Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLC description

Conclusions and Outlook

Higgs boson pair production at NNLO in QCD with finite top quark mass effects

Florian Herren

March 25, 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Why are we interested in Higgs boson pair production?
- Experimental challenges
- Theoretica Status
- Towards a better NNLO description
- Conclusions and Outlook

- **1** Why Higgs boson pair production?
- 2 Experimental Challenges
- 3 Theoretical Status
- **4** Towards a better NNLO description

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLC description

Conclusions and Outlook

Why are we interested in Higgs boson pair production?

(日) (四) (日) (日) (日)

Why Higgs boson pair production?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Scalar potential of the SM:

$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda \left(\Phi^{\dagger} \Phi \right)^2$$

 $\xrightarrow{EWSB} V(H) = \frac{1}{2} m_H^2 H^2 + \lambda v H^3 + \frac{1}{4} \lambda H^4$

• Where the self-coupling λ can be expressed through known quantities:

$$\lambda = \frac{\mu^2}{\nu^2} = \frac{m_H^2}{2\nu^2} \approx 0.13$$

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLC description

Why Higgs boson pair production?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Scalar potential of the SM:

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda \left(\Phi^{\dagger} \Phi\right)^2 - \frac{C_H}{\Lambda^2} \left(\Phi^{\dagger} \Phi\right)^3$$
$$\xrightarrow{EWSB} V(H) = \frac{1}{2} m_H^2 H^2 + \lambda_3 v H^3 + \frac{1}{4} \lambda_4 H^4 + \dots$$

• Where the self-coupling λ_3 gets modified:

$$\lambda_3 = \lambda \left(m_H^2 - \frac{C_H v^2}{\lambda} \right)$$

• Virtually any new physics which couples to the Higgs will induce such an operator

Why Higgs boson pair production?

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

- In which processes do we have access to λ_3 ?
- The direct way, Higgs boson pair production:

• The indirect way, corrections to single Higgs boson production:

Florian Herren

Why are we interested in Higgs boson pair production?

```
Experimental 
challenges
```

Theoretica Status

Towards a better NNLC description

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretical Status

Towards a better NNLC description

Conclusions and Outlook

Experimental challenges

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Production cross sections

 $gg \rightarrow HH (NNLO_{FTapprox})$

ttHH (NLO)

tjHH (NLO)

70

100

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

50

- Cross sections three orders of magnitude smaller than for single Higgs boson
- Only $gg \rightarrow HH$ accessible

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLC description

gg ightarrow HH cross section

taken from arXiv:1910.00012 [hep-ph]

• Bulk of cross-section near $\sqrt{s} = 2m_t$

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

gg ightarrow HH cross section

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLC description

Conclusions and Outlook

taken from arXiv:1305.7340 [hep-ph]

イロト 不得 トイヨト イヨト

э

Destructive interference
 ⇒ sensitivity to λ near threshold

Branching ratios

 Clean channels have even smaller branching ratios than in the SM

ヘロト 人間ト 人間ト 人間ト

= 9Q@

 \Rightarrow always one $H \rightarrow b ar{b}$ decay for most searches

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

- Theoretica Status
- Towards a better NNLC description

Branching ratios

$HH ightarrow bar{b}bar{b}$

- 33% of all events
- Large QCD multi-jet background, especially at low m_{hh}

Why are we interested in Higgs boson pair production?

Florian Herren

Experimental challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

- $HH
 ightarrow b ar{b} \gamma \gamma$
 - Only 0.3% of the events
 - High signal-to-background ratio

 $HH
ightarrow b ar{b} au^+ au^-$

- Lower backgrounds than 4-b final state
- Use of semi-hadronic and fully hadronic tau decays
- τ_h identification, $Zb\bar{b}$, $t\bar{t}$ as backgrounds

Other final states searched for: $b\bar{b}VV^{(*)}$, WW^*WW^* , $\gamma\gamma WW^*$, $\tau^+\tau^-\tau^+_{-}\tau^-_{-}$

Status and outlook

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

- current limit: $-5.0 < \kappa_{\lambda} < 12.0$
- HL-LHC: $0.5 < \kappa_\lambda < 2.4$ [WG2 Report '19]
- FCC-hh: 5% accuracy [FCC CDR '19]

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretical Status

Towards a better NNLO description

Conclusions and Outlook

Theoretical Status

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Why higher orders?

