S(y)} \mathcal{O}(y)}{\int_{y(\mathbb{R})} dy \ e^{-S(y)}}$$

when:

- The induced contour (---) is a continuous manifold
- The induced contour (—) is in "asymptotically safe" region
- Both e^{-S(y)} and e^{-S(y)}O(y) are holomorphic functions in the region between (—) and (—)

\rightarrow Cauchy's integral theorem!

³A. Alexandru et.el., Phys. Rev. D. 98, 034506(2018)

Trivializing Map and the Generalized Thimble Method

 ${\mathcal M}$ is of exactly the sort used in the generalized thimble method

"Average sign" on the manifold ${\mathcal M}$ is

$$\langle \sigma \rangle = \frac{\int_{\mathcal{M}} dy \ e^{-S(y)}}{\int_{\mathcal{M}} dy \ e^{-\operatorname{Re} S(y)}} = \frac{\int_{\mathbb{R}} dx \ e^{-x^2/2}}{\int_{\mathbb{R}} dx \ e^{-x^2/2}} = 1$$

So the manifold $\mathcal M$ has no sign problems.

Trivializing maps exist \leftrightarrow Perfect manifolds exist

Do they exist? If so, can we find them? If so can use them?

Existence of Trivializing Maps

Type of action: action S which is finite except at infinity

When with **NO** sign problems

Fact: Trivialiaing maps exist. $(\mathbb{R}^N \to \mathbb{R}^N)$

Conjecture:

Trivializing maps are analytic functions of the parameters of the action.

Example: Scalar field theory $S(y; M, \Lambda) = y_i M_{ij} y_j + \lambda \Lambda_i y_i^4$ **The map**:

$$\frac{dy(x)}{dx} e^{-S(y(x))} = \mathcal{N}e^{-x^2/2}$$

Perturbative map in weak λ :

$$y_i(x; M, \Lambda) = x_i - \lambda \left(\sum_j \frac{1}{2} M_{ij}^{-1} \Lambda_j x_j^3 + \frac{3}{4} M_{ij}^{-1} M_{jj}^{-1} \Lambda_j x_j \right)$$
(analytic in M, Λ except at $M = 0$)

Perturbative map in strong λ is analytic in M, Λ except at $\Lambda = 0$

Existence of Perfect Manifolds⁴

Conjecture:

Trivializing maps are analytic functions of the parameters of the action, when $M, \Lambda \in \mathcal{R}$.

Conjecture implies:

Perfect manifolds exists for $M, \Lambda \in C$

Caveat:

When manifolds intersect with singularity of S, Trivializing maps are not guaranteed to exist

For actions without singularities at finite field values, perfect manifolds exist with $M, \Lambda \in C$

Great, but can we find them? If so can use them?

⁴S. Lawrence and YY, arXiv:2101.05755

Example with ϕ^4 Scalar Field Theory

To estimate $\langle \mathcal{O} \rangle_S$ for the action *S*, let us define $S' = S + \alpha \mathcal{O}$.

A perturbing map $\vec{y}(x)$ from $S'(x + \alpha \vec{y}(x))$ to S(x) satisfies

$$abla \cdot \vec{y}(x) - \vec{y}(x) \cdot \nabla S(x) - \mathcal{O}(x) + \langle \mathcal{O} \rangle_S = 0$$

Solve the ODE for $\vec{y}(x)$ and $\langle \mathcal{O} \rangle_{S}$ via machine learning:

 $C(w, \langle \mathcal{O} \rangle_{S}) = \sum_{x} |\nabla \cdot \vec{y}_{w}(x) - \vec{y}_{w}(x) \cdot \nabla S(x) - \mathcal{O}(x) + \langle \mathcal{O} \rangle_{S}|^{2}$

13 / 26

Anywhere without Sign Problems...?

Quantum Computing - No Sign Problem

Quantum computer can simulate quantum system naturally

 $\langle \phi(\beta) | [T_{01}(t, \vec{x}), T_{01}(0, 0)] | \phi(\beta) \rangle \ (\vec{x} \to \vec{k}) \ e^{-\frac{\eta k^2}{\epsilon}t}$

Operator $T_{\mu\nu}$ for Gauge Theories

Hamiltonian and Action are connected by the Trotterization⁵:

$$\operatorname{Tr}[e^{-i H_{KS} t}] = \int \mathcal{D}[\vec{U}] e^{iS_{W}[U]}$$

We can derive $T_{\mu\nu}$ operators by adding $T_{\mu\nu}$ at $t = t_0$

$$\int \mathcal{D}[\vec{U}] \ e^{i(S_{\mathrm{W}} + \epsilon T_{\mu\nu}\delta(t - t_0))} = \mathrm{Tr}[e^{-iH't}], \text{ with } \hat{H}'(t_0) = H_{\mathcal{KS}} - \epsilon \hat{T}_{\mu\nu}/a_0$$

