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Searching for new physics

- There is physics beyond the Standard Model

- Dark matter; early universe, gravity, ...

- Very large space of possibilities — need to search as widely as
possible

Experiments Theory

N

» Pushing the precision frontier: doing as well as QM allows
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Dark matter absorption

Absorption to photons: momentum mismatch
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Photonic materials

- Materials with periodic optical properties
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Dielectric haloscope

* DM can Bragg-convert in medium, producing photons:
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Photon detection

- Efficient, low-noise photon

detection using quantum
sensors - 1 ES, MKID, SNSPD

« Coherent conversion enables

focussing
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Registered counts
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Dark photon dark matter
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Upgrade prospects

Dark photon DM
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Upgrade prospects
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DM detection theory

Are there better ways of absorbing DM!?



DM aetection theory
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DM aetection theory
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Detectablility of forcing < Fluctuations of interaction operator

aF,, F*  F,F"™ . fluctuations of EM field

axion dark photon



EM field fluctuations

‘one photon per mode':
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=M sum rules

c.f. permittivity sum rule:
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=M sum rules

c.f. permittivity sum rule:
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=M sum rules

c.f. permittivity sum rule:
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Consequences for axion DM detection:
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=M sum rules

c.f. permittivity sum rule:
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Searching for axion over mass B T 9% 0oV Bt exp
range Am: excitation probability T T2 mAm




» Dielectric haloscope

DM sensrtivity
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» Dielectric haloscope

» Resonant cavity (e.g. ADMX)

DM sensitivity
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» Dielectric haloscope

» Resonant cavity (e.g. ADMX)

DM sensitivity
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2 2
PNQB V' pa
Am

(mR)* | mR < 1

Quasl-static suppression



AXION up-conversion
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AXION up-conversion
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AXION up-conversion

SRF cavities:
f ~ GHz

Bl < 02T

Q z 1011




AXION up-conversion

SRF cavities:
R
f ~ GHz (drive)

d=2.35R
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Sensitivity projections
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Sensitivity projections
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Quantum-limrted sensitivity

Quantum-limited amplifiers:

UPA)

Tcavity ~ few K > 27 GHz

Mitigation: over-couple to cold load 1o
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INtermission

* Thinking systematically about detection of new physics —
new experimental concepts

» Other detection problems
- Different couplings, DM scattering, Gravitational VWaves

- As well as thinking about how to look for things, need to
think about what to look for!



Solar particle production



Solar particle production




Solar particle production




Solar particle production




Solar particle production




article production

Low-velocity emission =
bound orbits =

3 population builld-up



Dark photon production
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kinetic mixing €

Dark photon sensitivity
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Orbrtal dynamics

[PRELIMINARY]
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Orbrtal dynamics

[PRELIMINARY]
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F1G. 3.—Bound and unbound low-velocity WIMPs. Dashed semicircles are
curves of constant speed relative to the Earth. The solid semicircle delimits the
bound from the unbound orbits, and the solid contour encloses the region of
orbits which remain empty over an Earth lifetime. Note that for any given
“cutoff velocity,” the phase space inside the corresponding semicircle is mostly

populated.

(Gould 1991]
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Black hole superradiance

 New particles must couple to SM through gravity

* Problem: astrophysically, spacetime curvature scale 2 km
= effective source density very low

. e.g. BH Hawking temperature, Tn = 1/(87GM) ~ 10"°K
for M ~ 10M,,

- Jake advantage of coherence enhancement: classical
energy extraction from spinning BHSs



Extracting energy and angular
momentum from black holes

* Spinning BHs have ergosphere - region where particles can
have negative energy (as viewed from infinity)
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"Event horizon

» Mechanical Penrose process: throwing negative-energy
barticle into horizon
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Extracting energy and angular
momentum from black holes
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Extracting energy and angular
momentum from black holes

* Spinning BHs have ergosphere - region where particles can
have negative energy (as viewed from infinity)
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- Wave Penrose process: transmitted wave has negative
energy, reflected wave carries extra energy away



Extracting energy and angular
momentum from black holes
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Observational signatures

Black hole spin-down

Gravitational radiation

quartic
Interaction

Coherent particle emission



Axion-nucleon coupling

“Axion wind" coupling: effective magnetic field

LD gn(d,a)i" y"n H, D gno-(Va+ av,)
= Ba " Hn

magnetometer

(eg, SQUID or Coil

B’ cos(w.t)

[CASPE-Wind]



Axion-nucleon coupling
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Axion-nucleon coupling
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Summary

- To learn about physics beyond the Standard Model, we
need new data

- New experiments a key aspect of that
» Important to think systematically about
* how best to look for motivated signals

» what kinds of signals too look for



