Ensemble generation for lattice
QFT using machine learning

Gurtej Kanwar, MIT
Fermilab Theory Seminar
September 3, 2020




H I
PIT
Denis Boyda
Dan Hackett

Gurte] Kanwar*

Phiala Shanahan

NYU

Michael Albergo

Kyle Cranmer

‘b DeepMind

Sébastien Racaniere
Danilo Rezende
George Papamakarios

Peter Wirnsberger



(Just one) Motivation for an ab initio approach
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e Many experiments for new physics
rely on nuclear targets / samples
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e Need to know SM predictions for
nuclear matrix elements, structure =
functions
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e Models disagree: ab initio is key!
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e Lattice QCD gives theoretical input in non-
perturbative regime L [oa
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e Nuclear matrix elements from theory — e
LECs for EFT methods T Tensor
e (Complementary to experiment } !
Chang et al, PRL120 (2018) 152002]
'Shanahan, INT-18-70]




Outline

 Background:
- Lattice gauge theories

- Efficient ensemble generation

11 Alb , GK, Shanahan PRD100 (2019) 034515
« Normalizing flows: / Albergo anahan (2019) |
- “Flow-based” MCMC sampler

- Imposing symmetries (e.g. gauge, translational, ...)

_ _ [GK, Albergo, Boyda, Cranmer, Hackett, Racaniere, Rezende, Shanahan 2003.06413, PRL in production]
* AppllCaUOnS: [Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan 2008.05456]

- Scalar theory and U(1) + SU(N) gauge theory in 2D



Background



Lattice gauge theory

* Non-perturbative regularization for gauge theories

- Low-energy limit of QCD

- Strongly-coupled composite dark matter [Kribs, Neil 1604.04627]

[Quark fields live on sites]

* Discretized (Euclidean) spacetime IS /
. . S e S [Gluon fields live on links]
- Lattice spacing acts to cut off momenta / U,
- Exact gauge invariance I U S
» Regqularized path integral to compute observables g0 codlt: thon Hockett]

(O) = %J@U@[U]e‘sw]



Importance sampling

 Sampling histories in path integral enables efficient estimation of (many)
observables

1 n
(0) ~— ) O[U] U, ~ p(U) = eSV/Z
& =1

 Markov chain Monte Carlo (MCMC)

Example: MCMC to generate ensembles for scalar field theory

e Performance limitations of local MCMC

~ A critical slowin n A
- Information transfer limited by local updates critical slowing dow

- Rare to update entire field coherently . tonological freezing A
e Polog g &



Better importance sampling?

* |deal world: independently draw samples directly from your distribution

- E.g. sampling Gaussian variables via the Box-Muller transform

2
1. Draw samples U, U, € [O,l] from (uncorrelated) uniform distribution r

2. Change variables
Z, = 4/=2logU,cos2zU,
Zz — *\/—ZIOgUl SiHZﬂUz

3. Know r(Ul, U2) =1

07,
pZ,,2,) =r(U,, U,) |det—
ki U,
— Le—<Z%+Z§>/2
21

Density is affected by the change of measure!



Better importance sampling?

r independently draw samples directly from your distribution
Do not know how to exactly sample lattice gauge theory distributions

 Can we use an approximate independent sampler (without introducing bias)?

- Yes, but we need to know prob. density g(U) being sampled

- Reweighting or Independence Metropolis MCMC give unbiased estimates

i Sample g(U) as proposals in af
. Metropolis-Hasting Markov  §
chain (more later)




Approximate sampling

 Machine learning techniques are effective for doing things approximately

N\

l.e., “variational techniques”

 Normalizing flow models (rest of the talk) learn distributions, and can both:

1. Sample U ~ q(U)

2. Measure g(U) given U

\ We can use Reweighting or

Independence Metropolis for
unbiased estimates



Normalizing flows for sampling



We already saw a normalizing flow: Box-
Muller transform to draw Gaussian vars.

