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Scattering AmplitudesM

M ∼ ⟨f ∣S ∣i⟩: Probability amplitude for measuring a
final state ∣f⟩ given an initial state ∣i⟩

● Used in most Quantum Field Theory calculations.
– Leads to predictions for collider experiments.
– Standard Model observables computed to high precision.
– Calculated using Feynman diagrams.

CMS Experiment 2012
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Scattering AmplitudesM

● Properties extensively studied.
– How to encode their content? Spinors, twistors,

amplituhedron?
– What are their symmetries? Lorentz invariance, dual

conformal invariance, Steinmann relations?
– What functional forms can they take? Logarithms,

polylogarithms?

● Often computed in perturbation theory by summing all
Feynman diagrams.

Can we exploit constraints to calculate
M more efficiently?
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Motivation for Studying Discontinuities of Amplitudes

s

t u

● Feynman integrals give logarithms and polylogarithms with
branch cuts.

– Value ofM depends on whether we use +iε or −iε.

● Traditional Cutting Rules: Discontinuities related to
cuts of corresponding Feynman diagram.

DiscM =M∣+iε −M∣−iε = ∑CutM

● ReconstructM from discontinuities using a basis of
functions for Feynman integrals.
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Motivation for Studying Discontinuities of Amplitudes

Traditional Cutting Rules:

DiscM =M∣+iε −M∣−iε = ∑CutM

● What can we learn from studying sequential
discontinuities ofM?

DiscDiscM =?

● How do we relate sequential discontinuities ofM to cuts?

● What do we gain from a systematic treatment of
computing discontinuities?
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Outline

1. Analytic Structure and Discontinuities
● Need more powerful tools than ±iε for sequential
discontinuities.

● Define discontinuities using monodromies.

2. Relations between Discontinuities and Cuts
● Use Time-Ordered Perturbation Theory (TOPT) to
prove results.

● New results for relations between sequential
discontinuities and multiple cuts.

● New proof of the Steinmann relations.

3. Examples

4. Future Work
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1. Analytic Structure and
Discontinuities
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Problems with iε Definition of Discontinuity

● DiscM =M∣+iε −M∣−iε only defined on the branch cut:

Discs ln s = ln(s + iε) − ln(s − iε) = 2πiθ(−s)

Discs ln2 s = ln2
(s + iε) − ln2

(s − iε) = 4πiθ(−s) ln ∣s∣
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● What is the iε prescription of DiscsM?

Need a better definition of Disc to take
sequential discontinuities.
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Problems with iε Definition of Discontinuity

Want to study DiscM in each Mandelstam separately

p1

p2 p3

p4

s

t

=M (p2j , s, t, u)

Intuitively: Define discontinuity in a channel s as

DiscsM =M (p2j , s + iε, t, u) −M (p2j , s − iε, t, u)

● Agrees with cuts in only s?
● Problem: Mandelstams are not all independent:

s + t + u =∑p2j

Discs should be invariant under rewriting M.

8



Definition of Discontinuity

Resolution: Abandon the ±iε notation, take monodromies.
Definition: DiscsM is the monodromy ofM around s = 0,
starting in Rs.
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● Rs: Region in space of Mandelstams where s > 0, all other
Mandelstams si,j,... < 0.

● Monodromy: How a function changes when analytically
continuing around a singularity.
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Definition of Discontinuity

Discontinuities with ±iε only account for the principal branch:
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Monodromies allow for maximal analytic continuation:
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Definition of Discontinuity in a Channel

DiscsM is the monodromy ofM around s = 0, starting in Rs.

● Agrees with the iε definition in Rs:

[DiscsM]Rs = [M∣+iε −M∣−iε]Rs

● Results in a function on complex space.

● Machinery: monodromy operator.

[DiscsM]Rs = [(1 −M s
0
)M]

Rs

● Sequential discontinuities are natural and algebraic:

[DiscsDiscsM]Rs = [(1 −M s
0
) (1 −M s

0
)M]

Rs
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Example of Complex Analytic Structure ofM

M = p1

p2

p3

∝ Li2(z) − Li2(z̄) +
1

2
ln(zz̄) ln(

1 − z

1 − z̄
)

with zz̄ = p22/p
2
1, (1 − z)(1 − z̄) = p23/p

2
1

● Dilogarithm Li2(z) = − ∫
z
0

ln(1−s)
s

ds has a branch point at z = 1:

(1 −M z
1

) Li2(z) = 2πi∫
z

1

1

s
ds = 2πi ln (z)

● Logarithm ln(z) = ∫
z
1

1
s
ds has a branch point at z = 0:

(1 −M z
0

) ln(z) = 2πi

Monodromy of Li2 at z = 1 exposes a new branch point at z = 0.

