Discovering the New Physics of (g–2)µ at Colliders

FNAL Online Theory Seminar 19/Aug/2021

Rodolfo Capdevilla

Perimeter Institute for Theoretical Physics and University of Toronto

RC, David Curtin, Yonatan Kahn, Gordan Krnjaic, arXiv:2006.16277 arXiv:2101.10334 arXiv:2108.?????

Outline

- 1. Muon Anomalous Magnetic Moment
- 2. BSM Physics of (g-2)µ at Muon Colliders (MuC)
- 3. Singlet Scenarios: Hadron colliders + EW Precision
- 4. Electroweak Scenarios: Indirect signals at a MuC
- 5. Summary

(An epic trip!)

(An epic trip!)

Rodolfo Capdevilla, Perimeter Institute and University of Toronto

Outline

1. Muon Anomalous Magnetic Moment

- 2. BSM Physics of (g-2)µ at Muon Colliders (MuC)
- 3. Singlet Scenarios: Hadron colliders + EW Precision
- 4. Electroweak Scenarios: Indirect signals at a MuC
- 5. Summary

• Magnetic moment (macroscopic)

• Possible to define for a fundamental particle

Relativistic quantum mechanics prediction

$$i\hbar\frac{\partial\phi}{\partial t} = \begin{bmatrix} \frac{p^2}{2m} - \frac{\mu_B}{\hbar}(\vec{L} + 2\vec{S}) \cdot \vec{B} \end{bmatrix}\phi$$
$$\boxed{g = 2}$$

Anomalous Magnetic Moment

$$a = \frac{g-2}{2}$$

• State of affairs

T. Aoyama et al., Phys. Rept. 887 (2020) 1-166

Muon g – 2 Theory Initiative

Contribution	Value $\times 10^{11}$
Experiment (E821)	116 592 089(63)
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, $udsc$)	— — – 7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, uds)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	279(76)

• State of affairs

Contribution	Value $\times 10^{11}$
Experiment (E821)	116 592 089(63)
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, $udsc$)	— — – 7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, uds)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	279(76)
•	

T. Aoyama et al., Phys. Rept. 887 (2020) 1-166

Muon g – 2 Theory Initiative

"It now appears conclusive that the HLbL contribution cannot explain the current tension between theory and experiment for the muon g-2"

$$106.8(14.7)~(\sim 14\%)$$

En-Hung Chao et al., e-Print: 2104.02632

 $\Delta a_{\mu} \sim 3.7 \,\sigma$

• State of affairs

• State of affairs

$$a_{\mu}(\exp) = 116\,592\,061(41) \times 10^{-11}$$

Muon g-2 Collaboration (BNL), Phys. Rev. D 73 (2006) 072003

Muon g-2 Collaboration (FNAL), Phys. Rev. Lett. 126 (2021) 14, 141801

$$a_{\mu}(\text{the}) = 116\,591\,810(43) \times 10^{-11}$$

Muon g-2 Theory Initiative, Phys. Rept. 887 (2020) 1-166

• State of affairs

BMW collaboration, Nature 593 (2021) 7857, 51-55

$$a_{\mu}(\exp) = 116\,592\,061(41) \times 10^{-11}$$

Muon g-2 Collaboration (BNL), Phys. Rev. D 73 (2006) 072003

Muon g-2 Collaboration (FNAL), Phys. Rev. Lett. 126 (2021) 14, 141801

$$a_{\mu}(\text{the}) = 116\,591\,810(43) \times 10^{-11}$$

Muon g-2 Theory Initiative, Phys. Rept. 887 (2020) 1-166

What if?

Outline

1. Muon Anomalous Magnetic Moment

2. BSM Physics of (g-2)µ at Muon Colliders (MuC)

- 3. Singlet Scenarios: Hadron colliders + EW Precision
- 4. Electroweak Scenarios: Indirect signals at a MuC
- 5. Summary

Ingredients for (g-2)µ

• Singlet and EW Scenarios

Capdevilla, Curtin, Kahn, Krnjaic, ArXiv:2006.16277 ArXiv:2101.10334

• Singlet and EW Scenarios

Particularly relevant for a Muon Collider:

- For singlet scenarios, can couple to singlet via same coupling that makes g-2
- For EW scenarios, can reach high energies and discover "all" charged particles with masses < Ecm/2

"Singlet scenarios" (Introduce only SM singlets into the loop)

- Simple Models
- Phenomenology can be tricky

Produce singlets - Muon coupling

"Electroweak scenarios" (Introduce at least one new charged state)

- Complicated Models
- Easy Phenomenology

Focus lightest charged state!

