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Phase Diagram for Fluids

What happens at critical points?
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Critical Opalescence

I As one heats the fluid (here Ethane) and approaches the critical point,
it becomes milky and light cannot pass through.
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Correlation Length

I Physically, what happens is that fluctuations of the fluid density occur
over longer and longer distances, measured by the correlation length ξ:

〈δρ(x)δρ(0)〉 ∼
{
e−|x|/ξ |x| � ξ

1
|x|1+η |x| � ξ

I Near the critical point (at fixed P = Pc), it diverges as ξ ∼ (T − Tc)−ν+ ,
and the leading behavior is captured by the critical exponents η and ν.

Universality:

In a wide variety of fluids, fluid mixtures, uniaxial magnets, and (2+1)D
quantum critical points one can find the same exponents ν ∼ .63, η ∼ .04!!
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Scale and Conformal Symmetry

I ξ →∞ indicates that physical length scales
have disappeared, signifying an emergent
scale invariance. In fact, it is believed that
the symmetry is enhanced to a larger group,
the conformal group ↔ SO(D + 1, 1).

I This group contains translations, rotations,
rescalings, and special conformal
transformations (angle-preserving twists).
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Conformal Field Theory

I Conformal symmetry allows us to organize fields/local operators
according to their behavior under rescalings, rotations, and SCTs

O(λx) = λ−∆O(x)

I The scaling dimensions ∆ are directly related to the critical exponents:

∆σ =
D − 2

2
+ η/2

∆ε = D − 1/ν
...

and the number of relevant operators (∆ < D) allowed by symmetries
controls how many parameters need to be tuned.
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3D Ising Model

I The conformal field theory describing liquid-vapor critical points (and
uniaxial magnets) is often called the critical 3D Ising model, most simply
described using a single scalar charged under a Z2 symmetry (σ → −σ):

LIsing ∼ (∂σ)2 +m2σ2 + λσ4 + . . .

I At the critical value of m2/λ2, the IR fixed point is strongly-coupled
and we can’t use perturbation theory, so we must try other methods
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Conformal Bootstrap

The conformal bootstrap asks if we can use:

1. Conformal Symmetry: SO(D, 2) or SO(D + 1, 1)

2. Crossing Symmetry

3. Unitarity or Reflection Positivity

to classify and solve conformal field theories.

I Beautiful success story in 2D → {∆σ,∆ε} = {1
8 , 1} in 2D Ising

[Ferrara, Gatto, Grillo ’73; Polyakov ’74; Belavin, Polyakov, Zamolodchikov ’83]

I Exciting progress in D > 2 starting in 2008
[Rattazzi, Rychkov, Tonni, Vichi ’08; ...]
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Conformal Block Expansion

Can probe spectrum by expanding 4-point functions in conformal blocks:

〈σ(x1)σ(x2)σ(x3)σ(x4)〉 =
∑

∆,`

λ2
σσO g∆,`(x1, x2, x3, x4)

I Blocks g∆,`(x1, x2, x3, x4) =
g∆,`(z,z)

x2∆σ
12 x2∆σ

34

known special functions giving

the contribution of primary O ∈ σ × σ with dimension ∆ and spin `

I Similar to expansion in spherical harmonics Y m
` , but for CFTs
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Crossing Symmetry

〈σ(x1)σ(x2)σ(x3)σ(x4)〉 is symmetric under permutations of xi:

I Switching x1 ↔ x3 gives the crossing symmetry condition:

Crossing Symmetry

⟨σ(x1)σ(x2)σ(x3)σ(x4)⟩ is symmetric under permutations of xi:

! Switching x1 ↔ x3 gives the crossing symmetry condition:

∑∑
=

O O

11

22 33

44

∑

∆,ℓ

λ2
Og∆,ℓ(x1, x2, x3, x4) =

∑

∆,ℓ

λ2
Og∆,ℓ(x3, x2, x1, x4)

! Only unknowns are set of scaling dimensions and coefficents: {∆, λO}
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∑

∆,`

λ2
σσO [g∆,`(x1, x2, x3, x4)− g∆,`(x3, x2, x1, x4)] = 0

I Unknowns are scaling dimensions and coefficients: {∆, λ2
σσO}, with

lower bounds λ2
σσO ≥ 0 and ∆ ≥ `+D − 2− δ`,0 (D−2)

2 from unitarity.
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Numerical Approach

where ~F��
�,` represents the function in parentheses. Instead of writing ~F��

�,` as a function of
x1, x2, x3, x4, we think of it abstractly as a vector in the vector space of functions of four
points.

Eq. (9) says that some vectors must sum up to zero with positive coe�cients. This may

or may not be possible, depending on the vectors. The ~F��
�,` may look like either the left-

or right-hand side of the figure below.

F∆σ
∆1,ℓ1

F∆σ
∆1,ℓ1

F∆σ
∆2,ℓ2

F∆σ
∆2,ℓ2

F∆σ
∆3,ℓ3F∆σ

∆3,ℓ3 . . .

. . .

Yes No

α

On the left, it is possible for the vectors to sum to zero with positive coe�cients, and on
the right it is not. One can distinguish these cases by searching for a “separating plane”
↵ through the origin such that all vectors lie on one side of ↵. If ↵ exists, then it is not
possible to satisfy (9), and thus {(�1, `1), . . . } cannot be the dimensions and spins of a
consistent CFT.

Although the ~F��
�,` ’s live in an infinite-dimensional space, it su�ces to find a separating

plane in any finite-dimensional subspace to apply the above logic. Also, if we do not know
precisely which (�, `)’s appear, we can demand that all possible ~F��

�,` ’s lie on one side of the
separating plane. This allows us to study (9) by solving inequalities in finite dimensions.
Since 2008, several techniques have been developed for solving these inequalities e�ciently
on a computer using optimization methods like linear and semidefinite programming [20–25].

The above methods yield an exclusion plot in the space of scaling dimensions. For
example, begin by choosing hypothetical values for �� and �✏. Now search for a separating
plane ↵ that puts ~F��

�� ,0,
~F��
�✏,0

, and all other possible ~F��
�,` ’s one one side. If ↵ exists, then

the hypothetical values (��,�✏) are incorrect. Scanning over hypothetical (��,�✏) yields
an allowed region and a disallowed region.

3 Bounds on Scaling Dimensions

In [21], we applied this procedure to 3d CFTs with a Z2 symmetry, giving the bound in
figure 1. Although the bound is rigorously correct, there was no guarantee that it should
be nearly saturated by an interesting theory. However, strikingly, the bound displays a kink
near (��,�✏) ⇡ (0.518, 1.412) — precisely the values believed to be realized in the critical
3d Ising model.