イロト 不得 トイヨト イヨト

3

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretical Status

Towards a better NNLC description

Exact LO results known for 3 decades:

[[Glover, van der Bij '88],[Plehn, Spira, Zerwas '96]

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretical Status

Towards a better NNLC description

Conclusions and Outlook

Various approximations used at NLO, mostly in the limit of (infinitely) heavy top quark:

- Born-improved HEFT [Dawson, Dittmaier, Spira '98]
- LME [Grigo, Hoff, Melnikov, Steinhauser '13], [Degrassi, Giardino, Gröber '16]
- FT_{approx} , FT'_{approx} [Maltoni, Vryonidou, Zaro '14]
- LME + Threshold expansion [Gröber, Maier, Rauh '17]

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretical Status

Towards a better NNLC description

Conclusions and Outlook Furthermore there exist approximations addressing other parts of the phase-space:

- High-energy expansion [Davies, Mishima, Steinhauser, Wellmann '18 + '19],[Mishima '18]: valid for $s, t \gg m_t^2 \gg m_h^2$
- Small- p_T expansion [Bonciani, Degrassi, Giardino, Gröber '18]: valid for $p_T^2 < 4m_t^2$ (this is always true for s < 750 GeV)

 \rightarrow Combining LME and these two expansions should cover the full phase-space

phase-space

Florian Herren

Why are we

Theoretical Status

Exact numerical calculations available, covering the whole

[Borowka, Greiner, Herinrich, Jones, Kerner, Schlenk, Zirke '16], [Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher '18]

Recently have been combined with high-energy expansion

[Davies, Heinrich, Jones, Kerner, Mishima, Steinhauser, Wellmann '19]

イロト 不得 トイヨト イヨト 3

There is one issue....

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretical Status

Towards a better NNLC description

Conclusions and Outlook

taken from arXiv:2008.11626 [hep-ph]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Status beyond NLO

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretical Status

Towards a better NNLC description

Conclusions and Outlook The next step is to improve the situation at NNLO, here only few results exist:

- HEFT [de Florian, Mazzitelli '13], [Grigo, Melnikov, Steinhauser '14]
- $1/m_t^2$ corrections for virtual parts [Grigo, Hoff, Steinhauser '14]
- $1/m_t^2$ corrections for virtual parts combined with exact real radiation where available [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli '18]

ightarrow our goal is to obtain $1/m_t^2$ corrections for real radiation

Status beyond NLO

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretical Status

Towards a better NNLO description

Conclusions and Outlook At N³LO the basic building differing from single Higgs production recently have been computed for HEFT:

- Wilson coefficient C_{HH} [Spira '16],[Gerlach, FH, Steinhauser '18]
- 2 loop box-type diagrams [Banerjee, Borowka, Dhani, Gehrmann, Ravindran '18]

 \to HEFT result recently obtained $_{\rm [Chen,\ Li,\ Shao,\ Wang\ '19]}\to 2-3\%$ increase of total cross-section

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretical Status

Towards a better NNLO description

Conclusions and Outlook

Towards a better NNLO description

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What are we computing?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Inclusive, partonic cross-section at NNLO

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

$$\sigma_{ij}(s, m_H, m_t) = \delta_{ig} \delta_{jg} \sigma_{gg}^{(0)} + \frac{\alpha_s}{\pi} \sigma_{ij}^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \sigma_{ij}^{(2)} + \dots$$
$$\sigma_{ij}^{(2)} = \underbrace{\delta_{ig} \delta_{jg} \sigma_{gg, \text{virt}}^{(2)}}_{\text{[Grigo,Hoff,Steinhauser '14]}} + \underbrace{\sigma_{ij,\text{real}}^{(k)}}_{\text{this work}}$$

- So far only known in $m_t \to \infty$ limit, full computation not feasible
 - ightarrow asymptotic expansion in large top quark mass

$$\sigma_{ij}^{(l)}(s, m_H, m_t) \approx \sum_k \rho^k \sigma_{ij}^{(l),k}(x)$$
$$\rho = m_H^2/m_t^2, \quad x = m_H^2/s$$

How are we computing this?

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

We need to systematically compute higher-order terms in the large mass expansion.

The method of asymptotic expansion lets us separate hard scales (m_t) and soft scales (q_i, m_h) by taking all relevant regions of the loop integration into account:

How are we computing this?

We need to systematically compute higher-order terms in the large mass expansion.

Perform a Taylor expansion of all possible one loop building blocks:

 \rightarrow Pre-compute all building blocks in LME, insert them in amplitudes

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretica Status

Towards a better NNLO description

How are we computing this?

We use reverse unitarity to express the real corrections through cuts of 5-loop diagrams with 2 masses in forward scattering kinematics.

