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What is shear viscosity? - Theoretically

Low energy constant in the hydrodynamic description of an underlying theory
The underlying theory of molecule dynamics
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The hydrodynamic description of this system via i (velocity field)

Navier-Stokes Equation: p% +p(d- V)i = p3—Vp+nV2i

(p: mass density, 3: external force, p: pressure)

Shear viscosity 7) is obtained from (7(t), V(t)) by
C(k, t) = (u(k, t)u(k,0)) ~ e~ %t

with u(k,t) = SN, v (t)e k7O
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Shear Viscosity from Molecule Dynamics?

@ Prepare a box (volume L3) of particles in thermal equilibrium
|F(r)| = e~2", repulsive force

@ Measure transverse velocity field i(k, 0)

© Time-evolve the system via molecular dynamics simulation

© Measure ii(k, t) and compute #(k, t)i(k, 0)

2

N - k
C(k, t) = (i(k, t)ii(k,0)) ~ e # ¢ (p: mass density)
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!B.Palmer, Phys.Rev.E 49(1994)359, B.Hess, J.Chem.Phys.116,209(2002)
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Roadmap

/

Goal

Calculation of shear viscosity

- From first principles
- Non-perturbatively

- Sign problem
- Trivializing map

Classical Computer

AN

Quantum Computer
- Operators T,
- Ising model

N

- Molecule Dynamics
- N =4SYM

Finite volume effects

~
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Shear Viscosity of QFT

Non-relativistic gas of particles QCD on a lattice

=

— WU
N
I J
(7, ;) for N particles ;i on each site, Uj on each link
F=m3 Sqcp
measure u measure Top

From Tgy1 correlator:
n(B8)K t

fV dxX ell?)?<¢(ﬂ)’ [TOI(tv)_())’ T01(07 O)] |¢(IB)> ~e o«
(e: energy density)

From Ti; correlator:

n(B) =7 Jydx Jg~ dt (6(B) [Tra(x. 1), T12(0.0)] [4(B))
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Sign Problem
Goal: compute (¢(5)] [Ty (2, X), T (0,0)] [6(5))

Method: Non-perturbative calculation on a lattice

(O(t,%)) = L [ D[y, Ule 50(t, %) ) 77 ﬁ“ L
f .

— > X //Y/ Oiﬁ
The action S is complex — define "quenched distribution" e~ Re>
fD[’l,ZJ,A]87 Rese_ilmSO(t,)_(’) -
I T < SImSO),pes
<0(t,x)> - fD[wJ\]efReSefflmS - e :ImS o Res
[ Dly,Ale—Res

(o) = (e7"IMS) _res ca¥, a<1

Especially the "average sign" is challenging: m
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Trivializing Map?

Some distribution Simple Gaussian distribution
e-S(y) e_X;Z
Map
>
y(x)

<Y
X

Trivializing map:
dy &S0 = o D) =560 _ g prex
dx
Expectation values:
[dy e *0O(y) _ [ dx e~20(y(x))
[ dy e5W) [ dx e=x*/2

2M. Albergo et.el. Phys. Rev. D 100, 034515(2019)
K. A. Nicoli, et.el. Phys. Rev. E 101, 023304(2020)

(0) =
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Complex Trivializing Map

Application to complex actions:

dx Ne /2 = dx d};—(;) e S0 = gy e750)

Re x

Im x
Expectation values:

Map
y(x)

Imy

Jg dx e‘Xz/ZO(y(x)) B fy(R) dy e_s(y)o()/)

Jg dx ex*/2

Contour of integration changes!

fy(R) dy e—SW)

s

y(x)

?
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Constraints on Trivializing Map?

Trivializing maps give the correct (O)

B fR dy efs(}’)(f)(y) _ fy(R) dy e_s(}/)o()/)
B fR dy e=S() B fy(]R) dy e=S()

(0)

when:
@ The induced contour (—) is a continuous manifold

@ The induced contour (—) is in “asymptotically
safe” region

@ Both e=>W) and e=*0O(y) are holomorphic
functions in the region between (—) and (—)

— Cauchy’s integral theorem!

3A. Alexandru et.el., Phys. Rev. D. 98, 034506(2018)
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Trivializing Map and the Generalized Thimble Method
M is of exactly the sort used in the generalized thimble method

- 2
&S eX72

Rey Re x
Imy M Imx
M meets 3 conditions Trivializing map
“Average sign” on the manifold M is
_ _2n
(o) = f dy e=5) fIRdxeX/ _q
f dy e ReS(y) fdxeX

So the manifold M has no sign problems.
Trivializing maps exist <> Perfect manifolds exist

Do they exist? If so, can we find them? If so can use them?
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Existence of Trivializing Maps

Type of action: action S which is finite except at infinity

When with NO sign problems

[Fact: Trivialiaing maps exist. (RV — RN)}

Conjecture:
Trivializing maps are analytic functions of the parameters of the action.