Useful information in sequential discontinuities.
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Example of Complex Analytic Structure ofM

M = p1
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∝ Li2(z) − Li2(z̄) +
1

2
ln(zz̄) ln(
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1 − z̄
)

with zz̄ = p22/p
2
1, (1 − z)(1 − z̄) = p23/p

2
1

● Dilogarithm Li2(z) = − ∫
z
0

ln(1−s)
s

ds has a branch point at z = 1:

(1 −M z
1

) Li2(z) = 2πi∫
z

1

1

s
ds = 2πi ln (z)

● Logarithm ln(z) = ∫
z
1

1
s
ds has a branch point at z = 0:

(1 −M z
0

) ln(z) = 2πi

Monodromy of Li2 at z = 1 exposes a new branch point at z = 0.

Useful information in sequential discontinuities.
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Summary of Analytic Structure and Discontinuities

● The ±iε definition of discontinuities cannot capture
sequential discontinuities.

– Function defined on a line, not on C.
– Cannot take Disc in each Mandelstam separately.

● Resolution: Use monodromy operators.
– Calculations amount to matrix multiplications.

● Discontinuities expose new branch points in C.
– Useful information in sequential discontinuities.

How do we relate sequential discontinuities
to cuts of Feynman diagrams?
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1

2. Cuts
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Example: Discontinuities, Monodromies and Cuts

M =
p

∝ −
i

16π2
ln (−p2 − iε)

(1 −M p2

0

)M∝ −
i

16π2
(−2πi) = −

1

8π

[DiscM]
Rp2 ∝ −

i

16π2
(−2πi)Θ(p2) = −

1

8π
Θ(p2)

CutM∝
p

= −
1

8π
Θ(p2)
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Traditional Cutting Rules

DiscM =M∣+iε −M∣−iε =∑CutM

p1

p2

p3

C

+iε −iε

L.h.s. of cut has +iε, r.h.s. of cut has −iε.

Proofs:
● Cutkosky, using the Landau equations.
● t’Hooft and Veltman, using the largest time equation.
● Time-ordered perturbation theory (TOPT).

– Most transparent and easily generalizable.
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Review of Time-Ordered Perturbation Theory (TOPT)

Sum of v! TOPT diagrams = Feynman diagram

p p

k

p − k

+

p

p − k
k

p

p p

k

p − k

TOPT diagrams Feynman diagrams
● Time passes from left to right ● Vertices are not ordered

● All particles on-shell:

E2 = p⃗2 +m2

● Internal particles virtual:

E2 ≠ p⃗2 +m2

● p⃗ conservation at each vertex ● p⃗ conservation at each vertex

● Not E conservation at each
.. vertex

● E conservation at each vertex

● Overall E & p⃗ conservation ● Overall E & p⃗ conservation

● Individual diagrams not ......
.. Lorentz invariant

● Manifestly Lorentz-invariant

● Good for proofs & intuition ● Good for calculations
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Review of Time-Ordered Perturbation Theory (TOPT)

Sum of v! TOPT diagrams = Feynman diagram

p p

k

p − k

+

p

p − k
k

p

p p

k

p − k

∫
d3k

(2π)3
1

2ωk

1

2ωp−k
[

1

Ep − (ωk + ωp−k) + iε
+

1

Ep − (ωk + ωp−k + 2ωp) + iε
]

= −∫
d4k

i(2π)4
1

k2 −m2
1 + iε

1

(p − k)2 −m2
2 + iε
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Cutting Rules in TOPT

Advantages to TOPT:

● Energies are independent, Mandelstams are not.
● One delta function for each cut.

– Various numbers of on-shell Feynman propagators for each
cut through a Feynman diagram.

p1

p2

p3

C1 C2 C3 C4

M∣+iε ∝ ∫
1

E1 − ω1 + iε

1

E1 − ω2 + iε

1

E1 −E2 − ω3 + iε

1

E1 −E2 − ω4 + iε

Relate DiscM to cuts using 1
Ei+iε −

1
Ei−iε = −2πiδ (Ei)
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Results Derived using TOPT

Same channel sequential discontinuities: Equal to a sum of
diagrams cut multiple times with a combinatorial factor.

[Discms M]Rs = (1 −M s
0
)
m
M

= ∑
k=m

⎧⎪⎪
⎨
⎪⎪⎩

m

∑
`=1

(−1)`
⎛

⎝

m

`

⎞

⎠
(−`)k

⎫⎪⎪
⎬
⎪⎪⎭

[Mk-cuts]Rs+

Different channel sequential discontinuities: Equal to a
sum of diagrams cut multiple times in a region R{s,t} where both
cuts can be computed.