000

- Why are we interested in Higgs boson pair production?
- Experimenta challenges
- Theoretica Status
- Towards a better NNLO description
- Conclusions and Outlook

0000

- 2 1-loop tadpoles + 3-loop PS integral
- 1-loop + 2-loop tadpoles + 2-loop PS integral

 3 1-loop tadpoles + 2-loop PS integral

(日)

Florian Herren

Setup

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Families

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

We use LiteRed [Lee '12] for minimizing families, identifying common sectors and performing the reduction We end up with 13 three-loop,

and 3 two-loop phase space integral families:

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

- 3 systems of differential equations
- We bring them to Fuchsian form using Epsilon [Prausa '17]:

$$\partial_x \vec{l} = \sum_i \frac{M^{(i)}(\epsilon)}{x - x_i} \vec{l} \qquad x = m_h^2/s$$

They contain the letters:

 $x_i =$ 01 $\frac{1}{4}$ -1 $-\frac{1}{4}$ $e^{\pm i\frac{\pi}{3}}$ $-\frac{1}{3}$ 2 loop, 3 particle \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 3 loop, 3 particle \checkmark \checkmark \checkmark \checkmark \checkmark 3 loop, 4 particle \checkmark \checkmark \checkmark \checkmark

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretica Status

Towards a better NNLO description

- 3 systems of differential equations
- We bring them to Fuchsian form using Epsilon [Prausa '17]:

$\partial_x \vec{l} = \sum_i \frac{M^{(i)}(\epsilon)}{x - x_i} \vec{l} \qquad x = m_h^2/s$

They contain the letters:

$x_i =$	0	1	$\frac{1}{4}$	-1	$-\frac{1}{4}$	$e^{\pm i \frac{\pi}{3}}$	$-\frac{1}{3}$
2 loop, 3 particle	\checkmark	1	\checkmark			√	1
3 loop, 3 particle	\checkmark	\checkmark	\checkmark				
3 loop, 4 particle	1	✓	✓	1	1		

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretica Status

Towards a better NNLO description

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

 We proceed to transform the differential equations to *ϵ*-form using Libra [Lee, unpublished]:

$$\partial_x \vec{I} = \sum_i \frac{M^{(i)}(\epsilon)}{x - x_i} \vec{I} \quad \rightarrow \quad \partial_x \vec{J} = \epsilon \sum_i \frac{\tilde{M}^{(i)}}{x - x_i} \vec{J}$$

- The solution to DEs in this form can be written as Goncharov Polylogarithms
- Some of the $M^{(i)}(\epsilon)$ contain Eigenvalues of the form $\epsilon \pm 1/2$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook • Some of the $M^{(i)}(\epsilon)$ contain Eigenvalues of the form $\epsilon \pm 1/2$:

	$\sqrt{1-4x}$	$\sqrt{1+4x}$	$\sqrt{(1+3x)(1-x)}$
2 loop, 3 particle	1		\checkmark
3 loop, 3 particle	1		
3 loop, 4 particle	1	\checkmark	

 \rightarrow Need to find change of variable to transform square roots into rational functions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Florian Herren

Why are we interested in Higgs boson pair production?

-

Experimenta challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

• Some of the $M^{(i)}(\epsilon)$ contain Eigenvalues of the form $\epsilon \pm 1/2$:

$$\begin{array}{c|cccc} & \sqrt{1-4x} & \sqrt{1+4x} & \sqrt{(1+3x)(1-x)} \\ \hline 2 \text{ loop, 3 particle} & \checkmark & \checkmark \\ \hline 3 \text{ loop, 3 particle} & \checkmark & \checkmark \\ \hline 3 \text{ loop, 4 particle} & \checkmark & \checkmark \end{array}$$

• In the DE for the three-loop, three-particle cuts only $\sqrt{1-4x}$ appears

$$x = rac{y}{(1+y)^2}$$
 $x \in (0, 1/4] o y \in (0, 1]$

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

• Some of the $M^{(i)}(\epsilon)$ contain Eigenvalues of the form $\epsilon \pm 1/2$:

$$\begin{array}{c|cccc} & \sqrt{1-4x} & \sqrt{1+4x} & \sqrt{(1+3x)(1-x)} \\ \hline 2 \text{ loop, 3 particle} & \checkmark & \checkmark \\ \hline 3 \text{ loop, 3 particle} & \checkmark & \checkmark \\ \hline 3 \text{ loop, 4 particle} & \checkmark & \checkmark \end{array}$$

• In the DE for the three-loop, four-particle cuts both $\sqrt{1-4x}$ and $\sqrt{1+4x}$ appear

$$x = rac{t^4+1}{8t^2}$$
 $x \in (0,1/4] o t = e^{i\phi}: \phi \in (1/4,0]$

• Some of the $M^{(i)}(\epsilon)$ contain Eigenvalues of the form $\epsilon \pm 1/2$:

