The Conformal Frontier

David Poland

Yale

July 29, 2021

Fermilab Theory Seminar

Phase Diagram for Fluids

What happens at critical points?

David Poland The Conformal Frontier

Critical Opalescence

As one heats the fluid (here Ethane) and approaches the critical point, it becomes milky and light cannot pass through.

Correlation Length

Physically, what happens is that fluctuations of the fluid density occur over longer and longer distances, measured by the *correlation length* ξ:

$$\langle \delta \rho(x) \delta \rho(0) \rangle \sim \begin{cases} e^{-|x|/\xi} & |x| \gg \xi \\ \frac{1}{|x|^{1+\eta}} & |x| \ll \xi \end{cases}$$

Near the critical point (at fixed P = P_c), it diverges as ξ ~ (T - T_c)^{-ν}₊, and the leading behavior is captured by the critical exponents η and ν.

Physically, what happens is that fluctuations of the fluid density occur over longer and longer distances, measured by the *correlation length* ξ:

$$\langle \delta \rho(x) \delta \rho(0) \rangle \sim \begin{cases} e^{-|x|/\xi} & |x| \gg \xi \\ \frac{1}{|x|^{1+\eta}} & |x| \ll \xi \end{cases}$$

Near the critical point (at fixed P = P_c), it diverges as ξ ~ (T - T_c)^{-ν}₊, and the leading behavior is captured by the critical exponents η and ν.

Universality:

In a wide variety of fluids, fluid mixtures, uniaxial magnets, and (2+1)D quantum critical points one can find the same exponents $\nu \sim .63, \eta \sim .04!!$

 This group contains translations, rotations, rescalings, and special conformal transformations (angle-preserving twists).

 Conformal symmetry allows us to organize fields/local operators according to their behavior under rescalings, rotations, and SCTs

$$\mathcal{O}(\lambda x) = \lambda^{-\Delta} \mathcal{O}(x)$$

• The scaling dimensions Δ are directly related to the critical exponents:

$$\Delta_{\sigma} = \frac{D-2}{2} + \eta/2$$
$$\Delta_{\epsilon} = D - 1/\nu$$
$$\vdots$$

and the number of relevant operators ($\Delta < D$) allowed by symmetries controls how many parameters need to be tuned.

The conformal field theory describing liquid-vapor critical points (and uniaxial magnets) is often called the critical 3D Ising model, most simply described using a single scalar charged under a Z₂ symmetry (σ → −σ):

$$\mathcal{L}_{\mathsf{lsing}} \sim (\partial \sigma)^2 + m^2 \sigma^2 + \lambda \sigma^4 + \dots$$

At the critical value of m^2/λ^2 , the IR fixed point is strongly-coupled and we can't use perturbation theory, so we must try other methods The conformal bootstrap asks if we can use:

- 1. Conformal Symmetry: SO(D,2) or SO(D+1,1)
- 2. Crossing Symmetry
- 3. Unitarity or Reflection Positivity

to classify and solve conformal field theories.

The conformal bootstrap asks if we can use:

- 1. Conformal Symmetry: SO(D,2) or SO(D+1,1)
- 2. Crossing Symmetry
- 3. Unitarity or Reflection Positivity

to classify and solve conformal field theories.

- ▶ Beautiful success story in 2D → $\{\Delta_{\sigma}, \Delta_{\epsilon}\} = \{\frac{1}{8}, 1\}$ in 2D Ising [Ferrara, Gatto, Grillo '73; Polyakov '74; Belavin, Polyakov, Zamolodchikov '83]
- Exciting progress in D > 2 starting in 2008 [Rattazzi, Rychkov, Tonni, Vichi '08; ...]

Can probe spectrum by expanding 4-point functions in conformal blocks:

$$\langle \sigma(x_1)\sigma(x_2)\sigma(x_3)\sigma(x_4)\rangle = \sum_{\Delta,\ell} \lambda_{\sigma\sigma\mathcal{O}}^2 g_{\Delta,\ell}(x_1,x_2,x_3,x_4)$$

- ► Blocks $g_{\Delta,\ell}(x_1, x_2, x_3, x_4) = \frac{g_{\Delta,\ell}(z,\overline{z})}{x_{12}^{2\Delta\sigma} x_{34}^{2\Delta\sigma}}$ known special functions giving the contribution of primary $\mathcal{O} \in \sigma \times \sigma$ with dimension Δ and spin ℓ
- Similar to expansion in spherical harmonics Y_{ℓ}^m , but for CFTs

Crossing Symmetry

 $\langle \sigma(x_1)\sigma(x_2)\sigma(x_3)\sigma(x_4) \rangle$ is symmetric under permutations of x_i :

Switching $x_1 \leftrightarrow x_3$ gives the crossing symmetry condition:

 $\sum_{\Delta,\ell} \lambda_{\sigma\sigma\mathcal{O}}^2 \left[g_{\Delta,\ell}(x_1, x_2, x_3, x_4) - g_{\Delta,\ell}(x_3, x_2, x_1, x_4) \right] = 0$

▶ Unknowns are scaling dimensions and coefficients: $\{\Delta, \lambda^2_{\sigma\sigma\mathcal{O}}\}$, with lower bounds $\lambda^2_{\sigma\sigma\mathcal{O}} \ge 0$ and $\Delta \ge \ell + D - 2 - \delta_{\ell,0} \frac{(D-2)}{2}$ from unitarity.