Cooling - Proof of concept!

MICE Collaboration, PoS EPS-HEP2019 (2020) 025 MICE Collaboration, Nature 578 (2020) 7793, 53-59 MAP and MICE Collaborations, EPJ Web Conf. 95 (2015) 03019

• Singlet scenarios

• Singlet scenarios

22

Capdevilla, Curtin, Kahn, Krnjaic, ArXiv:2006.16277 ArXiv:2101.10334

Is it possible to discover all BSM solutions to the (g–2)µ anomaly?

"Electroweak scenarios"

m_F 2. BSM Physics of (g-2)µ at MuC F^{c} F Φ_B \otimes If only perturbative μ^{c} Φ_A μ_L unitarity Unitarity only Heaviest states at Mass (TeV) and charge of lightest BSM state $\sim 100 \,\mathrm{TeV}$ SSF model, Unitarity constraint 20 $(R, R^A, R^B) = (1_{-2}, 2_{3/2}, 1_1), N_{\text{BSM}} = 1$ 1000 $\Delta a_{\mu} = 2.8 \times 10^{-9}$ 40 500 66 - EW representations up to 3 m_B (TeV) ermion - Models with charged 100 scalars up to Q = 250 - BSM number of Q = 130 flavours up to 10 Scalar $N_{\rm BSM}$ 10 10 Maximal couplings at 5 10 50 100 500 1000 the perturbativity limit 5 m_A (TeV)

2. BSM Physics of (g-2)µ at MuC

 m_F

Rodolfo Capdevilla, Perimeter Institute and University of Toronto

Outline

- 1. Muon Anomalous Magnetic Moment
- 2. BSM Physics of (g-2)µ at Muon Colliders (MuC)
- 3. Singlet Scenarios: Hadron colliders + EW Precision
- 4. Electroweak Scenarios: Indirect signals at a MuC
- 5. Summary

 $g_V(\mu_L^{\dagger}\bar{\sigma}^{\nu}\mu_L + \mu^c \sigma^{\nu}\mu^{c\dagger})V_{\nu}$

Vector Singlets

Scalar Singlets

Rodolfo Capdevilla, Perimeter Institute and University of Toronto

Rodolfo Capdevilla, Perimeter Institute and University of Toronto

Scalar Singlets

$$g_V(\mu_L^{\dagger}\bar{\sigma}^{\nu}\mu_L + \mu^c \sigma^{\nu}\mu^{c\dagger})V_{\nu}$$

Vector Singlets

Rodolfo Capdevilla, Perimeter Institute and University of Toronto

Scalar Singlets

$$\mathcal{L}_{\chi} \supset -y_1 L H^{\dagger} \chi^c - y_2 \mu^c \chi S$$
$$\mathcal{L} \supset -y_1 L \Psi^c S - y_2 \mu^c H^{\dagger} \Psi$$
$$\mathcal{L} \supset -y L \Phi^{\dagger} \mu^c - \kappa S H^{\dagger} \Phi$$

3. Singlets: Hadron colliders + EW Precision

 $g_S S \mu_L \mu^c$

Scalar Singlets

$$g_V(\mu_L^{\dagger}\bar{\sigma}^{\nu}\mu_L + \mu^c \sigma^{\nu}\mu^{c\dagger})V_{\nu}$$

$$C_{\chi} \supset -y_1 L H^{\dagger} \chi^c - y_2 \mu^c \chi S$$

$$Mixing!$$

$$R_{\mu e} = \frac{\Gamma(Z \to \mu \mu)}{\Gamma(Z \to ee)} \longrightarrow \delta R_{\mu e}$$

$$\delta R_{\mu e} \propto \frac{y_1^2 v_h^2}{M^2}$$

$$\delta R_{\mu e} \propto \frac{g_V^2 m_L^2}{m_V^2} C_{\text{loop}}$$

3. Singlets: Hadron colliders + EW Precision

Scalar Singlets

Rodolfo Capdevilla, Perimeter Institute and University of Toronto

Vector Singlets

Outline

- 1. Muon Anomalous Magnetic Moment
- 2. BSM Physics of (g-2)µ at Muon Colliders (MuC)
- 3. Singlet Scenarios: Hadron colliders + EW Precision

4. Electroweak Scenarios: Indirect signals at a MuC

5. Summary

25

30

20

15

10

 m_A (TeV)