[DiscsDisctM]R{s,t} = (1 −M t
0
)(1 −M s

0
)M

= [∑
k=1
∑
`=1

(−1)k+`M{k cuts in s, ` cuts in t}]

R
{s,t}
+

R+: M computed with all +iε. 20



Steinmann Relations

M cannot have sequential discontinuities in partially
overlapping channels

s

t u

M cannot contain ln(s) ln(t) but can contain ln(s) ln(u).

● Important for bootstrapping amplitudes.
● Old proof in S-matrix theory [1, 2].

– Non-perturbative, used unitarity.
● Our new proof in TOPT [3].

– Applies to individual Feynman integrals.
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Proof of Steinmann Relations in TOPT

● TOPT denominators have a sequence of energies.

p1

p2

p3

p4

p5

−E5, E1−E5, E1−E5, E1−E5, E1−E5−E3, E1−E5−E3+E2

p25, (p1−p5)2, (p1−p5−p3)2, (p1−p5−p3+p2)2

● Each energy is a subset of the sequential ones.

No sequential discontinuities in partially
overlapping channels

– Regions may not exist when some particles are massless.
– Cannot fix external masses to zero.
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3. Examples
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Example: Chain of Bubbles

Each uncut bubble gives a log:

M = p→
A B C ∝ ln3

(−p2 − iε)

1 cut

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p→
=

p→

=
p→

∝ (−2πi) ln2
(−p2 − iε)

2 cuts

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p→
=

p→

=
p→

∝ (−2πi)
2

ln (−p2 − iε)

3 cuts
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

p→
∝ (−2πi)

3

24



Example: DiscM for Chain of Bubbles

● Discontinuity calculated using monodromy matrices:

[Discp2M]
Rp2 ∝ (−2πi) ln2

(−p2 − iε) − 3(−2πi)2 ln (−p2 − iε) + (−2πi)3

● Cuts calculated by putting particles on shell, using +iε:

∑CutM =
p→

+
p→

+
p→

−
p→

−
p→

−
p→

+
p→

● Agreement with formula:

[Discp2M]
Rp2 =M

(1-cuts)
−M

(2-cuts)
+M

(3-cuts)
25



Example: Disc2M for Chain of Bubbles

● Discontinuity:

[Disc2p2M]
Rp2 ∝ 6 (−2πi)

2
ln (−p2 − iε) − 6(−2πi)3

● Cuts:

∑CutM = 2
p→

+ 2
p→

+2
p→

−6
p→

● Agreement with formula:

[Disc2p2M]
Rp2 = 2M(2-cuts)

− 6M(3-cuts)
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Example: Disc3M for Chain of Bubbles

● Discontinuity:

[Disc3p2M]
Rp2 ∝ 6(−2πi)3

● Cuts:

∑CutM = 6
p→

● Agreement with formula:

[Disc3p2M]
Rp2 = 6M(3-cuts)
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Example: Chain of Bubbles, Summary

M = p→
A B C ∝ ln3

(−p2 − iε)

DiscM =
p→

+
p→

+⋯

∝ 3 (−2πi) ln2
(−p2 − iε) − 3(−2πi)2 ln (−p2 − iε) + (−2πi)3

Disc2M = 2
p→

+ 2
p→

+⋯

∝ 6 (−2πi)
2

ln (−p2 − iε) − 6(−2πi)3

Disc3M = 6
p→

∝ 6 (−2πi)
3

Discontinuities = ∑ multiple cut diagrams
28



Example: Two-loop Triangle

p3

p2

p1

M∝ 6[Li4(z) − Li4(z̄)] − 3 ln(zz̄)[Li3(z) − Li3(z̄)]

+
1

2
ln2

(zz̄)[Li2(z) − Li2(z̄)]

Compare the following discontinuities and cuts:

Discp2
2
Discp2

2
M Discp2

1
Discp2

2
M

29

zz̄ =
p22
p21

(1 − z)(1 − z̄) =
p23
p21



Energy Rotations in z, z̄ Plane

M∝ 6[Li4(z) − Li4(z̄)] − 3 ln(zz̄)[Li3(z) − Li3(z̄)]

+
1

2
ln2

(zz̄)[Li2(z) − Li2(z̄)]

R⋆
I

R⋆
II

R⋆
III

R⋆
IV

R1R2

R3

z = 0 z = 1

z̄ = 0
z̄ = 1

30
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p22
p21
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p23
p21