Normalizing flows -

&
ML method to construct samplers for complicated probability ‘ g .
distributions; originally for image generation [958 gept‘;;a;egg;j[ﬁs':'e\fﬁ Bf';’rmfgo{ggggggggted goise
1. Start with a prior distribution 7 in which (V)
...it is easy to draw samples V I
...you can compute (V) for each V A R4
Ex: uncorrelated uniform, Gaussian, ... flow U = f (V)

2. “Flow” to distribution g (approximating the target p) using a
parametrized change of vars f that

...Is Invertible

...has a (tractably) computable log-det-Jacobian

Approach: Construct flow as a variational ansatz for p, optimize olf(V)];
sothatg =~ p L q(U) = r(V)|det -
| i 9V

‘ | Ci: Dan Hackett]


https://arxiv.org/pdf/1605.08803.pdf
https://arxiv.org/pdf/1605.08803.pdf

' o(U) = r(V) | det (V)]

U aV]

Defining the flow function

« The “flow” f must be invertible and have tractable log-det-Jacobian (LDJ)
- In Box-Muller transform, f is precisely constructed to produce the Gaussian dist

- For LQFT, don’t know what f needs to be; instead, construct parametrized ansatz
and optimize it

e Composition Flow f

) A

o\ VA

Each invertible, with tractable LDJ




Coupling layers

ldea: Construct each g to act on a subset of components, conditioned only on
the complimentary subset.

— Jacobian is explicitly upper-triangular (get LDJ from diag elts)

[ e ™
™ Y

N, sk “.(nonzero)
a[g (V)]z _ oV,

9V,

dlg(V)];

— Invertible if each diag component invertible, o +* (.
i




EXx: coupling layer for gauge theory

 Masking pattern: define which links to freeze and condition on
- |dea: leave enough frozen context so transform can build correlations between DOFs

- E.q. freeze all but specific columns (or rows) of links
TS /I TS |

—Qé"'é"—
I e e e I S

o EX: left-multiplication by ¢ rou—valued functlon on unfro/zen links
U, (x) _exp (zW(E(frozen nelghbors) ﬂ) U, (x)




“What is W.?”

Any parametrized function accepting a collection of SU(/N) variables as input.
Our terminology: “context function”.

We(frozen neighbors)

Neural networks: compose Frozen neighbor links

parametrized linear transforms with
non-linear elementwise functions.

.
\

\.'x ‘*.?'A".‘n' '
AN
N

:

— Universal function approximators = SN
Matrices of weights define linear e ol R
transforms. Altogether, these weights Non-linear eltwise

compose the model parameters ¢.



Optimizing via “self-training”

Optimization by comparing model likelihood g(U) vs true likelihood p(U) on
sample configurations U.

 Must not require a large number of samples from real distribution to optimize!

o Self-training: take samples from the model, not true distribution

» Kullback-Leibler (KL) divergence between g and p given samples



Flow-based MCMC

Markov chain constructed using Independence Metropolis accept/reject on
model proposals.

» Independent proposals U’ from model distribution g

» Accept proposal U’, making it next elt of Markov chain, with probability

p(U’) q(U)>

Pacc(U = U') = rAN (LQ(U’) p(U)

* |f rejected, duplicate previous elt of Markov chain

- Only need to compute observables on duplicated elts once!



Birds-eye view

L) — -

"

T
< W B B>

generating samples is
"embarrassingly parallel”

Parameterize flow using
coupling layers  —

h 4

Training step

Draw samples from model

Each layer contains
arbitrary neural nets

Desired accuracy?

Compute loss function

Gradient descent

Y

Save trained model

Markov chain using
samples from model




Symmetries

Typical lattice gauge theories are symmetric
under

Symmetries factor distribution into uniform
1. (D|Screte) translational sym metry component along symmetry.dlrec.:tlon,-and.non—
uniform component along invariant direction.
Ex for gauge symmetry (schematically):

2. Hypercubic symmetry

3. Gauge symmetry

Elements defined by group-valued fields €2(x)
that transform the gauge field as

Q- U),(x) = QU x)QT(x + )




Learning symmetries

Models will learn any symmetries of the
action approximately.

