Ensemble generation for lattice QFT using machine learning

Gurtej Kanwar, MIT

Fermilab Theory Seminar September 3, 2020

Denis Boyda

Dan Hackett

Gurtej Kanwar*

Phiala Shanahan

Kyle Cranmer

Michael Albergo

Sébastien Racanière

Danilo Rezende

George Papamakarios

Peter Wirnsberger

(Just one) Motivation for an ab initio approach

- Many experiments for new physics rely on nuclear targets / samples
- Need to know SM predictions for nuclear matrix elements, structure functions

Models disagree: ab initio is key!

Ab initio nuclear physics

- Lattice QCD gives theoretical input in nonperturbative regime
- Nuclear matrix elements from theory → LECs for EFT methods
- Complementary to experiment

Outline

- Background:
 - Lattice gauge theories
 - Efficient ensemble generation
- Normalizing flows:
 - "Flow-based" MCMC sampler
 - Imposing symmetries (e.g. gauge, translational, ...)
- **Applications:**
 - Scalar theory and U(1) + SU(N) gauge theory in 2D

[Albergo, **GK**, Shanahan PRD100 (2019) 034515]

[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan 2003.06413, PRL in production] [Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan 2008.05456]

Background

Lattice gauge theory

- Non-perturbative regularization for gauge theories
 - Low-energy limit of QCD -
 - Strongly-coupled composite dark matter [Kribs, Neil 1604.04627]
- Discretized (Euclidean) spacetime
 - Lattice spacing acts to cut off momenta
 - Exact gauge invariance
- Regularized path integral to compute observables

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} U \mathcal{O}[U] e^{-S[U]}$$

Importance sampling

- Sampling histories in path integral enables efficient estimation of (many) observables
 - $\langle \mathcal{O} \rangle \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{O}[U_i]$
- Markov chain Monte Carlo (MCMC)

- Performance limitations of local MCMC
 - Information transfer limited by local updates
 - Rare to update entire field coherently

$U_i \sim p(U) = e^{-S(U)}/Z$

Example: MCMC to generate ensembles for scalar field theory

Critical slowing down

topological freezing

Better importance sampling?

- Ideal world: independently draw samples directly from your distribution
 - E.g. sampling Gaussian variables via the Box-Muller transform
 - 1. Draw samples $U_1, U_2 \in [0,1]^2$ from (uncorrelated) uniform distribution r

2. Change variables

$$Z_{1} = \sqrt{-2\log U_{1}} \cos 2\pi U_{2}$$

$$Z_{2} = \sqrt{-2\log U_{1}} \sin 2\pi U_{2}$$
3. Know $r(U_{1}, U_{2}) = 1$

$$p(Z_{1}, Z_{2}) = r(U_{1}, U_{2}) \left| \det_{kl} \frac{\partial Z_{k}}{\partial U_{l}} \right|^{-1}$$

$$= \frac{1}{2\pi} e^{-(Z_{1}^{2} + Z_{2}^{2})/2}$$

Density is affected by the change of measure!

Better importance sampling?

- Ideal world: independently draw samples directly from your distribution
- Do not know how to exactly sample lattice gauge theory distributions
- Can we use an approximate independent sampler (without introducing bias)?
 - Yes, but we need to know prob. density q(U) being sampled
 - Reweighting or Independence Metropolis MCMC give unbiased estimates

 $\mathcal{D}Uq(U)\left[\mathcal{O}(U)\frac{p(U)}{U}\right]$ q(U)(0) p(U) $\int \mathcal{D}Uq(U)$

Approximate sampling

- i.e., "variational techniques"
- - 1. Sample $U \sim q(U)$
 - 2. Measure q(U) given U

We can use Reweighting or **Independence** Metropolis for unbiased estimates

Machine learning techniques are effective for doing things approximately

• Normalizing flow models (rest of the talk) learn distributions, and can both:

Normalizing flows for sampling

We already saw a normalizing flow: Box-Muller transform to draw Gaussian vars.