⁵M. Creutz, Phys.Rev.D 15, 1128

 \hat{T}_{12} for SU(3) LGT - Action to Hamiltonian $T_{12} = \text{Tr}[-F_{10}F_{20} + F_{13}F_{23}]$ (in the continuum)

1. $F_{\mu\nu}$ on a lattice in the action formulation:

$$F_{\mu\nu}(n) \sim A\left(\bigcap_{n} - \bigcap_{n}\right)^{\nu} \downarrow_{\mu\nu}$$

2. Let us add T_{12} at site *n* to the action:

$$S' = S_{W} + \epsilon \left(\operatorname{Tr} \left[-F_{10}(n)F_{20}(n) + F_{13}(n)F_{23}(n) \right] \right)$$

$$\left(\bigcup_{x} - \bigcup_{x} \right) \times \left(\bigcup_{y} - \bigcup_{y} \right)$$

The relation between S' and H' tells us: $H' = H_{KS} + \epsilon \left(\frac{g^2}{a^4 a_0} \hat{\pi}_1^a \hat{\pi}_2^a + \frac{1}{4g^2 a^4 a_0} (\hat{P}_{13} - \hat{P}_{13}^{\dagger}) (\hat{P}_{23} - \hat{P}_{23}^{\dagger}) \right) (n)$

3. Read off \hat{T}_{12}

$$\hat{T}_{12} = -\frac{g^2}{a^4} \operatorname{Tr} \left[\hat{\pi}_1(n) \hat{\pi}_2(n) \right] - \frac{1}{4g^2 a^4} \operatorname{Tr} \left[(\hat{P}_{13} - \hat{P}_{13}^{\dagger}) (\hat{P}_{23} - \hat{P}_{23}^{\dagger}) \right] (n)$$

$T_{\mu\nu}$ operators up to $O(a^2)^6$ All operators needed for $T_{\mu\nu} = \frac{1}{4} \delta_{\mu\nu} \operatorname{Tr}[F_{\rho\sigma}F_{\rho\sigma}] - \operatorname{Tr}[F_{\mu\alpha}F_{\nu\alpha}]$

Operator	<i>O</i> (<i>a</i>)	<i>O</i> (<i>a</i> ²)
$\operatorname{Tr} F_{0i}F_{0i}(n)$	$rac{g^2}{a^4} \operatorname{Tr} \left[\pi_{n,i}^2 \right]$	$\sum\nolimits_{x=0,1} \tfrac{g^2}{2s^4} \operatorname{Tr} \left[\pi_{n-x\hat{i},i}^2 \right]$
$\operatorname{Tr} F_{0i}F_{0j}(n)$	$rac{g^2}{a^4} \operatorname{Tr}\left[\pi_{n,i}\pi_{n,j} ight]$	$ \begin{array}{l} \frac{g^2}{4s^4} \left(\operatorname{Tr}\left[\hat{\pi}_{n,i} \hat{\pi}_{n,j} \right] + \operatorname{Tr}\left[\hat{\pi}_{n,i} \hat{U}^{\dagger}_{n-\hat{j},j} \hat{\pi}_{n-\hat{j},j} \hat{U}_{n-\hat{j},j} \right] \\ & + \operatorname{Tr}\left[\hat{U}^{\dagger}_{n-\hat{i},i} \hat{\pi}_{n-\hat{i}} \hat{U}_{n-\hat{i},i} \hat{\pi}_{n,j} \right] \\ & + \operatorname{Tr}\left[\hat{U}^{\dagger}_{n-\hat{i},i} \hat{\pi}_{n-\hat{j},i} \hat{U}_{n-\hat{j},i} \hat{U}^{\dagger}_{n-\hat{j},j} \hat{\pi}_{n-\hat{j},j} \hat{U}_{n-\hat{j},j} \right] \right) \end{array} $
$\operatorname{Tr} F_{0j}F_{ij}(n)$	$-rac{1}{a^4} \operatorname{Tr}\left[\hat{\pi}_{n,j} \operatorname{Im} \hat{P}_{ij}(n) ight]$	$-\frac{1}{2a^4}\left(\operatorname{Tr}\left[\hat{\pi}_{n,j}\operatorname{Im}\hat{C}_{ij}(n)\right]+\operatorname{Tr}\left[\hat{U}_{n-\hat{j},j}^{\dagger}\hat{\pi}_{n-\hat{j},j}\hat{U}_{n-\hat{j},j}\operatorname{Im}\hat{C}_{ij}(n)\right]\right)$
$\operatorname{Tr} F_{ij}F_{ij}(n)$	$rac{2}{g^2a^4}$ Re Tr $\left[1-\hat{P}_{ij}(n) ight]$	$\sum_{x=0,1} \sum_{y=0,1} \frac{1}{2g^2 a^4} \operatorname{Re} \operatorname{Tr} \left[1 - \hat{P}_{ij} (n - x\hat{i} - y\hat{j}) \right]$
$\operatorname{Tr} F_{ij}F_{kj}(n)$	$\operatorname{Tr}[\hat{F}_{ij}^{N}(n)\hat{F}_{kj}^{N}(n)]$	${\sf Tr}[\hat{F}^C_{ij}(n)\hat{F}^C_{kj}(n)]$