5

I Make some assumption on {∆, λijk}, search for functional

α =

(
∑

m+n≤Λ

αmn∂
m
z ∂

n
z

∣∣∣∣
1/2,1/2

)
implying 0 =

∑
(positive)

I Find them by solving semidefinite programs: SDPB 2.0

https://github.com/davidsd/sdpb [Simmons-Duffin ’15; Landry, Simmons-Duffin ’19]

Bootstrap software repository: http://gitlab.com/bootstrapcollaboration
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3D Dimension Bounds

January 29, 2016 12:33 World Scientific Review Volume - 9in x 6in TASI-bootstrap-chapter page 60

60 David Simmons-Duffin

∆σ

∆ϵ

3D Ising?

Disallowed

Allowed

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64
1.0

1.2

1.4

1.6

1.8

Fig. 27. Upper bound on the dimension ∆ε of the lowest dimension scalar in the σ×σ
OPE, where σ is a real scalar primary in a unitary 3d CFT with a Z2 symmetry, from [].
This bound is computed with Λ = 24 (78-dimensional space of derivatives).

case, it’s necessary to input an additional fact: that σ and ε are the only

relevant scalars in the theory.nn In practice, this roughly means that we

impose positivity conditions α(F∆,`) ≥ 0 for ∆ = ∆σ,∆ε, and ∆ ≥ 3. The

resulting bound in figure 28 now restricts (∆σ,∆ε) to a small island in the

space of operator dimensions.

The same multiple correlator bound, computed with Λ = 43 using SDPB,

is shown in figure 29 [60]. The island has shrunk substantially, giving a

precise determination of the 3d Ising operator dimensions,

(∆σ,∆ε) = (0.518151(6), 1.41264(6)). (199)

Figures 28 and 29 are conceptually interesting. Firstly, the striking agree-

ment between Monte Carlo simulations and the conformal bootstrap is

strong evidence that the critical 3d Ising model actually does flow to a

conformal fixed-point, as originally conjectured by Polyakov.
nnThis is an obvious experimental fact about the 3d Ising CFT. (It would be interesting

to prove mathematically.) Relevant scalars are in one-to-one correspondence with pa-
rameters that must be tuned to reach the critical point in some microscopic theory. The

fact that the phase diagram of water is 2-dimensional (the directions are temperature

and pressure) tells us that the critical point of water has two relevant operators.

[El-Showk, Paulos, DP, Rychkov, Simmons-Duffin, Vichi, ’12; ’14]

I Upper bound on first Z2-even scalar in σ× σ ∼ 1 + ε+ . . . from 〈σσσσ〉
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3D Ising Island
Mixed Correlator Islands

Mixed Correlator Allowed Region (105 comp.)

∆σ

∆ǫ

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

[Kos, DP, Simmons-Duffin ’14]

◮ Combining constraints from 〈σσσσ〉, 〈σσǫǫ〉, 〈ǫǫǫǫ〉, can impose that σ
and ǫ are the only relevant (∆ < 3) operators, yielding a rigorous island!

David Poland Critical Phenomena and the Conformal Bootstrap

[Kos, DP, Simmons-Duffin ’14]

I Combine 5 crossing relations from 〈σσσσ〉, 〈σσεε〉, 〈εεεε〉 and impose
that σ and ε are the only relevant (∆ < 3) operators
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Mixed Correlator Islands

[Kos, DP, Simmons-Duffin, Vichi ’16]

I Best bounds: perform ”OPE scan” over ratio r ≡ λεεε/λσσε → 3d island

I Excludes degenerate exchanged operators at same ∆σ,ε but different λ’s
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3D Ising Island

Monte Carlo

Bootstrap

0.51808 0.51810 0.51812 0.51814 0.51816 0.51818
Δσ

1.4125

1.4126

1.4127

1.4128

1.4129

1.4130

Δϵ

0.518146 0.518148 0.518150 0.518152
1.41260

1.41261

1.41262

1.41263

1.41264

1.41265

[Kos, DP, Simmons-Duffin, Vichi ’16]

I Increase search space to 5× 253 = 1265 components (Λ = 43)

{∆σ,∆ε} = {0.518149(1), 1.412625(10)}
{λσσε, λεεε} = {1.0518537(41), 1.532435(19)}
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3D O(N) Models

Generalization to N scalars φi: LintO(N) ∼ λ(φiφ
i)2

I N = 2: Superfluid (λ) transition in 4He [Lipa et al, ’96; ’03]

I N = 3: Isotropic ferromagnets (Fe, Co, Ni, . . .)

I Large N : Solvable in 1/N expansion
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3D O(N) Bounds3D O(N) Bounds

∆φ

∆S

Ising

O(10)

O(20)

O(2)
O(3)
O(4)
O(5)
O(6)

0.505 0.5150.51 0.5250.52 0.5350.530.5
1

1.2

1.4

1.6

1.8

2

2.2

[Kos, DP, Simmons-Duffin ’13]

! Extension to ⟨φiφjφkφl⟩, where φi is O(N) vector

! Large N : matches 1/N expansion, Small N : matches experiment!
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[Kos, DP, Simmons-Duffin ’13]

I Extension to 〈φiφjφkφl〉, where φi is O(N) vector

I Large N : matches 1/N expansion, Small N : matches experiment!
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O(N) Archipelago from Mixed Correlators

0.505 0.510 0.515 0.520 0.525 0.530
DΦ

1.2

1.4

1.6

1.8

2.0
Ds

The OHNL archipelago

Ising

OH2L

OH3L

OH4L

OH20L

[Kos, DP, Simmons-Duffin, Vichi ’15; ’16]

I With {φi, s} correlators, again find islands (Input: ∆φ′ > 3,∆s′ > 3)
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O(2) from {φi, s, tij} System

External {ϕ, s, t}
Λ = 19

Λ = 27

Λ = 35

Λ = 43

MC (XSLD '19)

MC (H '19)

0.5185 0.5190 0.5195 0.5200 0.5205 0.5210
Δϕ1.506

1.508

1.510

1.512

1.514

1.516

1.518

1.520
Δs

O(2): Scaling Dimensions

Λ=19

Λ=27

Λ=35

4He 1σ

4He 3σ

MC+HT

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi ’19]

I Best result from {φi, s, tij} system (22 crossing equations)

I Resolves 8σ discrepancy between lattice and expt (4He)
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O(2) from {φi, s, tij} System

0.51895 0.51900 0.51905 0.51910 0.51915 0.51920 0.51925
Δϕ1.5105

1.5110

1.5115

1.5120

Δs

Λ = 19

Λ = 27

Λ = 35

Λ = 43

MC+HT (CPHV '06)

MC (XSLD '19)

MC (H '19)

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi ’19]

Bootstrap: α = −0.01527(21)