Numerical Approach

• Make some assumption on $\{\Delta, \lambda_{ijk}\}$, search for functional $\alpha = \left(\sum_{m+n \leq \Lambda} \alpha_{mn} \partial_z^m \partial_{\overline{z}}^n \Big|_{1/2, 1/2}\right) \text{ implying } 0 = \sum(\text{positive})$

Numerical Approach

• Make some assumption on $\{\Delta, \lambda_{ijk}\}$, search for functional $\alpha = \left(\sum_{m+n \leq \Lambda} \alpha_{mn} \partial_z^m \partial_{\overline{z}}^n \Big|_{1/2, 1/2}\right) \text{ implying } 0 = \sum(\text{positive})$

Find them by solving semidefinite programs: SDPB 2.0 https://github.com/davidsd/sdpb [Simmons-Duffin '15; Landry, Simmons-Duffin '19]

Bootstrap software repository: http://gitlab.com/bootstrapcollaboration

3D Dimension Bounds

[El-Showk, Paulos, DP, Rychkov, Simmons-Duffin, Vichi, '12; '14]

• Upper bound on first \mathbb{Z}_2 -even scalar in $\sigma \times \sigma \sim \mathbb{1} + \epsilon + \dots$ from $\langle \sigma \sigma \sigma \sigma \rangle$

that σ and ϵ are the only relevant ($\Delta < 3$) operators

Mixed Correlator Islands

[Kos, DP, Simmons-Duffin, Vichi '16]

- ▶ Best bounds: perform "OPE scan" over ratio $r \equiv \lambda_{\epsilon\epsilon\epsilon} / \lambda_{\sigma\sigma\epsilon} \rightarrow 3d$ island
- Excludes degenerate exchanged operators at same $\Delta_{\sigma,\epsilon}$ but different λ 's

3D Ising Island

lncrease search space to $5 \times 253 = 1265$ components ($\Lambda = 43$)

$$\{\Delta_{\sigma}, \Delta_{\epsilon}\} = \{0.518149(1), 1.412625(10)\} \\ \{\lambda_{\sigma\sigma\epsilon}, \lambda_{\epsilon\epsilon\epsilon}\} = \{1.0518537(41), 1.532435(19)\}$$

3D O(N) Models

- \blacktriangleright N=2: Superfluid (λ) transition in ${}^{4}\text{He}$ [Lipa et al, '96; '03]
- ▶ N = 3: Isotropic ferromagnets (Fe, Co, Ni, ...)
- Large N: Solvable in 1/N expansion

3D O(N) Bounds

Large N: matches 1/N expansion, Small N: matches experiment!

O(N) Archipelago from Mixed Correlators

O(2) from $\{\phi_i, s, t_{ij}\}$ System

O(2): Scaling Dimensions

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]

Best result from {φ_i, s, t_{ij}} system (22 crossing equations)
 Resolves 8σ discrepancy between lattice and expt (⁴He)

O(2) from $\{\phi_i, s, t_{ij}\}$ System

O(2) from $\{\phi_i, s, t_{ij}\}$ System

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '19]

► Best results require 6d search over $\{\Delta_{\phi}, \Delta_s, \Delta_t, \frac{\lambda_{sss}}{\lambda_{\phi\phi s}}, \frac{\lambda_{tts}}{\lambda_{\phi\phi s}}, \frac{\lambda_{\phi\phi t}}{\lambda_{\phi\phi s}}\}$

 $\begin{aligned} \{\Delta_{\phi}, \Delta_{s}, \Delta_{t}\} &= \{0.519088(17), 1.51136(18), 1.23629(9)\} \\ \{\frac{\lambda_{sss}}{\lambda_{\phi\phi s}}, \frac{\lambda_{tts}}{\lambda_{\phi\phi s}}, \frac{\lambda_{\phi\phi t}}{\lambda_{\phi\phi s}}\} &= \{1.20926(46), 1.82227(19), 1.765918(64)\} \end{aligned}$

O(3) from $\{\phi_i, s, t_{ij}\}$ System

Black (Bootstrap): [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '20] Green (Monte Carlo): [Hasenbusch, Vicari '11; Hasenbusch '20]

▶ Best O(3) island: {∆_φ, ∆_s, ∆_t} = {0.51894(5), 1.5949(6), 1.2095(2)}
 ▶ Open question: is φ^{{i}φ^jφ^kφ^l} relevant or irrelevant in O(3) model?