2-loop Triangle: Same Channel

● Discontinuity calculated using monodromy matrices:

[Discp22Discp22M(z, z̄)]
R2

∝ Li2(z) − Li2(z̄)

● Cut calculated by putting particles on shell:

[M
(2-cuts)

]
R2

= p3

p2

p1

∝
Li2(z) − Li2(z̄)

2

● As predicted, agree up to the combinatorial factor:

[Discp22Discp22M(z, z̄)]
R2

= 2 [M
(2-cuts)

]
R2
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2-loop Triangle: Different Channel Cuts

[M
(2-cuts)

]
R12

=
p3

p2

p1

+
p3

p2

p1

+
p3

p2

p1

+
p3

p2

p1

∝ (2πi)2{Li2(z̄) − Li2(z − iε) −
1

2
ln2 z + ln z ln z̄ + iπ ln z − 2πi ln z̄}
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2-loop Triangle: Different Channel Cuts

[M
(3-cuts)

]
R12

=
p3

p2

p1

+
p3

p2

p1

+
p3

p2

p1

+
p3

p2

p1

∝ (2πi)3 {ln z − ln z̄}
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2-loop Triangle: Different Channels

● Discontinuity:

[Discp2
2
Discp2

1
Φ2]

R12
∝ (2πi)2{Li2(z̄) − Li2(z − iε)

−
1

2
ln2 z + ln z ln z̄ − iπ ln z}

● Cuts:

M
(2-cuts)

∝ (2πi)2{Li2(z̄) − Li2(z − iε)

−
1

2
ln2 z + ln z ln z̄ + iπ ln z − 2πi ln z̄}

M
(3-cuts)

∝ (2πi)
3
{ln z − ln z̄}

● Agreement with formula:

[Discp22Discp21M2]
R12

=M
(2-cuts)

−M
(3-cuts)
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4. Future Work
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Future Work

● Extend analysis to massless external particles?
– Steinmann relations used without proof for bootstrapping

in N = 4 super Yang-Mills.
● Apply new results to bootstrapping?

– What constraints can be obtained by the form of the
monodromy matrix?

● Bootstrap Finite S-matrix?
– IR finite operator defined [4, 5] in theories with massless

particles using Soft-Collinear Effective Theory (SCET).
– Encodes hard dynamics of scattering amplitudes.
– Can be interpreted as:

1. Wilson Coefficients in SCET.
2. Remainder functions in N = 4 super Yang-Mills.
3. Coherent states.
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Results

● Discontinuities defined as monodromies around
singularities.

– Start in kinematic region where cut can be performed.
– Monodromy matrices make calculations of monodromies

algebraic.
● TOPT used to prove:

1. Same channel discontinuities: Equal to a sum of
diagrams cut multiple times with a combinatorial factor.

2. Different channel discontinuities: Equal to a sum of
diagrams cut multiple times in a kinematic region where
all cuts can be computed.

3. Steinmann Relations: M cannot have sequential
discontinuities in partially overlapping channels.
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Example of Monodromy Matrix - ln3(s)

M =

0

∝ ln3
(s)

● Collect total differentials into a vector.

d(
lnn s

n!
) = (

lnn−1 s
(n − 1)!

)
ds

s
,

V ≡ (1 ln s 1
2 ln2 s 1

3! ln3 s)

● Solve differential equation.

dV = V ⋅ ω

with

ω =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 ds
s 0 0

0 0 ds
s 0

0 0 0 ds
s

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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Example of Monodromy Matrix - ln3(s)

● Collect solutions in a normalized matrix.

Mγ0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 ln s 1
2 ln2 s 1

3! ln3 s

0 1 ln s 1
2 ln2 s

0 0 1 ln s

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

with dMγ0 = Mγ0 ⋅ ω.

● Calculate monodromies around s = 0.

M s
0
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 2πi 1
2(2πi)

2 1
3!(2πi)

3

0 1 2πi 1
2(2πi)

2

0 0 1 2πi

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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Example of Monodromy Matrix - ln3(s)

● Compute any sequence of discontinuities by multiplying
matrices.

(1 −M s
0
) ⋅Mγ0(s)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 2πi 2πi ln s +
(2πi)2

2
2πi
2 ln2 s +

(2πi)2
2 ln s +

(2πi)3
3!

0 0 2πi 2πi ln s +
(2πi)2

2

0 0 0 2πi

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Discs
ln3
(s)

3!
=

2πi

2
ln2 s +

(2πi)2

2
lns +

(2πi)3

3!
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