MC: α = −0.01507(21) [Hasenbusch ’19]

4He: α = −0.0127(3) [Lipa et al, ’96; ’03]
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O(2) from {φi, s, tij} System

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, ’19]

I Best results require 6d search over {∆φ,∆s,∆t,
λsss
λφφs

, λttsλφφs
,
λφφt
λφφs
}

{∆φ,∆s,∆t} = {0.519088(17), 1.51136(18), 1.23629(9)}

{ λsss
λφφs

,
λtts
λφφs

,
λφφt
λφφs

} = {1.20926(46), 1.82227(19), 1.765918(64)}
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O(3) from {φi, s, tij} System

Black (Bootstrap): [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi ’20]

Green (Monte Carlo): [Hasenbusch, Vicari ’11; Hasenbusch ’20]

I Best O(3) island: {∆φ,∆s,∆t} = {0.51894(5), 1.5949(6), 1.2095(2)}
I Open question: is φ{iφjφkφl} relevant or irrelevant in O(3) model?
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O(3) from {φi, s, tij} System

Black (Bootstrap): [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, ’20]

Green (Monte Carlo): [Hasenbusch, Vicari ’11; Hasenbusch ’20]

I Using tiptop search, find it is relevant: ∆φ{iφjφkφl} < 2.99056!
I Proof that critical Heisenberg magnets are unstable to cubic anisotropy,

should flow to fixed point with cubic symmetry C3 rather than O(3)
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3D Fermion Models (Gross-Neveu-Yukawa)

Interesting CFTs obtained from fixed points involving N fermions:

LGNY ∼ g
2σψ

i
ψi + λσ4 (and variations with multiple scalars)

I Large N : Solvable in 1/N expansion [Gracey ’92; ...]

I N = 8: Possible QCPs in D-wave superconductors or graphene
[Vojta, Zhang, Sachdev ’00; Herbut ’06; Classen, Herbut, Scherer ’17]

I N = 4: Spinless fermions on honeycomb lattice, gapless semiconductors
[Raghu, Qi, Honerkamp, Zhang ’07; Moon, Xu, Kim, Balents ’12; Herbut, Janssen ’14]
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Minimal 3d SCFT (N = 1 Gross-Neveu-Yukawa)

Emergent Space-time Supersymmetry at the Boundary of a Topological Phase

Tarun Grover,1 D. N. Sheng,2 and Ashvin Vishwanath3
1Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

2Department of Physics and Astronomy, California State University, North Ridge, CA 91330, USA
3Department of Physics, University of California, Berkeley, CA 94720, USA

In contrast to ordinary symmetries, supersymmetry interchanges bosons and fermions. Origi-
nally proposed as a symmetry of our universe, it still awaits experimental verification. Here we
theoretically show that supersymmetry emerges naturally in topological superconductors, which are
well-known condensed matter systems. Specifically, we argue that the quantum phase transitions
at the boundary of topological superconductors in both two and three dimensions display super-
symmetry when probed at long distances and times. Supersymmetry entails several experimental
consequences for these systems, such as, exact relations between quantities measured in disparate
experiments, and in some cases, exact knowledge of the universal critical exponents. The topological
surface states themselves may be interpreted as arising from spontaneously broken supersymmetry,
indicating a deep relation between topological phases and SUSY. We discuss prospects for experi-
mental realization in films of superfluid He3-B.

I. INTRODUCTION

In the 1970s, space-time “supersymmetry” (SUSY),
was proposed as a possible invariance of our universe1,2.
Unlike any other symmetry, SUSY interchanges bosons
and fermions and when applied twice, generate transla-
tions of space and time, which ultimately leads to the
conservation of momentum and energy3. SUSY theories
were actively pursued to attack long-standing problems
such as the hierarchy problem in the elementary particle
physics4, but despite sustained effort, it has yet to be
experimentally established in Nature.

In this paper we theoretically show that certain con-
densed matter systems display the remarkable phenom-
ena of emergent supersymmetry, that is, space-time
SUSY naturally emerges as an accurate description of
these systems at low energy and at long distances, al-
though the microscopic ingredients are not supersym-
metric. The physical systems we mainly consider are
topological superconductors5,6, in which fermions, which
may be electrons or fermionic atoms such as He-3, pair
together in a special way. The resulting state has an en-
ergy gap to fermions in the bulk but gapless excitations
at the surface. The surface excitations are prohibited
from acquiring a gap due to time reversal symmetry. We
consider the spontaneous symmetry breaking quantum
phase transition at the surface, using numerical and an-
alytical techniques, and establish emergent supersymme-
try in both two and three dimensions (Fig.1).

Our result is similar in spirit to Friedan, Qiu, Shenker7,
who showed that the 1+1 dimensional tricritical Ising
model, which can be accessed by tuning two parame-
ters, is supersymmetric. Few other proposals that real-
ize SUSY by tuning two or more parameters have been
made as well9,10. Here, we require that SUSY be achiev-
able by tuning only a single parameter, and separates two
distinct phases, akin to a conventional quantum critical
point11,12. This is crucial for our results to be experimen-
tally realizable. We also require that our theory have full
space-time SUSY rather than only a limited ‘quantum-

r

T

rc

Figure 1: Phase diagram of a three dimensional topological
superconductor, as Ising magnetic fluctuations (denoted by
red arrows) at the boundary couple to the Majorana fermions
(blue cone). When the tuning parameter r < rc, the Ising
spins order leading to a gap for the Majorana fermions. In
the main text, it is argued that the critical point that sep-
arates the two sides is supersymmetric, where bosons (Ising
order parameter) and Majorana fermions transform into each
other. Similar phase diagram is obtained for two-dimensional
topological superconductors (Fig.2).

mechanical’ SUSY13. Furthermore, in contrast to the
strategy adopted in7, our approach is not restricted to
1+1 dimensional theories. This automatically ensures
translation invariance in space and time, and will lead to
experimental consequences, as we discuss below.

There has been an explosion of activity in the field
of topological phases since the discovery of Z2 topolog-
ical insulators (TIs)14,15,17,18. We will focus on a set of
closely related phases, the time-reversal invariant topo-
logical superconductors5,6 (TSc) — which include the
well known B-phase of superfluid He-319. These phases
exist in both two and three spatial dimensions20,21 and
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I The N = 1 Gross-Neveu-Yukawa model has 3d N = 1 supersymmetry:

V =
g

2
σψψ +

g

8
σ4 ↔ W =

g

3
Σ3, Σ = σ + θψ + θ2ε

I May be realizable in (3+1)D topological superconductors, with (2+1)D
boundary supporting Majorana fermions [Grover, Sheng, Vishwanath ’13]
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In contrast to ordinary symmetries, supersymmetry interchanges bosons and fermions. Origi-
nally proposed as a symmetry of our universe, it still awaits experimental verification. Here we
theoretically show that supersymmetry emerges naturally in topological superconductors, which are
well-known condensed matter systems. Specifically, we argue that the quantum phase transitions
at the boundary of topological superconductors in both two and three dimensions display super-
symmetry when probed at long distances and times. Supersymmetry entails several experimental
consequences for these systems, such as, exact relations between quantities measured in disparate
experiments, and in some cases, exact knowledge of the universal critical exponents. The topological
surface states themselves may be interpreted as arising from spontaneously broken supersymmetry,
indicating a deep relation between topological phases and SUSY. We discuss prospects for experi-
mental realization in films of superfluid He3-B.