O(3) from $\{\phi_i, s, t_{ij}\}$ System

Black (Bootstrap): [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '20] Green (Monte Carlo): [Hasenbusch, Vicari '11; Hasenbusch '20]

- ▶ Using tiptop search, find it is relevant: Δ_φ{i_{φjφkφl}} < 2.99056!
 ▶ Proof that critical Heisenberg magnets are unstable to cubic anisotropy,
- should flow to fixed point with cubic symmetry C_3 rather than O(3)

3D Fermion Models (Gross-Neveu-Yukawa)

Interesting CFTs obtained from fixed points involving N fermions: $\mathcal{L}_{GNY} \sim \frac{g}{2}\sigma \overline{\psi}^i \psi_i + \lambda \sigma^4$ (and variations with multiple scalars)

3D Fermion Models (Gross-Neveu-Yukawa)

Interesting CFTs obtained from fixed points involving N fermions: $\mathcal{L}_{GNY} \sim \frac{g}{2}\sigma \overline{\psi}^i \psi_i + \lambda \sigma^4$ (and variations with multiple scalars)

- ▶ Large N: Solvable in 1/N expansion [Gracey '92; ...]
- N = 8: Possible QCPs in D-wave superconductors or graphene [Vojta, Zhang, Sachdev '00; Herbut '06; Classen, Herbut, Scherer '17]
- N = 4: Spinless fermions on honeycomb lattice, gapless semiconductors [Raghu, Qi, Honerkamp, Zhang '07; Moon, Xu, Kim, Balents '12; Herbut, Janssen '14]

Minimal 3d SCFT (N = 1 Gross-Neveu-Yukawa)

$$V = \frac{g}{2}\sigma\overline{\psi}\psi + \frac{g}{8}\sigma^4 \qquad \leftrightarrow \qquad W = \frac{g}{3}\Sigma^3, \quad \Sigma = \sigma + \theta\psi + \theta^2\epsilon$$

Minimal 3d SCFT (N = 1 Gross-Neveu-Yukawa)

▶ The N = 1 Gross-Neveu-Yukawa model has 3d $\mathcal{N} = 1$ supersymmetry:

$$V = \frac{g}{2}\sigma\overline{\psi}\psi + \frac{g}{8}\sigma^4 \qquad \leftrightarrow \qquad W = \frac{g}{3}\Sigma^3, \quad \Sigma = \sigma + \theta\psi + \theta^2\epsilon$$

May be realizable in (3+1)D topological superconductors, with (2+1)D boundary supporting Majorana fermions [Grover, Sheng, Vishwanath '13]

Supersymmetric Island

[Rong, Su '18; Atanasov, Hillman, DP '18; Atanasov, Hillman, DP, Rong, Su, in progress]

► { σ, ϵ } SUSY system $\rightarrow \Delta_{\sigma} = .5844435(83), \Delta_{\sigma'} = 2.8869(25)$ Compare to ϵ -expansion: $\Delta_{\sigma} = .5837(14)$ [Ihrig, Mihaila, Scherer '18]

(Assumptions: $\mathcal{N} = 1$ SUSY, $\Delta_{\epsilon'} \geq 3, \Delta_{\sigma''} \geq 3$)

Supersymmetric Island

3D O(N) Fermion Bootstrap

[Iliesiu, Kos, DP, Pufu, Simmons-Duffin '17]

- Bootstrap for fermion 4-point functions $\langle \psi_i \psi_j \psi_k \psi_l
 angle$
- Kinks in symmetric tensor bounds match GNY models at large N

3D O(N) Fermion Bootstrap

[Iliesiu, Kos, DP, Pufu, Simmons-Duffin '17]

- ▶ Intricate structure in $\{\Delta_{\psi}, \Delta_{\sigma}\}$ plane assuming σ' irrelevant
- Upper kinks plausibly related to GNY models

3D Fermion Bootstrap

Kink locations showed good agreement with other methods

Our best bootstrap computations for the O(N) GNY models now involve all 4-point functions containing {ψ_i, σ, ε}, giving 38 crossing relations after allowing for all 4-point tensor structures:

$$\sum_{c,\Delta} \vec{\lambda}_{c,\Delta}^T V_{c,\Delta}^i(z,\overline{z}) \vec{\lambda}_{c,\Delta} = 0, \qquad (i = 1, \dots, 38)$$

We impose some gap assumptions motivated by large-N expectations, and search for allowed points in the 6d space:

$$\{\Delta_{\psi}, \Delta_{\sigma}, \Delta_{\epsilon}\}$$
 and $\{\frac{\lambda_{\psi\psi\sigma}}{\lambda_{\epsilon\epsilon\epsilon}}, \frac{\lambda_{\psi\psi\epsilon}}{\lambda_{\epsilon\epsilon\epsilon}}, \frac{\lambda_{\sigma\sigma\epsilon}}{\lambda_{\epsilon\epsilon\epsilon}}\}$
Preliminary Islands for N = 2 Gross-Neveu-Yukawa Model

 $\Delta_{\psi'} > 2, \ \Delta_{\sigma_T} > 2, \ \Delta_{\chi} > 3.5, \ \Delta_{\epsilon'} > 3, \ \Delta_{\sigma'} > \{2.5, \ 3\}$

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

Preliminary islands from $\{\sigma, \psi_i, \epsilon\}$ system at $\Lambda = 15, 23$