- Always made exact after reweighting /
flow-based MCMC

Some symmetry groups quite large. We
can do better by encoding them
explicitly in model structure!

- Variational ansatz is restricted to only
explore distributions like the left one

Symmetries factor distribution into uniform
component along symmetry direction, and non-
uniform component along invariant direction.
Ex for gauge symmetry (schematically):




Symmetries in normalizing flows

Can be imposed on the model by ensuring

1. Prior is invariant under the Symmetry 5 Uniform prior distribution is invariant under all

symmetries of interest in lattice gauge theory.

2. Flow f igequivariant under the symmetry
[Cohen, Welling 1605 TS PE """

Must construct flow to satisfy equivariance!

Equivariance: symmetry operations commute with application of f

* Translational equivariance achieved by using (1) Convolutional Neural
Networks in context functions and (2) symmetric masking patterns.

* Our recent contribution: gauge equivariance



Applications: 1+1D lattice theories

Proof-of-principle at low computational cost,
no theoretical obstacle to higher dims




Scalar theory on a 2D lattice 2
Flow model samples/' | -I!J _ﬁﬁ

AN
HMC samples |||_I i *
\ el Bt o 1#

!I-""i: o

¢ 6 X 6 thrOugh 14 X 14 Iatt|CeS StUd'@d (}C(O t) Connected Green’s function...

Se@) = )| D, @ T P + m?p(x)* + Ap(x)*
X y

» Real DoF per lattice site, ¢(x) € |

-- HMC - Local =~ ML

» Scalar particle mass tuned to give 0
correlation length ~ L/4 |

» Affine coupling layers for flow models:

P'(x) = &Pp(x) + |
V 0123456 78910111213 ¢

Context functions, implemented using NNs ... and several other observables all consistent
acting on frozen sites (checkboard pattern)




Lattice gauge theory in 2D

» Wilson gauge action, SU(N): S(U) = flz Re tr |Py; ()]

P,x) = U,x0U,(x+ DU (x + D)U; (x)

untraced!

* (Gauge transforms are a symmetry of the action:
Q- U),(x) = Qx)U,(x0)Q" (x + /1)

* Confinement, ultralocal dynamics  p(P,,(x)) =~ exp (%Re trPOl(x)>/Z

- Each plag has independent statistics, up to correlations that are a finite volume effect



E.Q. traced plaquettes,

Gauge equivariance
— traced Wilson loops

Intuition: act on gauge-invariant quantities only

' ' ' “kernel”
- Factorized action of coupling layer iy

- |ssue: must remain invertible

- Issue: preserve trans. symmetry

x Gauge fixing with explicit factorization (e.qg.
maximal tree) does not preserve trans.
symmetry!

x Gauge fixing with implicit factorization (e.g.
Landau gauge) hard to preserve across
coupling layer!

Solution: transform group-valued untraced Wilson loops,
*absorb” update using link representation



“What is a kernel?”

The core of a gauge-equivariant coupling layer; acts on a selection of untraced
Wilson loops (e.g. subset of untraced plaguettes)

Must satisfy:

1. Invertible and tractable log-det-dacobian

2. Eaquivariant under matrix conjugation
. U9 “——__ Guarantees gauge equiv: gauge transforms

h(pr—l) — Xh(P) X—l act on untraced loops via matrix conjugation

PQ

3. Only conditioned on gauge-invariant frozen quantities

“Condition on”: pass as input to context functions used in defining A



[Image credit: Dan Hackett]

Kernel for U(1) gauge theory

» Variables are 1 X 1 matrices (i.e. scalars):

XPX1=pP l tan(6/2)

— Q0 o0

» Required: invertible function suitable for U(1) vars

. e’ tan(6/2)
- Developed flows for compact variables (tori and

spheres) in [T1] - l )
o@

“Non-compact projection” for U(1)