Example: Scalar field theory S(y; M, A) = y; Mj; yj + AN; y?
The map:

d}:{(XX) e_s()/(x)) e Ne_x2/2

Perturbative map in weak \:
yilx; MyA) = x; — A <ZJ% El/\jxﬁ + % El Ell\jxj)
(analytic in M, A except at \/ = 0)

Perturbative map in strong X is analytic in ;A\ except at A =0
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Existence of Perfect Manifolds*

Conjecture:
Trivializing maps are analytic functions of the parameters of the action,
when VA € R.

Conjecture implies:

Im M,N
Perfect manifolds exists for M, A € C No—= ¥p(X)
Re M,A ————
Caveat: 'Y &
When manifolds intersect with singularity of S, *As
Trivializing maps are not guaranteed to exist —Yi(x)

For actions without singularities at finite field values,
perfect manifolds exist with /A € C

Great, but can we find them? If so can use them?

4S. Lawrence and YY, arXiv:2101.05755
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Example with ¢* Scalar Field Theory

To estimate for the action S, let us define S’ =S+ a O.
A perturbing map ¥(x) from S'(x + a y(x)) to S(x) satisfies

V- y(x) = ¥(x) - VS(x) = O(x) + =0
Solve the ODE for ¥(x) and via machine learning:

C(w, (0)5) = 34 IV - Yu(x) = Yu(x) - VS(x) = O(x) + (O) s

1.0 A
0.5
0.8 g
o X 0.0 4
= S —— Exact, Real
0.6 4 3 05 ° Exact, Imag
o Learned, Real
®  Learned, Imag
04 1 T T T 101 T T T T
0 2 4 2 4 6 8 10
A T
0+1d, m=0.5, Ng =10, Ny =0 0+1d, m=05X=05Ng =2
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Anywhere without Sign Problems...?
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Quantum Computing - No Sign Problem

o ©
°
S
.//. ,\ .\« .7 b ° LI ) .0 o o
.\ e Y
(F,v) (F,v) (F, V)

C(k,t) = (G(k, t)i(k,0)) ~ e »

Quantum computer can simulate quantum system naturally

Represent Hilbert space of quantum system ‘

o) e evation | -
0) Prepare Time evolution Measurement |
0 o(B) et T (t,X)

nk?

((B)| [ Tor(t, %), Tor(0,0)]|$(B)) (X — k) e~ "<*
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Operator T, for Gauge Theories

Hamiltonian:

n Uxm) = TTx(n)

-

y

™ 4

L

~ 2 ~
HKS = % an ”T/'(n)Q - ﬁ Zn,i<j Re TI’[PU(H)]

Action:

P::

tI y PO.Z
X
Sw= g2 Y ReTr[L = Po(n, 1)]
=2 Yonticy ReTr[L = Py(n. t)]

Hamiltonian and Action are connected by the Trotterization®:

Tr[e="Hist] = [ D[] eSWIU]

We can derive T, operators by adding T, at t =ty

[ DIU] e/SwHeTuwd(t=0)) — Tr[e="H't] with H'(t) = Hks — € Ty /a0

5M. Creutz, Phys.Rev.D 15, 1128
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T1o for SU(3) LGT - Action to Hamiltonian

Ti2 = Tr[—FioFa0 + F13F23] (in the continuum)

1. F,, on a lattice in the action formulation:

— . v
Fvr ~ A (|CH — 1) T_,,,

n n

2. Let us add Ty at site n to the action:
5 Sw—i—e(Tr[ FlO( )FQO +F13 F23 )])

t
([C]-]0) ' ’
X

The relation between S’ and H' tells us:
H' = His + ¢ (25,7173 + gz (Pra — Ply)(Pos — Ply)) (n)
3. Read off T12
Tio = =& Tr [f1(n)a(n)] — 55 Tr [(Prs — P3)(Pas — PLy)| ()

17/26
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T,., operators up to O(a?)°

All operators needed for T, = %@w Tr[FpoFpo] — Tr[FuaFual
Operator O(a) 0(a%)
2 2
Tr Foi Foi(n) 57 Tr [775,/] szo,l 2g7 Tr [ﬂ'ifﬁ,/}
2 . .
. f?(Tr[ﬂ',,,ﬂ,,j]+Tr[ﬂ' U_” n—ijUnz ”:I
Tr Foj Foj(n) i—4 Tr [7n,imn,j] +Tr [UT i Up_z it
SR UV A
TrFFy(n) | =% Tr [asim Py(m)] | =34 (T [Rayim Ei(n)] +Tr [ojfjwjﬁn,j,jon,j,j m &(n)])
Tr FjiFi(n) g%a‘, Re Tr [1 - f’,j(n)] szo‘l Zy:(},l %%34 Re Tr [1 — Py(n—xi — y])]
Tr FijFig(n) Te[FJ () (n)] Tr[F (m)Fg ()]

O(a?) operators are important especially in the near term
How do we implement them using primitive gates?