Gaps motivated by large N estimates and E.O.M. $\partial \psi \sim \sigma \psi$

Preliminary Islands for N = 2 Gross-Neveu-Yukawa Model

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

 $\begin{array}{ll} \{\Delta_{\psi}, \Delta_{\sigma}, \Delta_{\epsilon}\}_{\mathsf{CB}} &= \{1.0686(3), 0.651(3), 1.73(2)\} & (\Lambda = 15, \Delta_{\sigma'} > 3) \\ \{\eta_{\psi}, \eta_{\sigma}, 1/\nu\}_{\mathsf{CB}} &= \{0.1371(6), 0.302(6), 1.27(2)\} \end{array}$

Preliminary Islands for N = 4 Gross-Neveu-Yukawa Model

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

$$\begin{split} \{\Delta_{\psi}, \Delta_{\sigma}, \Delta_{\epsilon}\}_{\mathsf{CB}} &= \{1.0434(7), 0.76(1), 1.91(6)\} \\ \{\eta_{\psi}, \eta_{\sigma}, 1/\nu\}_{\mathsf{CB}} &= \{0.0869(14), 0.52(2), 1.09(6)\} \end{split}$$

Preliminary Islands for N = 8 Gross-Neveu-Yukawa Model

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

$$\begin{split} \{ \Delta_{\psi}, \Delta_{\sigma}, \Delta_{\epsilon} \}_{\mathsf{CB}} &= \{ 1.02115(25), 0.867(6), 2.01(6) \} \\ \{ \eta_{\psi}, \eta_{\sigma}, 1/\nu \}_{\mathsf{CB}} &= \{ 0.0423(5), 0.735(12), 0.99(6) \} \end{split}$$

Preliminary Islands for N = 8 Gross-Neveu-Yukawa Model

- Many motivations to bootstrap gauge theories: 3d spin liquids and deconfined critical points, 4d physics beyond the SM, dualities, conformal windows ...
- ▶ Some concrete targets are U(1) QED₃ with $N_f^* < N_f < \infty$ fermions, SU(N) QCD₄ with $N_f^* < N_f < \frac{11}{2}N$ fermions, + many more

- On the other hand, bootstrapping theories like QED₃ or QCD₄ is hard because we can only use gauge-invariant operators: \$\overline{\psi}\psi, (\overline{\psi}\psi)^2\$, etc
- ► E.g., hard to use correlation functions of \$\overline{\psi}\$\psi\$ to distinguish U(1) QED₃ from SU(N) QCD₃, or QCD₄ theories with different gauge groups

Bootstrapping $SU(N_f = 4)$ QED₃ from $\overline{\psi}\psi$ Correlators

Singlet (upper), SS (middle), and {SS, AA} (lower) reps of SU(4)
 Funny transition around Δ_{ψψ} ~ 1.35 (close to 2 - ⁶⁴/_{π²N_f} ~ 1.46), but singlet bound is far from expected value ~ 3 - 4

Bootstrapping $SU(N_f)$ QED₃ from $\overline{\psi}\psi$ Correlators

▶ Coincidence with SO(N = N_f² − 1) singlet bounds (here N = 5, 6, 7, 8)
 ▶ Tracking kink to smaller N_f, forces singlet to become relevant around

 $N_f \sim 2.5$, maybe a clue that $N_f = 2$ is outside conformal window?

- Complementary progress was made in [Chester, Pufu '16] by bootstrapping correlators of monopole operators, charged under $J_T^{\mu} = \epsilon^{\mu\nu\rho} F_{\nu\rho}$
- ▶ We know various properties of them at large N_f , e.g. the lightest monopole M_q with q = 1/2 has dimension $\Delta_{M_{1/2}} = 0.265N_f 0.0383$

Large N_f Estimates for $N_f = 4 \text{ QED}_3$

$SO(2)_T$	SU(4)	j	Δ_1	Δ_2	OPE
S	(000) (singlet)	0	$4 + \frac{64(2\pm\sqrt{7})}{3\pi^2 N_f} = \frac{6.510}{3.651}$	5.00^{*}	λ_{rrO} , λ_{MMO}
S	(211) (Adj)	0	$4 + \frac{8(25 \pm \sqrt{2317})}{3\pi^2 N_f} = \frac{8.940}{2.437}$	5.00^{*}	λ_{rrO}
S	(211) (Adj)	1	$2.00 [J_f]$	4.00	λ_{rrO} , λ_{MMO}
S	(220) (AA)	0	$4 - \frac{64}{\pi^2 N_f} = 2.379$	6.00	λ_{rrO} , λ_{MMO}
A	(000) (singlet)	1	$2.00 [J_T]$	3.00	λ_{MMO}
A	(211) (Adj)	0	$2 - \frac{64}{3\pi^2 N_f} = 1.460 \ [r = \overline{\psi}\psi]$	4.00	λ_{MMO}
A	(220) (AA)	1	4.00	6.00	λ_{MMO}
Т	(000) (singlet)	0	4.424	6.156	λ_{MMO}
Т	(211) (Adj)	1	2.692	4.424	λ_{MMO}
Т	(220) (AA)	0	$0.673N_f - 0.194 = 2.498 \ [M_1]$	6.156	λ_{MMO}
V	(110) (M)	0	$0.265N_f - 0.0383 = 1.022 [M_{1/2}]$	3.888	λ_{rMO}
V	(110) (M)	1	2.474	3.060^{*}	λ_{rMO}
V	(200) (S)	0	3.888	4.474^{*}	λ_{rMO}
V	(200) (S)	1	2.474	3.888	λ_{rMO}
V	(321) (AAdj)	0	3.888	5.303	λ_{rMO}
V	(321) (AAdj)	1	3.888	4.924	λ_{rMO}
S	(310) (SA)	1	5.00	6.00	λ_{rrO}
S	(422) (SS)	0	$4 + \frac{64}{3\pi^2 N_f} = 4.540$	6.00	λ_{rrO}