5

 $(R, R^A, R^B) = (1_{-2}, 2_{3/2}, 1_1), N_{BSM} = 1$ $\Delta a_{\mu} = 2.8 \times 10^{-9}$ 40 = -2ermion 0=1 Scalar 100 500 1000 50 m_A (TeV) Unitarity Naturalness

SSF model, Unitarity constraint

Heaviest states at $\sim 10 \,\mathrm{TeV}$

MFV

Buttazzo and Paradisi, ArXiv:2012.02769

$$\mathcal{L} = \frac{C_{eB}^{\ell}}{\Lambda^2} \left(\bar{\ell}_L \sigma^{\mu\nu} e_R \right) HB_{\mu\nu} + \frac{C_{eW}^{\ell}}{\Lambda^2} \left(\bar{\ell}_L \sigma^{\mu\nu} e_R \right) \tau^I HW_{\mu\nu}^I$$
$$\Delta a_{\ell} \simeq \frac{4m_{\ell}v}{e\sqrt{2}\Lambda^2} \left(C_{e\gamma}^{\ell} - \frac{3\alpha}{2\pi} \frac{c_W^2 - s_W^2}{s_W c_W} C_{eZ}^{\ell} \log \frac{\Lambda}{m_Z} \right)$$
$$\text{Fixed by the (g-2)}\mu$$
measurement!
$$\frac{d\sigma_{\mu\mu \to h\gamma}}{d\cos\theta} = \frac{|C_{e\gamma}^{\mu}(\Lambda)|^2}{\Lambda^4} \frac{s}{64\pi} (1 - \cos^2\theta)$$

a 30 TeV collider would be able to reach a sensitivity to the electromagnetic dipole operator comparable to the present value of $\Delta a \mu$

"Electroweak scenarios"

The LR piece maps into the dipole operator!

$$\mathcal{M}_{LR} \leftrightarrow \mathcal{O}_{ ext{dipole}}$$

"Electroweak scenarios"

Rodolfo Capdevilla, Perimeter Institute and University of Toronto

"Electroweak scenarios"

Costantini, DeLillo, Maltoni, Mantani, Mattelaer, Ruizb, Zhaob, arXiv:2005.10289

	σ [fb]	$\sqrt{s} = 1$ TeV	$\sqrt{s} = 3$ TeV
	$t\bar{t}$	$1.0 \cdot 10^{-1}$	$1.1 \cdot 10^{0}$
	$t\bar{t}Z$	$1.2 \cdot 10^{-4}$	$6.7 \cdot 10^{-3}$
	$t\bar{t}H$	$5.3 \cdot 10^{-5}$	$2.8 \cdot 10^{-3}$
	Н	$1.5 \cdot 10^{1}$	$3.8 \cdot 10^1$
<	HH	$5.0 \cdot 10^{-3}$	$7.3 \cdot 10^{-2}$
	HHH	$3.6 \cdot 10^{-7}$	$3.1 \cdot 10^{-5}$
	HWW	$3.5 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$
	HZZ	$2.5 \cdot 10^{-5}$	$4.9 \cdot 10^{-4}$
	WW	$2.2 \cdot 10^{1}$	$1.4 \cdot 10^2$
<	ZZ	$1.2 \cdot 10^{-1}$	$4.0 \cdot 10^{-1}$

Can a 30 TeV muon collider produce both indirect and direct signals from the BSM physics of $(g-2)\mu$?

 m_A (TeV)

Outline

- 1. Muon Anomalous Magnetic Moment
- 2. BSM Physics of (g-2)µ at Muon Colliders (MuC)
- 3. Singlet Scenarios: Hadron colliders + EW Precision
- 4. Electroweak Scenarios: Indirect signals at a MuC

5. Summary

Summary

- Measurements of the anomalous magnetic moment of fundamental particles are important laboratories for high precision tests of the SM. The most perverse BSM scenarios point at a scale of M ~100 TeV.
- A muon collider is in a privileged position: It collides the particles of the anomaly and it can reach high COM energies. A **30 TeV muon collider** is guaranteed to detect deviations in H+gamma from the BSM physics of (g-2)μ.
- 3. A combination of **hadron colliders** and **precision EW measurements** can probe the parameter space for (g-2)μ in the context of **Singlet Scenarios**. Alternatively, a 3 TeV muon collider can also probe this parameter space.
- 4. A 10 TeV muon collider can probe the **max-mass surface** in the parameter space of the Electroweak Scenarios via HH production. (Is a 30 TeV muon collider guaranteed to produce both indirect and direct signals from the BSM physics of $(g-2)\mu$?)

Thanks!

Rodolfo Capdevilla, Perimeter Institute and University of Toronto