5T. Cohen, H. Lamm, S. Lawrence, and YY, arXiv:2104.02024
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Shear Viscosity of Ising Model”
Shear viscosity of Ising model in 2 4 1d via Tpg correlators:

k%(e+P
(TOTO)w, k) = gy, With 75 = sy + 5

(e: energy density, P: pressure, cs: speed of sound, ¢: bulk viscosity)

Model: H=—=3;0:()o:() = 1 32; 0x(i)

5 by 3 lattice
0.0001 P 6by3 Ian!ce
‘ 7 by 3 lattice
5x10° ‘ Time extent: 100
o ‘ dt = 0.001 for 5 x 3,
§o 0 e ‘ <P dt = 0.001 for 6 x 3,
- dt = 0.005 for 7 x 3,
-5x107° \ M= 1.1, ﬁ =1
| .
-0.0001 ‘
V
4 5 6 7 8 9 10 n
)

"work in progress
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Taking Limits

Whether classical or quantum, after lattice calculations,

limits need to be taken

AND
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Finite volume effects on shear viscosity

For example... Molecule dynamics again:

k>

C(k,t) = (d(k, t)i(k,0)) ~ e  # " (p: mass density)

10!
> 0.40
- — L=3
10 L—a 035
— L=5
— L=6 - 030
p——— g
L=8 0.25
— L=9
L=10 0.20 ’ }
10-¢
0.0 01 0.2 03 0.4 0. 015
K2t 2 3 4 5 6 7 8 9 10
(2n)?

L

Finite volume effects exist and are not small for this system
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Shear Viscosity of N' =4 SYM

GH#(w, k): correlator of T, in momentum space

To extract viscosity, need GH**(w, k) for small (w, k)2

Ty GY12(w, k) = —inw + O(w?, k?)

it 9G?12(w, k=0 _
—>n:/||mw_>o+ N =4 sym
Stroung coupling
N =4 SYM — G12’12(w, k) — _L{_sﬂw & large N

. (01,01 _ K
Ttx- G (wa k) - ,'(_L,_:’E17 k2 .
“+p Classical

N e 4 SYM gravity
— GOLOL(y k) = N7 T3k*(1+O(w, k%)) in AdS
’ 8(jw— 7o +0(w? wk?))

[ForN:45Y|v|, gzﬁ]J

8G. Policastro et al., Phys.Rev.Lett 87(2001)081601
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Shear Viscosity in a Finite-size Box’

Finite-size box — smallest kK may not be zero

e : :
G i) =5 (_ﬁw — gk + é:::s(i)zwkz + O(w27w2k2))
n_1_ 0@ (ox
“i=m gz (k~ 1)
.
s
GOL01(y, k) = Nx T K2+ O(wk?,k*)
(UJ, )_ 8 0 (1+ log 2 k2)—£ I—L)
q it 1672 T2 T 8272
1— 1 _
_ 1 87212
75 4r oy ) (For T = 150 Mev ~
e | 172 Correlotor
\ 0.08 — 77‘”“"!(9 volume
2006
0.04
L 0.037 2 L(?m‘ 5 5 7J

9T. Cohen, S. Lawrence, and YY, in preparation
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Future Work

Goal
Calculation of shear viscosity

- From first principles
- Non-perturbatively
p

Quantum Computer

- Concrete algorithm for
quantum refrigerator

- Ising model viscosity

- What about SuU(3)?

Classical Computer

Search manifolds via

- Machine learning

- Any clever algorithm?
4

\ Finite volume effects /
- More QCD-like model?

- Efficient algorithms?

J
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Thank you!
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Thermal State Preparation - Naive Idea'®

Goal: Prepare a state with temperature around crossover
Fact: High energy physical states are easily prepared
Tool: Quantum refrigerator

Set Pump to ground state

System ‘_ Pump
Hsys ‘— Hpump
System u Pump
Hsys m Hpump

Time evolve with H = Hsys + H o501 Hpump
System L 4' Pump <‘\:J
Hsys r 1 Hpump

Ei>E>E>--->Ey> Ef
Start from hot gas of free gluons — Lower E via "active cooling" — thermalize

@ Don't need a large heat bath — Save qubit costs!

@ The number of cycle « log (%)

R, Kosloff and A. Levy, Annual Review of Physical Chemistry 65, 365 (2014) )
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