I. INTRODUCTION

In the 1970s, space-time “supersymmetry” (SUSY),
was proposed as a possible invariance of our universe1,2.
Unlike any other symmetry, SUSY interchanges bosons
and fermions and when applied twice, generate transla-
tions of space and time, which ultimately leads to the
conservation of momentum and energy3. SUSY theories
were actively pursued to attack long-standing problems
such as the hierarchy problem in the elementary particle
physics4, but despite sustained effort, it has yet to be
experimentally established in Nature.

In this paper we theoretically show that certain con-
densed matter systems display the remarkable phenom-
ena of emergent supersymmetry, that is, space-time
SUSY naturally emerges as an accurate description of
these systems at low energy and at long distances, al-
though the microscopic ingredients are not supersym-
metric. The physical systems we mainly consider are
topological superconductors5,6, in which fermions, which
may be electrons or fermionic atoms such as He-3, pair
together in a special way. The resulting state has an en-
ergy gap to fermions in the bulk but gapless excitations
at the surface. The surface excitations are prohibited
from acquiring a gap due to time reversal symmetry. We
consider the spontaneous symmetry breaking quantum
phase transition at the surface, using numerical and an-
alytical techniques, and establish emergent supersymme-
try in both two and three dimensions (Fig.1).

Our result is similar in spirit to Friedan, Qiu, Shenker7,
who showed that the 1+1 dimensional tricritical Ising
model, which can be accessed by tuning two parame-
ters, is supersymmetric. Few other proposals that real-
ize SUSY by tuning two or more parameters have been
made as well9,10. Here, we require that SUSY be achiev-
able by tuning only a single parameter, and separates two
distinct phases, akin to a conventional quantum critical
point11,12. This is crucial for our results to be experimen-
tally realizable. We also require that our theory have full
space-time SUSY rather than only a limited ‘quantum-

r

T

rc

Figure 1: Phase diagram of a three dimensional topological
superconductor, as Ising magnetic fluctuations (denoted by
red arrows) at the boundary couple to the Majorana fermions
(blue cone). When the tuning parameter r < rc, the Ising
spins order leading to a gap for the Majorana fermions. In
the main text, it is argued that the critical point that sep-
arates the two sides is supersymmetric, where bosons (Ising
order parameter) and Majorana fermions transform into each
other. Similar phase diagram is obtained for two-dimensional
topological superconductors (Fig.2).

mechanical’ SUSY13. Furthermore, in contrast to the
strategy adopted in7, our approach is not restricted to
1+1 dimensional theories. This automatically ensures
translation invariance in space and time, and will lead to
experimental consequences, as we discuss below.

There has been an explosion of activity in the field
of topological phases since the discovery of Z2 topolog-
ical insulators (TIs)14,15,17,18. We will focus on a set of
closely related phases, the time-reversal invariant topo-
logical superconductors5,6 (TSc) — which include the
well known B-phase of superfluid He-319. These phases
exist in both two and three spatial dimensions20,21 and
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I The N = 1 Gross-Neveu-Yukawa model has 3d N = 1 supersymmetry:

V =
g

2
σψψ +

g

8
σ4 ↔ W =

g

3
Σ3, Σ = σ + θψ + θ2ε

I May be realizable in (3+1)D topological superconductors, with (2+1)D
boundary supporting Majorana fermions [Grover, Sheng, Vishwanath ’13]
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Supersymmetric Island

0.58440 0.58442 0.58444 0.58446 0.58448 0.58450
2.86

2.87

2.88

2.89

2.90

Δσ

Δ
σ
'

Λ = 27, 35, 43, 51, 59

[Rong, Su ’18; Atanasov, Hillman, DP ’18; Atanasov, Hillman, DP, Rong, Su, in progress]

I {σ, ε} SUSY system → ∆σ = .5844435(83), ∆σ′ = 2.8869(25)
Compare to ε-expansion: ∆σ = .5837(14) [Ihrig, Mihaila, Scherer ’18]

(Assumptions: N = 1 SUSY, ∆ε′ ≥ 3,∆σ′′ ≥ 3)
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Supersymmetric Island

0.58440 0.58442 0.58444 0.58446 0.58448 0.58450
2.86

2.87

2.88

2.89

2.90

Δσ

Δ
σ
'

Λ = 27, 35, 43, 51, 59

[Rong, Su ’18; Atanasov, Hillman, DP ’18; Atanasov, Hillman, DP, Rong, Su, in progress]

I Observation: Write λεεε
λσσε

= tan(θ) and use SUSY relation λεεε
λσσε

= f(∆σ)

→ θ = 1.00010(11)

Is there any meaning to θ ' 1??
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3D O(N) Fermion Bootstrap

N = 4

N = 3

N = 2

N = 10

N = 20

Larg
e-N

ææ

àà

ôô

òò

GNY

Large-N

ì N=2

ò N=3

ô N=4

à N=10

æ N=20

1.00 1.02 1.04 1.06 1.08

DΨ

2.1

2.2

2.3

2.4

2.5

2.6

DΣT

[Iliesiu, Kos, DP, Pufu, Simmons-Duffin ’17]

I Bootstrap for fermion 4-point functions 〈ψiψjψkψl〉
I Kinks in symmetric tensor bounds match GNY models at large N
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3D O(N) Fermion Bootstrap
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[Iliesiu, Kos, DP, Pufu, Simmons-Duffin ’17]

I Intricate structure in {∆ψ,∆σ} plane assuming σ′ irrelevant

I Upper kinks plausibly related to GNY models
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3D Fermion Bootstrap
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large-N PB[2/1]
Padé-Resum.
FRG

[Ihrig, Mihaila, Scherer ’18]

I Kink locations showed good agreement with other methods
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State-of-the-art Fermion Bootstrap

I Our best bootstrap computations for the O(N) GNY models now
involve all 4-point functions containing {ψi, σ, ε}, giving 38 crossing
relations after allowing for all 4-point tensor structures:

∑

c,∆

~λTc,∆V
i
c,∆(z, z)~λc,∆ = 0, (i = 1, . . . , 38)