 $O(a^2)$ operators are important especially in the near term How do we implement them using primitive gates?

⁶T. Cohen, H. Lamm, S. Lawrence, and YY, arXiv:2104.02024

Shear Viscosity of Ising Model⁷

Shear viscosity of Ising model in 2 + 1d via T_{00} correlators:

$$\langle T^{00}T^{00}\rangle(\omega,k) = \frac{k^2(\epsilon+P)}{\omega^2 - c_s^2 k^2 + i\omega k^2 \gamma_s} \text{ with } \gamma_s = \frac{4\eta}{3(\epsilon+P)} + \frac{\zeta}{\epsilon+P}$$

(ϵ : energy density, *P*: pressure, c_s : speed of sound, ζ : bulk viscosity)

Model: $H = -\sum_{i,j} \sigma_z(i) \sigma_z(j) - \mu \sum_i \sigma_x(i)$

Time extent: 100

$$dt = 0.001$$
 for 5 × 3,
 $dt = 0.001$ for 6 × 3,
 $dt = 0.005$ for 7 × 3,
 $\mu = 1.1, \beta = 1$
 $k = \frac{\pi}{L_x}$

⁷work in progress

Taking Limits

Whether classical or quantum, after lattice calculations,

limits need to be taken

AND

Finite volume effects on shear viscosity

For example... Molecule dynamics again:

$$C(k,t) = \langle \vec{u}(\vec{k},t)\vec{u}(\vec{k},0)
angle \sim e^{-rac{\eta k^2}{
ho}t} ~(
ho:\mathrm{mass~density})$$

Finite volume effects exist and are not small for this system

Shear Viscosity of $\mathcal{N}=4$ SYM

 $G^{\mu\nu,\mu\nu}(\omega,k)$: correlator of $T_{\mu\nu}$ in momentum space

To extract viscosity, need $G^{\mu\nu,\mu\nu}(\omega,k)$ for small $(\omega,k)^8$

$$T_{xy}: \ G^{12,12}(\omega, k) = -i\eta\omega + O(\omega^{2}, k^{2})$$

$$\rightarrow \eta = i \lim_{\omega \to 0} \frac{\partial G^{12,12}(\omega, k=0)}{\partial \omega}$$

$$\mathcal{N} = 4 \text{ SYM} \rightarrow G^{12,12}(\omega, k) = -\frac{is}{4\pi}\omega$$

$$T_{tx}: \ G^{01,01}(\omega, k) = \frac{k^{2}\eta}{i\omega - \frac{\eta}{\epsilon + p}k^{2}}$$

$$\mathcal{N} = 4 \text{ SYM}$$

$$\rightarrow G^{01,01}(\omega, k) = \frac{N^{2}\pi T^{3}k^{2}(1+O(\omega, k^{2}))}{8(i\omega - \frac{k^{2}}{4\pi T} + O(\omega^{2}, \omega k^{2}))}$$

$$\text{For } \mathcal{N} = 4 \text{ SYM}, \ \frac{\eta}{s} = \frac{1}{4\pi}$$

⁸G. Policastro et al., Phys.Rev.Lett 87(2001)081601

Shear Viscosity in a Finite-size Box⁹

Finite-size box \rightarrow smallest k may not be zero

⁹T. Cohen, S. Lawrence, and YY, in preparation

Future Work

Thank you!

Thermal State Preparation - Naive Idea¹⁰

Goal: Prepare a state with temperature around crossover **Fact**: High energy physical states are easily prepared **Tool**: Quantum refrigerator

$$E_i > E_1 > E_2 > \cdots > E_N > E_f$$

Start from hot gas of free gluons \rightarrow Lower *E* via "active cooling" \rightarrow thermalize

- Don't need a large heat bath \rightarrow Save qubit costs!
- The number of cycle $\propto \log \left(\frac{E_i}{E_f}\right)$

¹⁰R. Kosloff and A. Levy, Annual Review of Physical Chemistry 65, 365 (2014)