Normalizing flows

ML method to construct samplers for complicated probability distributions; originally for image generation

1. Start with a prior distribution r in which

... it is easy to draw samples V

...you can compute r(V) for each V

Ex: uncorrelated uniform, Gaussian, ...

2. "Flow" to distribution q (approximating the target p) using a parametrized change of vars f that

...is **invertible**

...has a (tractably) computable log-det-Jacobian

Approach: Construct flow as a variational ansatz for p, optimize so that $q \approx p$

Faces generated via "real NVP" flow from uncorrelated noise [Dinh, Sohl-Dickstein, Bengio 1605.08803]

 $\partial [f(V)]_i$ q(U) = r(V)det

Defining the flow function

- The "flow" f must be invertible and have tractable log-det-Jacobian (LDJ)
 - In Box-Muller transform, f is precisely constructed to produce the Gaussian dist
 - For LQFT, don't know what f needs to be; instead, construct parametrized ansatz and optimize it
- Composition

$$q(U) = r(V) \left| \det_{ij} \frac{\partial [f(V)]_i}{\partial V_j} \right|$$

Coupling layers

the complimentary subset.

 \rightarrow Jacobian is explicitly upper-triangular (get LDJ from diag elts)

 \rightarrow Invertible if each diag component invertible,

Idea: Construct each g to act on a subset of components, conditioned only on

Ex: coupling layer for gauge theory

- Masking pattern: define which links to freeze and condition on
 - Idea: leave enough frozen context so transform can build correlations between DOFs
 - E.g. freeze all but specific columns (or rows) of links

$$U'_{\mu}(x) = \exp\left(iW_{\xi}(\mathsf{free})\right)$$

ozen neighbors) $\cdot \lambda U_{\mu}(x)$

"What is W_{ξ} ?"

Our terminology: "context function".

Neural networks: compose parametrized linear transforms with non-linear elementwise functions.

→ Universal function approximators

Matrices of weights define linear transforms. Altogether, these weights compose the model parameters ξ .

Optimizing via "self-training"

sample configurations U.

- Must not require a large number of samples from real distribution to optimize!
- Self-training: take samples from the model, not true distribution
- Kullback-Leibler (KL) divergence between q and p given samples

Optimization by comparing model likelihood q(U) vs true likelihood p(U) on

Flow-based MCMC

Markov chain constructed using Independence Metropolis accept/reject on model proposals.

- **Independent** proposals U' from model distribution q
- Accept proposal U', making it next elt of Markov chain, with probability

$$p_{\rm acc}(U \to U') = \min\left(1, \frac{p(U')}{q(U')} \frac{q(U)}{p(U)}\right)$$

- If **rejected**, duplicate previous elt of Markov chain
 - Only need to compute observables on duplicated elts once!

Birds-eye view

generating samples is "embarrassingly parallel"

Symmetries

Typical lattice gauge theories are symmetric under

- (Discrete) translational symmetry
- 2. Hypercubic symmetry
- 3. Gauge symmetry

Elements defined by group-valued fields $\Omega(x)$ that transform the gauge field as

$$(\Omega \cdot U)_{\mu}(x) = \Omega(x)U_{\mu}(x)\Omega^{\dagger}(x+\hat{\mu})$$

Symmetries factor distribution into uniform component along symmetry direction, and nonuniform component along invariant direction. Ex for gauge symmetry (schematically):

Learning symmetries

Models will learn any symmetries of the action **approximately**.

 Always made exact after reweighting / flow-based MCMC

Some symmetry groups quite large. We can do better by **encoding them explicitly** in model structure!

- Variational ansatz is restricted to only explore distributions like the left one

Symmetries **factor** distribution into uniform component along symmetry direction, and nonuniform component along invariant direction. Ex for gauge symmetry (schematically):

Symmetries in normalizing flows

Can be imposed on the model by ensuring

- 1. Prior is **invariant** under the symmetry
- 2. Flow f is equivariant under the symmetry [Cohen, Welling 1602.07576]

Equivariance: symmetry operations commute with application of f

- Translational equivariance achieved by using (1) Convolutional Neural Networks in context functions and (2) symmetric masking patterns.
- Our recent contribution: gauge equivariance

Uniform prior distribution is invariant under all symmetries of interest in lattice gauge theory.