[Chester, Pufu '16; Chester, Iliesiu, Mezei, Pufu '17; Albayrak, Erramilli, Z. Li, DP, Y. Xin]

David Poland The Conformal Frontier

$N_f = 4 \text{ QED}_3$ Bootstrap from $M_{1/2}$ Correlators

- ▶ Bound on Δ_{M_1} nearly saturated by large N_f predictions, can carve out peninsula by isolating M_1
- ▶ However, gap $\Delta_2 = \Delta_{S22} \ge 3$ may be too strong, while other gaps motivated by our knowledge of the spectrum were not used
- We are working to improve the situation by considering mixed $\{\overline{\psi}\psi, M_{1/2}\}$ correlators and using more strategic gap assumptions

$N_f = 4 \text{ QED}_3$ Bootstrap from $\{\overline{\psi}\psi, M_{1/2}\}$ Correlators

arge N_f value then other scaling dimensions live in an island (For progress in scalar QED₃, see also: [He, Rong, Su '21; Manenti, Vichi '21])

$N_f = 12 \ \mathsf{QCD}_4$ Bootstrap from $\overline{\psi}\psi$ Correlators

[Z. Li, DP '20]

Going to 4d with SU(12) × SU(12) symmetry, interesting transition around Δ_{ψψ} ~ 2.78, near estimates γ^{SU(3)}_{ψψ} ~ [.2, .4] from other methods
 Singlet bound is much weaker than physical theory, but could be finding "nearby" solution with leading singlet removed, needs further study...

4d $\overline{\psi}\psi$ Bootstrap at Small N_f

- Singlet bounds for $N = 2N_f^2 = 14, 18, 24, 32, 50$
- \blacktriangleright Kink in singlet bound smoothes out around $N_f\sim 2.5-3$
- Too small to be in conformal window of QCD with fundamental fermions, maybe related to gauge theories with rank 2 representations?

4d $\overline{\psi}\psi$ Bootstrap at Large N_f

[Z. Li, DP '20]

At large N_f , bound on non-singlet scalar shows a sharp jump: bottom at (3, 6) is free fermion theory while top at (3, 8) is a subtraction of free fermion correlators and generalized free correlators [He, Rong, Su '20].

4d $\overline{\psi}\psi$ Bootstrap at Large N_f

[Z. Li, DP '20]

Fit to jump location goes roughly like $\Delta_{\overline{\psi}\psi} \sim 3 - \frac{2.5 \pm 1}{N_f}$ (compare to $\Delta_{\overline{\psi}\psi} = 3 - \frac{22}{25} \frac{n}{N_f}$ for $N_f = \frac{11}{2}N - n$ in Veneziano limit) Where do we go from here?

- Find islands for other interesting CFTs
 - 3d Gross-Neveu-Yukawa Models (XY, Heisenberg)
 - Understand how to isolate gauge theories (3d QED, 4d QCD, ...)
 - Superconformal zoo
- Study larger systems of bootstrap equations
 - Mixed correlators with spinning operators (ψ , J^{μ} , $T^{\mu\nu}$)
 - Improve algorithms and software tools

Improve analytical understanding of bootstrap equations

- Match to Lorentzian Inversion formula, conformal dispersion relations
- Incorporate analytical insights into numerical algorithms

4d $\overline{\psi}\psi$ Bootstrap at $N_f=3$

► Taken at face value, $\Delta_{\overline{\psi}\psi} \sim 1.75$, singlet dimension $\Delta_S \sim 5.5$ and bound on symmetric (TT) representation close to marginal $\Delta_{TT} \sim 4$.