 $\begin{array}{c|cccc} \sqrt{1-4x} & \sqrt{1+4x} & \sqrt{(1+3x)(1-x)} \\ \hline 2 \text{ loop, 3 particle} & \checkmark & \checkmark \\ \hline 3 \text{ loop, 3 particle} & \checkmark & \checkmark \\ \hline 3 \text{ loop, 4 particle} & \checkmark & \checkmark & \checkmark \end{array}$

- In the DE for the two-loop, three-particle cuts $\sqrt{1-4x}$ and $\sqrt{(1+3x)(1-x)}$ appear
- Can not be rationalized together, however integrations over $\sqrt{(1+3x)(1-x)}$ do not contribute to cross-section

$$x = rac{y}{(1+y)^2}$$
 $x \in (0, 1/4] o y \in (0, 1]$

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

Boundary conditions and $\delta\text{-expansion}$

- Parametrize necessary phase-space integrals through $\delta = 1 4x$
- Expand around threshold $\delta pprox 0$
- Minimization and other manipulation of Goncharov Polylogarithms with PolyLogTools [Duhr, Dulat '19]
- We also obtained solutions to the DE with the ansatz

$$\vec{I} = \sum_{i,j,k} \vec{c}_{i,j,k} \epsilon^i \delta^{(2j+1)/2} \ln^k \delta$$

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

n_h^3 : NLO

Florian Herren

- Why are we interested in Higgs boson pair production?
- Experimental challenges
- Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

- Only gg channel contributes
- Already known in expansion around threshold [Grigo, Hoff, Melnikov, Steinhauser '13]
- Recomputed exactly in $m_h^2/s
 ightarrow 2$ MIs

collinear counterterm

$$\sigma_{gg,coll}^{(2),n_h^3} = 2 \int_{1-\delta}^1 \mathrm{d}z P_{gg}(z) \sigma_{gg}^{(1),n_h^3}(x/z)$$

n_h^3 : NNLO

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Florian Herren

- Why are we interested in Higgs boson pair production?
- Experimental challenges
- Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

• Three contributing channels gg, gq and $q\overline{q}$:

- Expanded to $1/m_t^8$
- Combine them with virtual corrections

Results

[Davies, FH, Mishima, Steinhauser JHEP 1905 (2019) 157]

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

ж

Convergence only below 2m_t

Results

(日) (四) (日) (日) (日)

[Davies, FH, Mishima, Steinhauser JHEP 1905 (2019) 157]

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

Convergence only below 2m_t

Full NNLO

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

• Five contributing channels gg, gq, $q\overline{q}$, qq and qq':

- $q\overline{q}$, qq and qq' done
- gg and gq significantly more complicated and WIP

Full NNLO

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

• qq results:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Full NNLO

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

• qq results:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretical Status

Towards a better NNLC description

Conclusions and Outlook

Conclusions and Outlook

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- LME is only useful in a limited part of phase space
- Can be combined with threshold expansion
- Works well for virtual part:

taken from [Gröber, Maier, Rauh '17]

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretica Status

Towards a better NNLC description

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

- LME is only useful in a limited part of phase space
- Can be combined with threshold expansion
- Works well for virtual part
- Higher orders in LME crucial, e.g. for NLO *ggH* formfactor:

taken from [Davies, Gröber, Maier, Rauh, Steinhauser '19]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Florian Herren

Why are we interested in Higgs boson pair production?

Experimental challenges

Theoretica Status

Towards a better NNLO description

Conclusions and Outlook

- LME is only useful in a limited part of phase space
- Can be combined with threshold expansion
- Works well for virtual part
- Higher orders in LME crucial, e.g. for NLO ggH formfactor:

taken from [Davies, Gröber, Maier, Rauh, Steinhauser '19]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- LME is only useful in a limited part of phase space
- Can be combined with threshold expansion
- Works well for virtual part
- Higher orders in LME crucial
- Recently contributions with light fermion loops at NNLO confirmed by analytic computation:

taken from [Harlander, Prausa, Usovitch '19]

- All other bits confirmed by numerical methods
- Expansions needed, in particular for $gg \rightarrow HH$

Florian Herren

Why are we interested in Higgs boson pair production?

Experimenta challenges

Theoretica Status

Towards a better NNLO description

Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Florian Herren

- Why are we interested in Higgs boson pair production?
- Experimental challenges
- Theoretica Status
- Towards a better NNLC description
- Conclusions and Outlook

- Higgs Boson pair production is a very interesting process
- Higher order QCD corrections necessary
- We obtained top-mass suppressed terms at NNLO
- Computed phase-space MIs, both, in an expansion around threshold and exactly
 - \rightarrow rather generic to any pair-production process of massive particles
- Work in progress: cross-sections for double real and remaining real-virtual contributions
- More work needs to be done: minimize scheme dependence, look at electroweak contributions