I We impose some gap assumptions motivated by large-N expectations,
and search for allowed points in the 6d space:

{∆ψ,∆σ,∆ε} and {λψψσλεεε
,
λψψε
λεεε

, λσσελεεε
}
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Preliminary Islands for N = 2 Gross-Neveu-Yukawa Model

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

I Preliminary islands from {σ, ψi, ε} system at Λ = 15, 23

I Gaps motivated by large N estimates and E.O.M. ∂ψ ∼ σψ
David Poland The Conformal Frontier



Preliminary Islands for N = 2 Gross-Neveu-Yukawa Model

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

{∆ψ,∆σ,∆ε}CB = {1.0686(3), 0.651(3), 1.73(2)} (Λ = 15,∆σ′ > 3)
{ηψ, ησ, 1/ν}CB = {0.1371(6), 0.302(6), 1.27(2)}
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Preliminary Islands for N = 4 Gross-Neveu-Yukawa Model

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

{∆ψ,∆σ,∆ε}CB = {1.0434(7), 0.76(1), 1.91(6)} (Λ = 11,∆σ′ > 3)
{ηψ, ησ, 1/ν}CB = {0.0869(14), 0.52(2), 1.09(6)}
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Preliminary Islands for N = 8 Gross-Neveu-Yukawa Model

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

{∆ψ,∆σ,∆ε}CB = {1.02115(25), 0.867(6), 2.01(6)} (Λ = 11,∆σ′ > 3)
{ηψ, ησ, 1/ν}CB = {0.0423(5), 0.735(12), 0.99(6)}
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Preliminary Islands for N = 8 Gross-Neveu-Yukawa Model

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

{ηψ, ησ, 1/ν}CB = {0.0423(5), 0.735(12), 0.99(6)}
{ηψ, ησ, 1/ν}RG = {0.043, 0.731, 0.982} [Ihrig, Mihaila, Scherer ’18]

{ηψ, ησ, 1/ν}QMC = {0.05(2), 0.60(2), 1.1(1)} [Liu, Wang, Sun, Meng ’20]
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Bootstrapping Gauge Theories

I Many motivations to bootstrap gauge theories: 3d spin liquids and
deconfined critical points, 4d physics beyond the SM, dualities,
conformal windows ...

I Some concrete targets are U(1) QED3 with N∗f < Nf <∞ fermions,

SU(N) QCD4 with N∗f < Nf <
11
2 N fermions, + many more
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Bootstrapping Gauge Theories

I On the other hand, bootstrapping theories like QED3 or QCD4 is hard
because we can only use gauge-invariant operators: ψψ, (ψψ)2, etc

I E.g., hard to use correlation functions of ψψ to distinguish U(1) QED3

from SU(N) QCD3, or QCD4 theories with different gauge groups
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Bootstrapping SU(Nf = 4) QED3 from ψψ Correlators
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Δ
ψ
_
ψ

Δ
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Bounds from SU(4) adjoint/SO(15) vector bootstrap

[Z. Li ’18; DP, Z. Li ’20]

I Singlet (upper), SS (middle), and {SS,AA} (lower) reps of SU(4)

I Funny transition around ∆ψψ ∼ 1.35 (close to 2− 64
π2Nf

∼ 1.46), but

singlet bound is far from expected value ∼ 3− 4
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Bootstrapping SU(Nf) QED3 from ψψ Correlators
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ΔV

Δ
S

Upper bounds on O(N) singlets

[Z. Li ’18]

I Coincidence with SO(N = N2
f − 1) singlet bounds (here N = 5, 6, 7, 8)

I Tracking kink to smaller Nf , forces singlet to become relevant around
Nf ∼ 2.5, maybe a clue that Nf = 2 is outside conformal window?
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Bootstrapping QED3 with Nf fermion flavors

I Complementary progress was made in [Chester, Pufu ’16] by bootstrapping
correlators of monopole operators, charged under JµT = εµνρFνρ

I We know various properties of them at large Nf , e.g. the lightest
monopole Mq with q = 1/2 has dimension ∆M1/2

= 0.265Nf − 0.0383

David Poland The Conformal Frontier



Large Nf Estimates for Nf = 4 QED3

SO(2)T SU(4) j ∆1 ∆2 OPE

S (000) (singlet) 0 4 +
64(2±

√
7)

3π2Nf
= 6.510

3.651 5.00∗ λrrO, λMMO

S (211) (Adj) 0 4 +
8(25±

√
2317)

3π2Nf
= 8.940

2.437 5.00∗ λrrO

S (211) (Adj) 1 2.00 [Jf ] 4.00 λrrO, λMMO

S (220) (AA) 0 4− 64
π2Nf

= 2.379 6.00 λrrO, λMMO

A (000) (singlet) 1 2.00 [JT ] 3.00 λMMO

A (211) (Adj) 0 2− 64
3π2Nf

= 1.460 [r = ψψ] 4.00 λMMO

A (220) (AA) 1 4.00 6.00 λMMO

T (000) (singlet) 0 4.424 6.156 λMMO

T (211) (Adj) 1 2.692 4.424 λMMO

T (220) (AA) 0 0.673Nf − 0.194 = 2.498 [M1] 6.156 λMMO

V (110) (M) 0 0.265Nf − 0.0383 = 1.022 [M1/2] 3.888 λrMO

V (110) (M) 1 2.474 3.060∗ λrMO

V (200) (S) 0 3.888 4.474∗ λrMO

V (200) (S) 1 2.474 3.888 λrMO

V (321) (AAdj) 0 3.888 5.303 λrMO

V (321) (AAdj) 1 3.888 4.924 λrMO

S (310) (SA) 1 5.00 6.00 λrrO
S (422) (SS) 0 4 + 64

3π2Nf
= 4.540 6.00 λrrO

[Chester, Pufu ’16; Chester, Iliesiu, Mezei, Pufu ’17; Albayrak, Erramilli, Z. Li, DP, Y. Xin]
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Nf = 4 QED3 Bootstrap from M1/2 Correlators

[Chester, Pufu ’16]

I Bound on ∆M1 nearly saturated by large Nf predictions, can carve out
peninsula by isolating M1

I However, gap ∆2 = ∆S22 ≥ 3 may be too strong, while other gaps
motivated by our knowledge of the spectrum were not used

I We are working to improve the situation by considering mixed
{ψψ,M1/2} correlators and using more strategic gap assumptions
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Nf = 4 QED3 Bootstrap from {ψψ,M1/2} Correlators