Op.	Parity	O(N)	Δ at large N
ψ_i	+	V	$1 + \frac{4}{3\pi^2 N} + \frac{896}{27\pi^4 N^2} + \frac{c_3}{N^3} + O(1/N^4)$
σ	—	S	$1 - \frac{32}{3\pi^2 N} + \frac{32(304 - 27\pi^2)}{27\pi^4 N^2} + O(\frac{1}{N^3})$
$\epsilon \sim \sigma^2$	+	S	$2 + \frac{32}{3\pi^2 N} - \frac{64(632 + 27\pi^2)}{27\pi^4 N^2} + O(\frac{1}{N^3})$
$(\sigma_T)_{(ij)} \sim \psi_{(i}\psi_{j)}$	-	Т	$2 + \frac{32}{3\pi^2 N} + O(\frac{1}{N^2})$
$\sigma' \sim \sigma^3$	—	S	$3 + \frac{64}{\pi^2 N} + \frac{c_2}{N^2} + O(\frac{1}{N^3})$
$\epsilon' \sim \sigma \partial^2 \sigma$	+	S	$4 - \frac{64}{3\pi^2 N} + \frac{c_2'}{N^2} + O(\frac{1}{N^3})$
$\epsilon''\sim\sigma^4$	+	S	$4 + \frac{448}{3\pi^2 N} + \frac{c_2''}{N^2} + O(\frac{1}{N^2})$
$\psi_i' \sim \sigma^2 \psi_i$	+	V	$3 + \frac{100}{3\pi^2 N} + O(\frac{1}{N^2})$
$\chi_i \sim \sigma^3 \psi_i$	_	V	$4 + \frac{392}{3\pi^2 N} + O(\frac{1}{N^2})$

[Gracey '92; Derkachov, Kivel, Sepanenko, Vasiliev '93; Gracey '93; Iliesiu, Kos, DP, Pufu, Simmons-Duffin, Yacoby '15; Gracey '17, Manashov, Strohmaier '17; Erramilli, Iliesiu, Kravchuk, Liu, DP, Simmons-Duffin, in progress]

blocks_3d Software

General 3d conformal blocks can be expanded recursively in poles:

$$g^{ab}_{\Delta,j,I} \sim \frac{1}{\Delta - \Delta_{j,i}} (\mathcal{L}_{j,i})^a_{a'} (\mathcal{R}_{j,i})^b_{b'} g^{a'b'}_{\Delta'_{j,i},j'_{j,i},I}(z,\overline{z})$$

▶ blocks_3d is efficient, multithreaded, C++ implementation
 [Erramilli, Iliesiu, Kravchuk '19; Erramilli, Iliesiu, Kravchuk, Landry, DP, Simmons-Duffin '20]
 ▶ Practical for external fermions ψ, currents J, stress-tensors T, ...

block ($\Lambda = 25$)	j_{12}	j_{43}	Memory (GB)	Time (hr)	
$\langle \phi \phi \phi \phi \rangle$	0	0	4	0.014	
$\langle \phi \psi \phi \psi \rangle$	$\frac{1}{2}$	$\frac{1}{2}$	7	0.025	
$\langle T\phi\phi\phi\rangle$	2	0	11	0.045	
$\langle \psi \psi \psi \psi \rangle$	1	1	15	0.068	
$\langle T\phi T\phi \rangle$	2	2	36	0.20	
$\langle T\psi T\psi \rangle$	$\frac{5}{2}$	$\frac{5}{2}$	48	0.62	
$\langle TTT\phi \rangle$	4	2	62	0.94	
$\langle TTTT \rangle$	4	4	106	6.9	

(See CFTs4D package for spinning 4d blocks [Cuomo, Karateev, Kravchuk '17])

Mysterious jump?

- Sharp jump in parity-odd scalar bound from $\langle \psi \psi \psi \psi \rangle$ [Iliesiu, Kos, DP, Pufu, Simmons-Duffin '17]
- Seems to persist after removing "fake primary effect"
 ([Karateev, Kravchuk, Serone, Vichi '19]: spin-1 V^μ mimics Δ = 3 scalar)
 Could be evidence for new fermionic CFT w/ no relevant scalars?

3D Fermion Bootstrap

- However, using a nonrigorous approach called the "extremal functional method" gave $\Delta_{\epsilon} = 3 - 1/\nu$ which disagreed with other methods

$\Delta_{\sigma'}$ in Gross-Neveu-Yukawa Models

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

- Our bounds show sensitivity to the scaling dimension of $\sigma' \sim \sigma^3$

To justify Δ_{σ'} > 3, we tried a 2-sided Padé approximation, matching to the large N expansion and known value 2.8869(25) at N = 1

Map of Allowed Scalar Gaps from $\langle T^{\mu\nu}T^{\rho\sigma}T^{\alpha\beta}T^{\gamma\delta}\rangle$

Allowed {scalar, pseudoscalar} gaps from stress tensor 4-point functions

To carry out this 6d search, we employed the following strategy:

- 1. Use SDPB 2.0 [Landry, Simmons-Duffin '19], take advantage of parallelization
- 2. Use hotstarting [Go, Tachikawa '19] to run SDPB for fewer iterations
- 3. Search over $\Delta\mbox{'s carried out using "Delaunay triangulation" search$
- 4. Search over $\lambda \, {\rm 's}$ carried out using "Cutting Surface" algorithm

Delaunay Triangulation Search

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]

 Compute Delaunay triangulation of all tested points, pick midpoint of "biggest" triangle connecting disallowed to allowed

Cutting Surface Algorithm

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19] Each computation excludes a *region* of $\vec{\lambda}$ -space: $\vec{\lambda} \cdot \alpha[F_{\vec{\Delta}}] \cdot \vec{\lambda} > 0$ After $\sim 10 - 30$ tests either find allowed point or rule out entire region