Must construct flow to satisfy equivariance!

Applications: 1+1D lattice theories

Proof-of-principle at low computational cost, no theoretical obstacle to higher dims

Scalar theory on a 2D lattice

$$S_E(\phi) = \sum_{x} \left(\sum_{y} \phi(x) \Box(x, y) \phi(y) + m^2 \phi(x)^2 + \right)$$

- Real DoF per lattice site, $\phi(x) \in \mathbb{R}$
- 6×6 through 14×14 lattices studied
- Scalar particle mass tuned to give correlation length $\sim L/4$
- Affine coupling layers for flow models:

$$\phi'(x) = e^s \phi(x) + t$$

Context functions, implemented using NNs acting on frozen sites (checkboard pattern)

Flow model samples

 $\lambda \phi(x)^4$

~ VS ~ HMC samples

Lattice gauge theory in 2D $S(U) = -\frac{\beta}{N} \sum \operatorname{Re} \operatorname{tr} \left[P_{01}(x) \right]$ • Wilson gauge action, SU(N): $P_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+\hat{\mu})U_{\mu}^{\dagger}(x+\hat{\nu})U_{\nu}^{\dagger}(x)$

- Gauge transforms are a symmetry of the action: $(\Omega \cdot U)_{\mu}(x) = \Omega(x)U_{\mu}(x)\Omega^{\dagger}(x+\hat{\mu})$
- Confinement, ultralocal dynamics

untraced!

$p(P_{01}(x)) \approx \exp\left(\frac{\beta}{N} \operatorname{Retr} P_{01}(x)\right)/Z$

- Each plaq has independent statistics, up to correlations that are a finite volume effect

Gauge equivariance

Intuition: act on gauge-invariant quantities only

- Factorized action of coupling layer
- Issue: must remain invertible
- Issue: preserve trans. symmetry

× Gauge fixing with **explicit factorization** (e.g. maximal tree) does not preserve trans. symmetry!

× Gauge fixing with **implicit factorization** (e.g. Landau gauge) hard to preserve across coupling layer!

Solution: transform group-valued untraced Wilson loops, "absorb" update using link representation

E.g. traced plaquettes, traced Wilson loops

"What is a kernel?"

Wilson loops (e.g. subset of untraced plaquettes)

Must satisfy:

- 1. Invertible and tractable log-det-Jacobian
- 2. Equivariant under matrix conjugation

$$h(XPX^{-1}) = Xh(P)X^{-1}$$

3. Only conditioned on gauge-invariant frozen quantities

"Condition on": pass as input to context functions used in defining h

The core of a gauge-equivariant coupling layer; acts on a selection of untraced

Guarantees gauge equiv: gauge transforms act on untraced loops via matrix conjugation

Kernel for U(1) gauge theory

• Variables are 1×1 matrices (i.e. scalars):

 $XPX^{-1} = P$

- Required: invertible function suitable for U(1) vars
 - Developed flows for compact variables (tori and spheres) in [†]
 - We choose a "non-compact projection" transform:

= convolutional NNs

$$\theta' = 2 \arctan\left(e^{s_{\xi}(I)} \tan(\theta/2)\right) + t_{\xi}(I)$$

 ξ = model parameters I = nearby frozen plaquettes

[†] [Rezende, Papamakarios, Racanière, Albergo, **GK**, Shanahan, Cranmer ICML(2020) 2002.02428]

[Image credit: Dan Hackett]

Results for U(1) gauge theory

There is exact lattice topology in 2D.

$$Q = \frac{1}{2\pi} \sum_{x} \arg(P_{01}(x))$$

Comparison: flow, analytical, HMC, and heat bath on 16×16 lattices for $\beta = \{1, \dots, 7\}$

- Topo freezing in HMC and heat bath
 - Direct sampling approaches known, but do not generalize
- Flow-based MCMC observables agree with analytical

Kernel for SU(N) theories

Intuition: should move points between conjugacy classes, without moving around within CCs

Conjugacy classes for SU(N) described by **spectrum** of the matrix: unordered set of eigenvalues. Kernel should transform spectrum!