Large Nf

0.5 1.0 1.5 2.0 2.5 3.0
Δψ

_

ψ

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
ΔM1

ΔM1/2 = 1.02, ΔS0 > 3, ΔS22 > 2, ΔS422 > 3.8, ΔV2 > 3, ΔV11 > 3,

ΔV321 > 3, ΔA211 > 3, ΔT0 > 3.8, ΔT22 > 4.5, ΔV321-j1 > 3 (Λ = 19)

[Albayrak, Erramilli, Z. Li, DP, Y. Xin, in progress]

I We have not yet understood how to isolate M1/2, but if we input the
large Nf value then other scaling dimensions live in an island

(For progress in scalar QED3, see also: [He, Rong, Su ’21; Manenti, Vichi ’21])
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Nf = 12 QCD4 Bootstrap from ψψ Correlators
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Δψ
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ψ

Δ
S
/T
T

Bounds on scalar scaling dimensions for SU(12)⨯SU(12)

[Z. Li, DP ’20]

I Going to 4d with SU(12)× SU(12) symmetry, interesting transition

around ∆ψψ ∼ 2.78, near estimates γ
SU(3)

ψψ
∼ [.2, .4] from other methods

I Singlet bound is much weaker than physical theory, but could be finding
“nearby” solution with leading singlet removed, needs further study...
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4d ψψ Bootstrap at Small Nf
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Δ
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Upper bound on scaling dimension of SO(N) singlet

[Z. Li, DP ’20]

I Singlet bounds for N = 2N2
f = 14, 18, 24, 32, 50

I Kink in singlet bound smoothes out around Nf ∼ 2.5− 3
I Too small to be in conformal window of QCD with fundamental

fermions, maybe related to gauge theories with rank 2 representations?
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4d ψψ Bootstrap at Large Nf
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Δϕ

Δ
T

Bound on scaling dimension of SO(N) symmetric scalar

[Z. Li, DP ’20]

I At large Nf , bound on non-singlet scalar shows a sharp jump: bottom
at (3, 6) is free fermion theory while top at (3, 8) is a subtraction of free
fermion correlators and generalized free correlators [He, Rong, Su ’20].
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4d ψψ Bootstrap at Large Nf
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Δϕ

Δ
T

Bound on scaling dimension of SO(N) symmetric scalar

[Z. Li, DP ’20]

I Fit to jump location goes roughly like ∆ψψ ∼ 3− 2.5±1
Nf

(compare to ∆ψψ = 3− 22
25

n
Nf

for Nf = 11
2 N − n in Veneziano limit)
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Bootstrap Future

Where do we go from here?

I Find islands for other interesting CFTs
I 3d Gross-Neveu-Yukawa Models (XY, Heisenberg)
I Understand how to isolate gauge theories (3d QED, 4d QCD, ...)
I Superconformal zoo

I Study larger systems of bootstrap equations
I Mixed correlators with spinning operators (ψ, Jµ, Tµν)
I Improve algorithms and software tools

I Improve analytical understanding of bootstrap equations
I Match to Lorentzian Inversion formula, conformal dispersion relations
I Incorporate analytical insights into numerical algorithms
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Backup Slides
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4d ψψ Bootstrap at Nf = 3
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Bounds on scalar scaling dimensions for SU(3)⨯SU(3)

[Z. Li, DP ’20]

I Taken at face value, ∆ψψ ∼ 1.75, singlet dimension ∆S ∼ 5.5 and
bound on symmetric (TT ) representation close to marginal ∆TT ∼ 4.
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Large N GNY predictions

Op. Parity O(N) ∆ at large N

ψi + V 1 + 4
3π2N

+ 896
27π4N2 + c3

N3 +O(1/N4)

σ − S 1− 32
3π2N

+ 32(304−27π2)
27π4N2 +O( 1

N3 )

ε ∼ σ2 + S 2 + 32
3π2N

− 64(632+27π2)
27π4N2 +O( 1

N3 )

(σT )(ij) ∼ ψ(iψj) − T 2 + 32
3π2N

+O( 1
N2 )

σ′ ∼ σ3 − S 3 + 64
π2N

+ c2
N2 +O( 1

N3 )

ε′ ∼ σ∂2σ + S 4− 64
3π2N

+
c′2
N2 +O( 1

N3 )

ε′′ ∼ σ4 + S 4 + 448
3π2N

+
c′′2
N2 +O( 1

N2 )

ψ′i ∼ σ2ψi + V 3 + 100
3π2N

+O( 1
N2 )

χi ∼ σ3ψi − V 4 + 392
3π2N

+O( 1
N2 )

[Gracey ’92; Derkachov, Kivel, Sepanenko, Vasiliev ’93; Gracey ’93; Iliesiu, Kos, DP, Pufu,

Simmons-Duffin, Yacoby ’15; Gracey ’17, Manashov, Strohmaier ’17; Erramilli, Iliesiu, Kravchuk,

Liu, DP, Simmons-Duffin, in progress]
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blocks 3d Software

I General 3d conformal blocks can be expanded recursively in poles:

gab∆,j,I ∼
1

∆−∆j,i
(Lj,i)aa′(Rj,i)bb′ga

′b′
∆′j,i,j

′
j,i,I

(z, z)

I blocks 3d is efficient, multithreaded, C++ implementation
[Erramilli, Iliesiu, Kravchuk ’19; Erramilli, Iliesiu, Kravchuk, Landry, DP, Simmons-Duffin ’20]

I Practical for external fermions ψ, currents J , stress-tensors T , ...

block (Λ = 25) j12 j43 Memory (GB) Time (hr)

〈φφφφ〉 0 0 4 0.014
〈φψφψ〉 1

2
1
2 7 0.025

〈Tφφφ〉 2 0 11 0.045
〈ψψψψ〉 1 1 15 0.068
〈TφTφ〉 2 2 36 0.20
〈TψTψ〉 5

2
5
2 48 0.62

〈TTTφ〉 4 2 62 0.94
〈TTTT 〉 4 4 106 6.9

(See CFTs4D package for spinning 4d blocks [Cuomo, Karateev, Kravchuk ’17])
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Mysterious jump?
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[Erramilli, Iliesiu, Kravchuk, Landry, DP, Simmons-Duffin ’20]

I Sharp jump in parity-odd scalar bound from 〈ψψψψ〉
[Iliesiu, Kos, DP, Pufu, Simmons-Duffin ’17]

I Seems to persist after removing “fake primary effect”
([Karateev, Kravchuk, Serone, Vichi ’19]: spin-1 V µ mimics ∆ = 3 scalar)

I Could be evidence for new fermionic CFT w/ no relevant scalars?
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3D Fermion Bootstrap
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[Ihrig, Mihaila, Scherer ’18]

I However, using a nonrigorous approach called the ”extremal functional
method” gave ∆ε = 3− 1/ν which disagreed with other methods
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∆σ′ in Gross-Neveu-Yukawa Models