- We choose a “non-compact projection” transform:

s, 1 = convolutional NNs

0
¢’ = 2 arctan (esf( )tan(0/2)) ¥ (1)

¢ = model parameters [ = nearby frozen plaquettes

[T] [Rezende, Papamakarios, Racaniere, Albergo, GK, Shanahan, Cranmer ICML(2020) 2002.02428]



Results for U(1) gauge theory

There is exact lattice topology in 2D. o —
g [ ] ir_vhquanﬂ_LU_Ijh — HB
1 ;21 - : Flow
0 = Z arg(P,,(x)) . L .
2][ 0 20000 40000 60000 80000 100000

Markov chain step

Comparison: flow, analytical, HMC, and heat

bath on 16 X 16 lattices for f = {1,...,7} 1-25-<foﬁ>/E’;a“ {-{X@/Exact |
1.00 48 § {_ ;
* Topo freezing in HMC and heat bath 075 - _ }{
- Direct sampling approaches known, but do not 0 ¢ Huc  HB§ Flow :
generalize i é T ; ;
¢ 3

* Flow-based MCMC observables agree with

analytical Woe= |] Put» %= (Q*/V)

XELXL



Kernel for SU(N) theories

Intuition: should move points between conjugacy
classes, without moving around within CCs

Conjugacy classes for SU(/NV) described by
spectrum of the matrix: unordered set of
eigenvalues. Kernel should transform spectrum!

- Act on list of eigenvalues

- Equivariant under permutations

Input Configuration

Convolution and Masking Pattern

Gauge Flow at x in pv-plane

) \ SU(N )/ kernel
A /
. /
Uple) P
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tors

Eigenvec

Eigen Decomposition

Maximal Torus Flow

Permutation

—

Eigenvalues | NI

Extract Angle
Coordinates

{0: ;"

‘Canonical Permutation

{ei’}ﬁyz_ll

Flow in

1ant Context

Invar

Canonical Cell
{0,}0 =)

Invert
Canonical Permutation

{3

Recover Eigenvalues

{X}tit
v

> Eigen Recomposition

| Ui(a) = Pl (@) P, (@)U, ()

Output Configuration




Permutations on SU(N) eigenvalues
Eigenvalues satisfy H/Ik =1 - ' Z 0, =0 (mod 2rx)
k w

] maximal torus of SU(N)

Permutations exchange cells in the space of {0, }

Haar SU(4) 3D projection

S
Haar SU(2) o S

Approach: map input to a “canonical” cell, transform within cell, undo canonical map



Learning SU(N) plaquette distributions

Tested kernel in isolation by learning distributions on a single SU(/V) variable

- Representative of marginal distribution on untraced plaguette

- Conjugation-invariant action with several choices of coefficients

B set i e ey ey Exact marginal
: : distribution on plaquettes
S(U) .= ——Reftr Zc,(l’)U” 0 1 0 0
N 1 0.17 -0.65  1.22
& 2 098 -0.63 -0.21 :\ Randomly sampled

coeffs with 1 mode

» Special case implementations tested for SU(2) and SU(3)

. Unoptimized generic implementation learns ¢ for SU(4), ..., SU(100)



Density has zeros on vertical, horizontal, and
diagonal lines where the slice crosses walls of cells



Learning SU(2) and SU(3) gauge theory

Normalizing flows trained for 2D lattice gauge theory on 16 X 16 lattices.

- Approx equal 't Hooft couplings:
p=1{138,2.2,2.7} for SU(2) and
p = {4.0,5.0,6.0} for SU(3)

- 48 coupling layers, update all links 6 times

- Kernels suitable for SU(/N ) for exact gauge invariance




Symmetries in SU(2) and SU(3) models

Exact gauge symmetry by construction.