- Act on list of eigenvalues
- Equivariant under permutations

Permutations exchange cells in the space of $\{\theta_k\}$

Approach: map input to a "canonical" cell, transform within cell, undo canonical map

maximal torus of SU(N)

Learning SU(N) plaquette distributions

- Representative of marginal distribution on untraced plaquette
- Conjugation-invariant action with several choices of coefficients

$$S_i(U) := -\frac{\beta}{N} \operatorname{Re} \operatorname{tr} \left[\sum_n c_n^{(i)} U^n \right]$$

- Special case implementations tested for SU(2) and SU(3)

Tested kernel in isolation by learning distributions on a single SU(N) variable

• Unoptimized generic implementation learns $c^{(0)}$ for $SU(4), \ldots, SU(100)$

Density has zeros on vertical, horizontal, and diagonal lines where the slice crosses walls of cells

Learning SU(2) and SU(3) gauge theory Normalizing flows trained for 2D lattice gauge theory on 16×16 lattices.

- Approx equal 't Hooft couplings: $\beta = \{1.8, 2.2, 2.7\}$ for SU(2) and $\beta = \{4.0, 5.0, 6.0\}$ for SU(3)
- 48 coupling layers, update all links 6 times
- Kernels suitable for SU(N) for exact gauge invariance

Symmetries in SU(2) and SU(3) models

Exact gauge symmetry by construction.

Exact center symmetry due to choice of loops:

- Plaquettes invariant under center symm
- Should include Polyakov loops if center symmetry explicitly broken in theory

Large subgroup of translational symmetry

- $\mathbb{Z}_4 \times \mathbb{Z}_4$ breaking due to 4-site spacing in masking pattern
- 16-elt residual group to be learned, independent of volume

Ò

3

0

Results for SU(2) and SU(3) gauge theory

- Flow-based MCMC observables agree with analytical
- High-quality model: autocorrelation time in flowbased Markov chain $\tau_{int} = 1 - 4$
- $1/\sqrt{n}$ scaling with number of samples *n*

thinned by $\tau_{int}!$

Summary

- Flow-based MCMC gives exact results from approximate model proposals
 - Inaccuracies in the model = increased autocorrelation time
- Gauge symmetry can be incorporated without breaking (most of) translational symmetry
 - Gauge equivariant coupling layers
 - Kernels for U(1) and SU(N)
- High-quality models produced for
 - Lattice scalar theory in 1+1D
 - U(1), SU(2), and SU(3) lattice gauge theory in 1+1D

And a simple alternative for U(N) in our paper!

Outlook

Several directions for future work:

- 1. Choices of untraced loops to transform, gauge-inv loops as input
 - Higher degree of connectivity between loops and links in higher spacetime dims
- 2. Performance on multimodal distributions?
 - Relevant for broken symmetry regions of param space
- 3. Training hyperparameter tuning, different model arch for inner flows
- 4. Scaling of required model complexity in taking continuum limit?
 - Models with more params likely required as we scale, but how many more?
- 5. Incorporation of dynamical fermions

Outlook

If the method can be scaled to state-of-the-art calculations, ensemble generation could look like...

easily parallelized

- ... a single up-front cost to train a model
- ... more efficient parameter sweeps (retrain a model from nearby params)
 - easily parallelized
- ... cheap gauge field generation
- ... reduced storage costs (store/transfer the model, not configs!)
- ... or, no storage costs? (generate configs on the fly for measurements?)

In the upcoming exascale era, exploiting massively parallel resources will be key!

Backup slides

Related approaches

Generative Adversarial Networks (GANs):

- Highly expressive!
- Work in the direction of GANs for lattice [Urban, Pawlowski 1811.03533] [Zhou, Endrődi, Pang, Stöcker 1810.12879]
- Variational AutoEncoders (VAEs):
 - Can also learn meaningful directions in the prior variables

However: No access to q(U)... hard to make exact!