1 2 4 8 16 32
N2.0
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4.0
Δσ'

[2,1] Padé

[1,2] Padé

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

I Our bounds show sensitivity to the scaling dimension of σ′ ∼ σ3

I To justify ∆σ′ > 3, we tried a 2-sided Padé approximation, matching to
the large N expansion and known value 2.8869(25) at N = 1
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Map of Allowed Scalar Gaps from 〈T µνT ρσT αβT γδ〉
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[Dymarsky, Kos, Kravchuk, DP, Simmons-Duffin, ’17]

I Allowed {scalar, pseudoscalar} gaps from stress tensor 4-point functions
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O(2) from {φi, s, tij} System

To carry out this 6d search, we employed the following strategy:

1. Use SDPB 2.0 [Landry, Simmons-Duffin ’19], take advantage of parallelization

2. Use hotstarting [Go, Tachikawa ’19] to run SDPB for fewer iterations

3. Search over ∆’s carried out using “Delaunay triangulation” search

4. Search over λ’s carried out using “Cutting Surface” algorithm
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Delaunay Triangulation Search

N = 5
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[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi ’19]

I Compute Delaunay triangulation of all tested points, pick midpoint of
“biggest” triangle connecting disallowed to allowed

David Poland The Conformal Frontier



Cutting Surface Algorithm

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi ’19]

I Each computation excludes a region of ~λ-space: ~λ · α[F~∆] · ~λ > 0
I After ∼ 10− 30 tests either find allowed point or rule out entire region
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O(3) from {φi, s, tij} System

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, ’20]

I tiptop search: map out approximate island at a given gap ∆t4 − 3,
shrink bounding box of island by factor of 2, increase gap (via binary
search) until it can no longer accommodate smaller box, then iterate

David Poland The Conformal Frontier



Lorentzian Inversion Review

I The basic idea is to decompose CFT 4-pt functions 〈σσσσ〉 ∝ g(z, z) in
a basis of “principal series” (∆ = d/2 + iα) partial waves

g(z, z) =

∞∑

`=0

∫ d/2+i∞

d/2−i∞

d∆

2πi
c(∆, `)g∆,`(z, z) + (non-norm.)

where the physical spectrum is encoded in the poles of c(∆, `).
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Lorentzian Inversion Review

I Using orthogonality and Lorentzian continuation one “inverts” the
formula to obtain c(∆, `) = ct(∆, `) + (−1)`cu(∆, `):

ct(∆, `) =
κ∆+`

4

∫ 1

0
dzdzµ(z, z)g`+d−1,∆+1−d(z, z)dDisc [g(z, z)]

with

µ(z, z) =

∣∣∣∣
z − z
zz

∣∣∣∣
d−2 1

(zz)2

dDisc [g(z, z)] = g(z, z)− 1

2
g(z, ze2πi)− 1

2
g(z, ze−2πi)

See [Caron-Huot ’17; Simmons-Duffin, Stanford, Witten ’17; Kravchuk, Simmons-Duffin ’18]
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Lorentzian Inversion Review

I Expanding g(z, z) =
(

zz
(1−z)(1−z)

)∆σ∑
λ2
σσOg∆,`(1− z, 1− z) in a

finite number of known contributions, we can compute the integrals

I Matching identity operator reveals poles 1
∆−(2∆σ+`) corresponding to

“double-twist” operators: σ∂µ1 . . . ∂µ`σ

I Other exchanged operators give anomalous dimensions (log(z) terms)
and correct their OPE coefficients (regular terms)

Approach developed in various works: [Sleight, Taronna ’18; Kravchuk, Simmons-Duffin

’18; Cardona, Sen ’18; Karateev, Kravchuk, Simmons-Duffin ’18; Cardona, Guha, Kanumilli, Sen

’18; Albayrak, Meltzer, DP ’19, ’20; Caron-Huot, Gobeil, Zahraee ’20]
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Anomalous Dimensions from Scalar Exchange

δτ[σσ]0(h)pert = − λ2
σσε

1 + δP[σσ]0(h)

2Γ(∆σ)2Γ
(
1 + ∆ε−2∆σ

2

)2
Γ(∆ε)

Γ
(
1− ∆ε−2∆σ

2

)2
Γ
(

∆ε−2∆σ

2

)2
Γ
(

∆ε

2

)2

× Γ(h−∆σ + 1)Γ
(
h− ∆ε−2∆σ

2 − 1
)

Γ(h+ ∆σ − 1)Γ
(
h+ ∆ε−2∆σ

2 + 1
)

× 4F3

( ∆ε−d+2
2 , ∆ε−2∆σ

2 + 1, ∆ε−2∆σ

2 + 1, ∆ε

2
∆ε−2∆σ

2 − h+ 2, ∆ε−2∆σ

2 + h+ 1,∆ε − d−2
2

; 1

)

δτ[σσ]0(h)np = − λ2
σσε

1 + δP[φφ]0(h)

2Γ(∆σ)2Γ
(
∆ε − d−2

2

)
Γ(∆ε)

Γ
(
1− ∆ε−2∆σ

2

)2
Γ
(

∆ε−2∆σ

2

)2
Γ
(

∆ε

2

)3
Γ
(

∆ε−d−2
2

)

× Γ(h)2Γ(h−∆σ + 1)Γ
(
h+ ∆σ − d

2

)
Γ
(

∆ε−2∆σ

2 − h+ 1
)

Γ(2h)Γ
(
h+ ∆σ + ∆ε

2 − d
2

)

× 4F3

(
h, h, h+ ∆σ − 1, h+ ∆σ − d

2

2h, h− ∆ε−2∆σ

2 , h+ ∆σ + ∆ε

2 − d
2

; 1

)

I E.g., for exchange of a scalar ε, integral yields two pieces:
δτ[σσ]0(h) = δτ[σσ]0(h)pert + δτ[σσ]0(h)np (here h ≡ ∆+`

2 )
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Extremal Functional

α · F∆,`

[DP, Simmons-Duffin ’10; Paulos, El-Showk ’12; plot from Paulos, Zan ’20]

I By going to a boundary of the allowed region (e.g., extremizing λφφs),
we can extract extremal spectra corresponding to the zeros of α · F∆,`
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O(2) from {φi, s, tij} System

� �� �� ��
ℓ

�

�

�

�

��

��

τ=Δ-ℓ
��������� �� ��� ��� ���

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, ’19]

I Can be done in practice using spectrum-extraction Python script
(spectrum.py), which uses sdpb output
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Analytical Bootstrap

Extremal spectra can be compared with analytical bootstrap predictions:

I Lightcone Bootstrap (z → 0): ∃ trajectories of “double-twist” operators
∼ σ∂`σ with twist asymptoting to τ(`→∞) = 2∆σ − #