Exact center symmetry due to choice of loops:
- Plaquettes invariant under center symm

- Should include Polyakov loops if center
symmetry explicitly broken in theory

Large subgroup of translational symmetry

- /£, X Z, breaking due to 4-site spacing in
masking pattern

- 16-elt residual group to be learned, independent
of volume

Ser(U) = —log q(U)

—300

—320

—340

—360 -

S (Qs - U) + log Z fess

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
SE00.00.00 36 2606 6 36 96 96 96 36 06 96 6.6 96 96 96 3696 96 36 3¢ 96 96 96 3¢ 3¢ 3¢ %¢

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

88888888888888888888888888888888

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx




Results for SU(2) and SU(3) gauge theory

* Flow-based MCMC observables agree with ;:1'.8 T B B
analytical b i
. . Ay P Th=22 SU(
* High-quality model: autocorrelation time in flow- oo d————+t 4
based Markov chain 7, = 1—4 095 .
| B=27 SU(2)
thlnned by 7., oo ; { b7 ST
i
1/4/n scaling with number of samples n

Wilson Ioops E— Polyakov Ioop sq.

\\\ - \/Var(ReW11)/n /u—‘IO AVARYY
107 - T Err(ReW:1) 1.00
i \\
~
i 0.95
N 1.05
B=5.0 SU(3)
\\\\ 1.00
10~3 - pR¥
\\\ 0.95
\\\ 1.05
K B =6.0 SU(3)
~
™ 1.00
' 1 I T TTT] T
101 102 103 104 0.95 I I I I I I I I |
Wi1 Wi War Wiz Wz1 Wao Wig Wy 10




Summary

* Flow-based MCMC gives exact results from approximate model proposals

- |naccuracies in the model = increased autocorrelation time

 (Gauge symmetry can be incorporated without breaking (most of) translational
symmetry

- Gauge equivariant coupling layers

+~ —And a simple alternative

- Kernels for U(1) and SU(N) for U(N) in our paper’

 High-quality models produced for

- Lattice scalar theory in 1+1D

- U(1), SU(2), and SU(3) lattice gauge theory in 1+1D



Outlook

Several directions for future work:

1. Choices of untraced loops to transform, gauge-inv loops as input

- Higher degree of connectivity between loops and links in higher spacetime dims

2. Performance on multimodal distributions?

- Relevant for broken symmetry regions of param space
3. Training hyperparameter tuning, different model arch for inner flows
4. Scaling of required model complexity in taking continuum limit?

- Models with more params likely required as we scale, but how many more?

5. Incorporation of dynamical fermions



Outlook

If the method can be scaled to state-of-the-art calculations, ensemble

generation could look like...
a&sd.vj p&ratieicz.ad

.. a single*up-front cost to train a model

.. more efficient parameter sweeps (retrain a model from nearby params)
e.o\sd.j Faratiatnz.aci

.. cheap*gauge field generation

.. reduced storage costs (store/transfer the model, not configs!)

.. Or, no storage costs? (generate configs on the fly for measurements?)

In the upcoming exascale era, exploiting massively parallel resources will be key!



Backup slides




Related approaches

Generative Adversarial Networks (GANS):

- Highly expressive!

- Work in the direction of GANSs for lattice

[lUrban, Pawlowski 1811.03533] A These are machine learned faces!
[Zhou, Endrodi, Pang, Stocker 1810.12879]

[Shen & Liu 1612.05363]

Variational AutoEncoders (VAES):

- Can also learn meaningful directions in the prior
variables

However: No access to g(U)... hard to make
exact!

These are machine learned faces!



Optimizing (“training’) the model

Must not require a large number of samples from real distribution to optimize!