[Karras, Lane, Aila / NVIDIA 1812.04948]

These are machine learned faces!

[Shen & Liu 1612.05363]

These are machine learned faces!

Optimizing ("training") the model

Must not require a large number of samples from real distribution to optimize!

Self-training:

- Optimize model params using stochastic gradient descent on a loss function
- Loss function = modified Kullback-Leibler (KL) divergence

Constant shift removes
unknown normalization
$$D'_{\rm KL}(q || p) := \int \mathscr{D}Uq(p) dp = \int \mathscr{D}$$

• To estimate loss for grad. descent, d sample mean of $\left[\log q(U) + S(U)\right]$

Measures difference between probability distributions

- $(U)\left[\log q(U) \log p(U)\right] \ge 0$
- $(U)\left[\log q(U) + S(U)\right] \ge -\log Z$

• To estimate loss for grad. descent, draw samples from the model, measure

Translational equivariance with CNNs

1. Make context functions Convolutional Neural Nets.

CNNs:

- Compute output value for each site from linear transform of nearby DOF only
- Reuse same weights, scanning kernel across the lattice
- CNNs are equivariant under translations.
- 2. Make masking pattern (mostly) translationally invariant.
 - Required to ensure whole coupling layer is equiv
 - Our application: translational equiv modulo $\mathbb{Z}_4 \times \mathbb{Z}_4$

Translational symmetry breaking pattern

- Masking patten = repeating tile of size 1×4
- Rotate / translate the pattern between layers
- $\mathbb{Z}_4 \times \mathbb{Z}_4$ symmetry breaking

Log density in 4x4 region extends by unbroken part of translational symmetry to rest of the lattice

Details of SU(2) models

- Inner flow on open box Ω is a spline flow with 4 knots
 - B and -B boundaries align to 0 and 1 edges of the open box

- CNNs to compute the knot locations
 - 32 hidden channels
 - 2 hidden layers

Details of SU(3) models

- Inner flow on open box Ω is a spline flow with 16 knots
 - B and -B boundaries align to 0 and 1 edges of the open box
- CNNs to compute the knot locations
 - 32 hidden channels
 - 2 hidden layers
- Exact conjugation equivariance also imposed

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

Gauge equivariance (details)

3. Some plaquettes passively updated as a result of link changing

1. Kernel acts on subset of untraced plaquettes

2. Link absorbs update via left-multiplication (invertible!)

Map into canonical cell

Want to permute eigenvalues into canonical order

- Sorting doesn't work directly: discontinuities when θ_k jumps across the $\pm \pi$ boundary
- Simply trying all N! permutations is slow for large N
- Need to ensure permutation taking points in the same cell to canonical is the same

Short algorithm based on sorting works; Algorithm 1 of [1]

[‡] [Boyda, **GK**, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan 2008.05456]

Transform within canonical cell

Require: boundary-preserving transformation within the cell

- Cell is a simplex bounded by vertices $\{y_k\}$,

$$[y_k]_j := 2\pi \left(\frac{k}{N} - \delta_{k \ge j}\right)$$

- Hard to transform directly, instead we first change coordinates to an open box $\Omega=(0,1)^N$

Composition of two maps, ζ and $\phi,$ give the change of coordinates

Boundary preserving map using fixed-interval spline transformations on each coordinate of $\boldsymbol{\Omega}$

Gauge theory model training

- Adam optimizer ~ stochastic grad. descent with momentum
 - Batches of size 3072 per gradient descent step
 - Monitored value of effective sample size (ESS)

$$\text{ESS} = \frac{\left(\frac{1}{n}\sum_{i}w(U_{i})\right)^{2}}{\frac{1}{n}\sum_{i}w(U_{i})^{2}}, \quad U_{i} \sim$$

w(U) = p(U)/q(U)"reweighting factors"

Transfer learning: model trained first on 8×8 then used to initialize model for training on 16×16

q(U)