` −
#
`∆ε

+ . . .
[Fitzpatrick, Kaplan, DP, Simmons-Duffin ’12; Komargodski, Zhiboedov ’12]

I Lorentzian Inversion → All-orders analytic function [Caron-Huot ’17]

τ(`) ∼
∫

dDisc[g] ∼∑O 4F3(. . .)
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O(2): Comparison with Analytics

� ✁✂ ✁� ✄✂

✂☎✆✆

✁☎✂✂

✁☎✂✁

✁☎✂✄

✁☎✂✝

✁☎✂✞

[Albayrak, Meltzer, DP ’19; J. Liu, Meltzer, DP, Simmons-Duffin ’20]

I Excellent agreement between leading-twist extremal spectra and
analytics after including exchange of {s, t, Jµ, Tµν}
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Lorentzian Inversion for O(2) Model

� ✁✂ ✁� ✄✂

✁☎✆

✁☎✝

✄☎✂

✄☎✄

Without Mixing

With Mixing

Numerical

[J. Liu, Meltzer, DP, Simmons-Duffin ’20]

In some cases (e.g., charge 1 tower), to get best agreement:
I Add t-channel contributions from tower of leading double-twists

I Resolve mixing effects (diagonalize “twist Hamiltonian”): [φs] and [φt]
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Lorentzian Inversion for O(2) Model

� ✁✂ ✁� ✄✂
✁☎�

✁☎✆

✁☎✝

✁☎✞

✁☎✟

✄☎✂

Without Mixing

With Mixing

Numerical

[J. Liu, Meltzer, DP, Simmons-Duffin ’20]

In some cases (e.g., charge 1 tower), to get best agreement:
I Add t-channel contributions from tower of leading double-twists

I Resolve mixing effects (diagonalize “twist Hamiltonian”): [φs] and [φt]
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Regge Intercepts: O(2) (left) and Ising (right)

[J. Liu, Meltzer, DP, Simmons-Duffin ’20; Caron-Huot, Gobeil, Zahraee ’20]

I Can also extrapolate down to low spin and predict leading Regge
intercepts, which control behavior of correlator in Regge limit
(in AdS, ∼ high energy, fixed impact parameter scattering)
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Map of Allowed Scalar Gaps from 〈JµJνJρJσ〉

numerically. With these ingredients and assuming unitarity, we applied the usual bootstrap
semi-definite programming method (SDPB) to constrain the spectrum of neutral operators

and some OPE coe�cients �
(p)
JJO.

In figure 1, we show our result for the excluded region of the plane (�+
0 ,��

0 ), where �±
`

denotes the scaling dimension of the lightest parity even/odd neutral spin-` operator. This
curve was calculated using up to ⇤ = 23 derivatives of the crossing equations at the crossing
symmetric point (451 components). The parameter ⇤ is defined in eq. (2.61). In this plot,
we represented several known theories to verify that they all fall inside the allowed region.
On one hand, the theories of a free Dirac fermion and of a free complex scalar field lie well
within the allowed region. On the other hand, the critical O(2)-model and the generalized
free theory (GFVF) of a current seem to play an important role in determining the boundary
of the allowed region. Our results suggest that these theories sit at kinks of the optimal
boundary corresponding to ⇤ =1.

��

��

��

O(2)0.5 1 2 3 4 5
�0+

1

2

4

6

8

�0-
Allowed region in the parity even/odd scalar sector (�=23)

� Free Boson

� GFVF

� Free Fermion

Figure 1: Exclusion plot in the plane (�+
0 ,��

0 ) corresponding to the lightest parity even and
parity odd scalars appearing in the OPE of two equal conserved currents. The shaded region
is allowed.

The stress-energy tensor appears in the OPE of two currents,

Jµ(x)J⌫(0) = CJ
�µ⌫ � 2bxµbx⌫

x4
+

3CJ

32⇡|x|
⇥
t↵�µ⌫ (bx) + 12� et↵�µ⌫ (bx)

⇤
T↵�(0) + . . . (1.3)

where bxµ = xµ

|x| and the dots represent the contributions from all other operators besides

the identity and the stress tensor T↵�. There are two independent tensor structures 3

3Their explicit form is:

t↵�µ⌫ (bx) = 6bx(µ�
↵
⌫)bx� + 2�↵µ�

�
⌫ + 3bxµbx⌫bx↵bx� � 5�µ⌫bx↵bx� ,

et↵�µ⌫ (bx) = 2bx(µ�
↵
⌫)bx� � 2�↵µ�

�
⌫ � 3bxµbx⌫bx↵bx� � 3�µ⌫bx↵bx� .

5

[Dymarsky, Penedones, Trevisani, Vichi ’17]

I Allowed {scalar, pseudoscalar} gaps from current 4-point functions
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Map of Allowed Couplings from {Jµ, φ} System
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Figure 1: On the left: allowed region in the plane (��, �) assuming that the first spin-2, parity-even
and neutral traceless symmetric tensor T 0 after the conserved stress energy tensor has dimension
�T 0 � 3.8, 4, 4.5, 4.8, 5. As the gap increases the allowed region shrinks to an island. On the right:
bound on �T 0 as a function of � and �S. The bounds have been obtained at ⇤ = 13.

property was also exploited in [25] to create isolated regions in single correlator bootstrap.
In Fig. 1(a) we show the allowed region in the plane (��, �) with increasing gaps on T 0. By raising
the gap �T 0 , the allowed region shrinks to a very small island, with a �� value centered around
the expected value of the O(2) model. By making the conservative assumption �T 0 � 4, we are
able to create an isolated region, with the parameter � confined close to the lower extreme of its
interval.

The above analysis shows that, in order to isolate the O(2) model, we can impose a mild gap
between the stress tensor operator and the next operator in the same sector. In order to make
this assumption rigorous one could consider the island created by the mixed correlator bootstrap
of scalars as in [10] and then derive a rigorous upper and lower bound on �T 0 by moving inside
the island. In what follows we then use two assumptions to isolate the O(2) model, one more
conservative and one more realistic: �T 0 � 4, 4.5. A refined analysis [35] of the O(2) model
involving three external scalar operators, �, S and the unique relevant charge two scalar t, has
found �T 0 � 4.6, which is consistent with both our assumptions.

Since in this section we are focusing on the O(2) model, in addition to the gap on T 0 we will
also input information from previous bootstrap analysis and use this assumptions to determine
bounds on new quantities.

Let us begin by � and the OPE coe�cient �JJS. We remind that, due to our framework, the

5

[Reehorst, Trevisani, Vichi ’19]

I Allowed couplings 〈JJT 〉 ∝ γ in O(2) model after imposing T ′µν gap
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