Self-training:

* Optimize model params using stochastic gradient descent on a loss function
S ETATAR

* Loss function = modified Kullback-Leibler (KL) divergence  Measures difference between
probabillity distributions

Dy (ql|p) = JS’ZUQ(U) log g(U) —log p(U)| >0
Constant shift removes
unknown normalization <

Dy (qllp) = J@UQ(U) log g(U) + S(U)| > —logZ

* Jo estimate loss for grad. descent, draw samples from the model, measure
sample mean of [log qg(U) + S(U)]



Translational equivariance with CNNs

1. Make context functions Convolutional Neural Nets.

CNNs:

- Compute output value for each site from linear transform of
nearby DOF only

- Reuse same weights, scanning kernel across the lattice

CNNs are equivariant under translations.

2. Make masking pattern (mostly) translationally invariant.

- Required to ensure whole coupling layer is equiv

- Our application: translational equiv modulo Z, X Z,
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[Images from freecodecamp.org]



https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/

Translational symmetry breaking pattern

» Masking patten = repeating tile of size 1 X 4
* Rotate / translate the pattern between layers
o /4 X £, symmetry breaking

Log density in 4x4 region extends by
unbroken part of translational
symmetry to rest of the lattice

0.05
0
5y - I[[[| E iooo
15
0 S 15 0 51 15 0 51 15

—0.05



Details of SU(2) models

—— RQ Spline

* Inner flow on open box €2 is a spline =
flow with 4 knots . Knots

ge(x)

- B and —B boundaries align to 0 and 1
edges of the open box

9p\T)
—
—
I

_B 0 B _B 0
ZT

 CNNs to compute the knot locations [Durkan, Bekasov, Murray, Papamakarios 1906.04032]

- 32 hidden channels

- 2 hidden layers



Detalls of SU(3) models . — -

° Knots

9p\T)
1

* Inner flow on open box €2 is a spline 0
flow with 16 knots

- B and — B boundaries align to 0 and 1 . , | :

_B 0 B _B 0 B

edges of the open box z z
[Durkan, Bekasov, Murray, Papamakarios 1906.04032]
 CNNs to compute the knot locations 7
- 32 hidden channels

- 2 hidden layers

* EXxact conjugation equivariance also
iImposed g —2mil3

A

Complex
Conjugation

P 2mi/3



Gauge equivariance (details)

1. Kernel acts on subset of untraced plaguettes

I
I
I
I
B l B |
I I
: :
[ (x) | I5(x) |
v A v A e e
frozen | frozen |
| |
< I > I
Y—_— A =
I I
] | ® |
B ‘ e P |
p— [/'T/' L (eI.
3. Some plaquettes passively 2. Link absorbs update via

updated as a result of link changing left-multiplication (invertible!)



Map into canonical cell

Want to permute eigenvalues into canonical order

- Sorting doesn’t work directly: discontinuities when @, jumps across the * 7 boundary

- Simply trying all N! permutations is slow for large N

- Need to ensure permutation taking points in the same cell to canonical is the same

Short algorithm based on sorting works; Algorithm 1 of []

[¥] [Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan 2008.05456]



Transform within canonical cell

Require: boundary-preserving transformation Canonical cell Open box
within the cell

- Cell is a simplex bounded by vertices {y,},

k
(i) =27 (N 5ij)

- Hard to transform directly, instead we first change
coordinates to an open box Q = (0,1)"

Composition of two maps, ¢ and ¢, give the change of
coordinates

Boundary preserving map using fixed-interval spline
transformations on each coordinate of €2



Gauge theory model training

 Adam optimizer ~ stochastic grad. descent with
momentum

- Batches of size 3072 per gradient descent step

- Monitored value of effective sample size (ESS)
| 2

(7 2wy
1 2
; Zi W(Ul)

w(U) = p(U)/q(U)

ESS =

’ Ui Y Q(U)

“reweighting factors”

 Transfer learning: model trained first on 8 X 8 then
used to initialize model for training on 16 X 16

Transferred model
almost fully optimized

WMMW\AWM‘A‘\M,
0.4 -
0.3 -
0.2 -
- Model with random
0.1 . —— [ = 6 retrain
init takes many steps e
0.0 - to optimize b=
I I I I I
0 500 1000 1500 2000 2500 3000
epoch