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '20]

▶ tiptop search: map out approximate island at a given gap $\Delta_{t_4} - 3$, shrink bounding box of island by factor of 2, increase gap (via binary search) until it can no longer accommodate smaller box, then iterate

▶ The basic idea is to decompose CFT 4-pt functions $\langle \sigma \sigma \sigma \sigma \rangle \propto g(z, \overline{z})$ in a basis of "principal series" ($\Delta = d/2 + i\alpha$) partial waves

$$g(z,\overline{z}) = \sum_{\ell=0}^{\infty} \int_{d/2-i\infty}^{d/2+i\infty} \frac{d\Delta}{2\pi i} c(\Delta,\ell) g_{\Delta,\ell}(z,\overline{z}) + (\text{non-norm.})$$

where the physical spectrum is encoded in the poles of $c(\Delta, \ell)$.

Lorentzian Inversion Review

▶ Using orthogonality and Lorentzian continuation one "inverts" the formula to obtain $c(\Delta, \ell) = c^t(\Delta, \ell) + (-1)^\ell c^u(\Delta, \ell)$:

$$c^{t}(\Delta,\ell) \quad = \quad \frac{\kappa_{\Delta+\ell}}{4} \int_{0}^{1} dz d\overline{z} \mu(z,\overline{z}) g_{\ell+d-1,\Delta+1-d}(z,\overline{z}) \mathsf{dDisc}\left[g(z,\overline{z})\right]$$

with

$$\begin{split} \mu(z,\overline{z}) &= \left| \frac{z-\overline{z}}{z\overline{z}} \right|^{d-2} \frac{1}{(z\overline{z})^2} \\ \mathrm{dDisc}\left[g(z,\overline{z})\right] &= g(z,\overline{z}) - \frac{1}{2}g(z,\overline{z}e^{2\pi i}) - \frac{1}{2}g(z,\overline{z}e^{-2\pi i}) \end{split}$$

See [Caron-Huot '17; Simmons-Duffin, Stanford, Witten '17; Kravchuk, Simmons-Duffin '18]

- Expanding $g(z,\overline{z}) = \left(\frac{z\overline{z}}{(1-z)(1-\overline{z})}\right)^{\Delta_{\sigma}} \sum \lambda_{\sigma\sigma\mathcal{O}}^2 g_{\Delta,\ell}(1-z,1-\overline{z})$ in a finite number of known contributions, we can compute the integrals
- Matching identity operator reveals poles $\frac{1}{\Delta (2\Delta_{\sigma} + \ell)}$ corresponding to "double-twist" operators: $\sigma \partial_{\mu_1} \dots \partial_{\mu_\ell} \sigma$
- Other exchanged operators give anomalous dimensions (log(z) terms) and correct their OPE coefficients (regular terms)

Approach developed in various works: [Sleight, Taronna '18; Kravchuk, Simmons-Duffin '18; Cardona, Sen '18; Karateev, Kravchuk, Simmons-Duffin '18; Cardona, Guha, Kanumilli, Sen '18; Albayrak, Meltzer, DP '19, '20; Caron-Huot, Gobeil, Zahraee '20]

Anomalous Dimensions from Scalar Exchange

$$\begin{split} \delta\tau_{[\sigma\sigma]_{0}}(\overline{h})_{\mathsf{pert}} &= -\frac{\lambda_{\sigma\sigma\epsilon}^{2}}{1+\delta P_{[\sigma\sigma]_{0}}(\overline{h})} \frac{2\Gamma(\Delta_{\sigma})^{2}\Gamma\left(1+\frac{\Delta_{\epsilon}-2\Delta_{\sigma}}{2}\right)^{2}\Gamma(\Delta_{\epsilon})}{\Gamma\left(1-\frac{\Delta_{\epsilon}-2\Delta_{\sigma}}{2}\right)^{2}\Gamma\left(\frac{\Delta_{\epsilon}}{2}\right)^{2}} \\ &\times \frac{\Gamma(\overline{h}-\Delta_{\sigma}+1)\Gamma\left(\overline{h}-\frac{\Delta_{\epsilon}-2\Delta_{\sigma}}{2}-1\right)}{\Gamma(\overline{h}+\Delta_{\sigma}-1)\Gamma\left(\overline{h}+\frac{\Delta_{\epsilon}-2\Delta_{\sigma}}{2}+1\right)} \\ &\times {}_{4}F_{3}\left(\frac{\frac{\Delta_{\epsilon}-d+2}{2},\frac{\Delta_{\epsilon}-2\Delta_{\sigma}}{2}+1,\frac{\Delta_{\epsilon}-2\Delta_{\sigma}}{2}+1,\frac{\Delta_{\epsilon}}{2}}{(\Delta_{\epsilon}-\frac{d-2}{2})};1\right) \\ \delta\tau_{[\sigma\sigma]_{0}}(\overline{h})_{\mathsf{np}} &= -\frac{\lambda_{\sigma\sigma\epsilon}^{2}}{1+\delta P_{[\phi\phi]_{0}}(\overline{h})} \frac{2\Gamma(\Delta_{\sigma})^{2}\Gamma\left(\Delta_{\epsilon}-\frac{d-2}{2}\right)\Gamma(\Delta_{\epsilon})}{\Gamma\left(1-\frac{\Delta_{\epsilon}-2\Delta_{\sigma}}{2}\right)^{2}\Gamma\left(\frac{\Delta_{\epsilon}-2\Delta_{\sigma}}{2}\right)^{2}\Gamma\left(\frac{\Delta_{\epsilon}}{2}\right)^{3}\Gamma\left(\frac{\Delta_{\epsilon}-d-2}{2}\right)} \\ &\times \frac{\Gamma(\overline{h})^{2}\Gamma(\overline{h}-\Delta_{\sigma}+1)\Gamma\left(\overline{h}+\Delta_{\sigma}-\frac{d}{2}\right)\Gamma\left(\frac{\Delta_{\epsilon}-2\Delta_{\sigma}}{2}-\overline{h}+1\right)}{\Gamma(2\overline{h})\Gamma\left(\overline{h}+\Delta_{\sigma}+\frac{\Delta_{\epsilon}}{2}-\frac{d}{2}\right)} \\ &\times {}_{4}F_{3}\left(\frac{\overline{h},\overline{h},\overline{h}+\Delta_{\sigma}-1,\overline{h}+\Delta_{\sigma}+\frac{\Delta_{\epsilon}}{2}-\frac{d}{2}}{2\overline{h},\overline{h}-\frac{\Delta_{\epsilon}-2\Delta_{\sigma}}{2},\overline{h}+\Delta_{\sigma}+\frac{\Delta_{\epsilon}}{2}-\frac{d}{2}};1\right) \end{split}$$

• E.g., for exchange of a scalar ϵ , integral yields two pieces: $\delta \tau_{[\sigma\sigma]_0}(\overline{h}) = \delta \tau_{[\sigma\sigma]_0}(\overline{h})_{\text{pert}} + \delta \tau_{[\sigma\sigma]_0}(\overline{h})_{\text{np}}$ (here $\overline{h} \equiv \frac{\Delta + \ell}{2}$)

Extremal Functional

[DP, Simmons-Duffin '10; Paulos, El-Showk '12; plot from Paulos, Zan '20]

By going to a boundary of the allowed region (e.g., extremizing λ_{φφs}), we can extract extremal spectra corresponding to the zeros of α · F_{Δ,ℓ}

O(2) from $\{\phi_i, s, t_{ij}\}$ System

operators in the V0p OPE

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '19]

 Can be done in practice using spectrum-extraction Python script (spectrum.py), which uses sdpb output
Extremal spectra can be compared with analytical bootstrap predictions:

- ► Lightcone Bootstrap $(z \to 0)$: \exists trajectories of "double-twist" operators $\sim \sigma \partial^{\ell} \sigma$ with twist asymptoting to $\tau(\ell \to \infty) = 2\Delta_{\sigma} \frac{\#}{\ell} \frac{\#}{\ell^{\Delta_{\epsilon}}} + \dots$ [Fitzpatrick, Kaplan, DP, Simmons-Duffin '12; Komargodski, Zhiboedov '12]
- ► Lorentzian Inversion → All-orders analytic function [Caron-Huot '17]

$$\tau(\ell) \sim \int \mathsf{dDisc}[g] \sim \sum_{\mathcal{O}} {}_4F_3(\ldots)$$

O(2): Comparison with Analytics

[Albayrak, Meltzer, DP '19; J. Liu, Meltzer, DP, Simmons-Duffin '20]

• Excellent agreement between leading-twist extremal spectra and analytics after including exchange of $\{s, t, J^{\mu}, T^{\mu\nu}\}$

Lorentzian Inversion for O(2) Model

In some cases (e.g., charge 1 tower), to get best agreement:

- Add t-channel contributions from tower of leading double-twists
- ▶ Resolve mixing effects (diagonalize "twist Hamiltonian"): $[\phi s]$ and $[\phi t]$

Lorentzian Inversion for O(2) Model

In some cases (e.g., charge 1 tower), to get best agreement:

- Add t-channel contributions from tower of leading double-twists
- ▶ Resolve mixing effects (diagonalize "twist Hamiltonian"): $[\phi s]$ and $[\phi t]$

Regge Intercepts: O(2) (left) and Ising (right)

[J. Liu, Meltzer, DP, Simmons-Duffin '20; Caron-Huot, Gobeil, Zahraee '20]

 Can also extrapolate down to low spin and predict leading Regge intercepts, which control behavior of correlator in Regge limit (in AdS, ~ high energy, fixed impact parameter scattering)

Map of Allowed Scalar Gaps from $\langle J^{\mu}J^{\nu}J^{\rho}J^{\sigma}\rangle$

Allowed {scalar, pseudoscalar} gaps from current 4-point functions

Map of Allowed Couplings from $\{J^{\mu},\phi\}$ System

• Allowed couplings $\langle JJT
angle \propto \gamma$ in O(2) model after imposing $T'_{\mu
u}$ gap