NLO di-boson production by gluon fusion, in the high-energy limit

Fermilab Theoretical Physics Seminar

J. Davies

July 8, 2021

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion o	Backup o

Introduction

Gluon fusion amplitudes are interesting at the LHC despite loop suppression: enhanced by large gluon PDF.

- +++ gives access to Higgs self-coupling λ
 - \bullet -5.0 < λ/λ_{SM} < 12.0
 - gg is the dominant production channel (10x)
- ZZ significant background to $H \rightarrow 4I$
 - constrains Higgs width via $H \rightarrow ZZ$ diagrams
 - \bullet sub-leading cf. quark-induced, but ${\sim}60\%$ of total NNLO
- ZH $H
 ightarrow b ar{b}$ discovery
 - \bullet sub-leading cf. quark-induced, but ${\sim}10\%$ of total
 - large scale uncertainties

[CERN-EP-2019-099]

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion o	Backup o

Introduction

Amplitude structure:

$$\mathcal{M}^{\mu
u
ho\sigma} = \sum_{i} \mathcal{A}^{\mu
u
ho\sigma}_{i} F_{i}$$

 $HH: i = \{1, 2\}, ZZ: i = \{1, \dots, 18\}, ZH: i = \{1, \dots, 6\}.$

Two-loop computations of such form factors F_i are difficult:

- Depend on many scales, s, t, mt, mH, mZ
- Feynman integrals are complicated
- ... not known analytically!

Numerical results exist, and expansions in various limits:

- ► large-*m*t
- threshold
- ▶ small-p_T
- high-energy

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	0000000	0000000	0	0

Expansions

Seek an expansion in the region $s, t \gg m_t^2 > \{m_H^2, m_Z^2\}$:

	Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000 000000000 0000000 0000000 0000000 00000	000●	000000000	0000000	0000000	0	0

(Incomplete) NLO Status

- HH LO
 - NLO HEFT
 - NLO LME+THR Padé
 - NLO small- p_T
 - NLO numerical
- ZZ LO
 - NLO (massless)
 - NLO LME
 - NLO numerical

[Glover,van der Bij '88] [Dawson,Dittmaier,Spira '98] [Gröber,Maier,Rauh '17] [Bonciani,Degrassi,Giardino,Gröber '18] [Borowka,Greiner,Heinrich,Jones,Kerner,Schlenk,Zicke '16]

[Baglio,Campanario,Glaus,Mühlleitner,Spira,Streicher '18]

[Caola,Melnikov,Röntsch,Tancredi '15] [Dowling,Melnikov '15] [Agarwal,Jones,von Manteuffel '20] Brønnum-Hansen,Wang '21]

- ZH LO
 - NLO LME
 - NLO small-p_T
 - NLO numerical

[Dicus,Kao '88, Kniehl '90] [Hasselhuhn,Luthe,Steinhauser '17] [Alasfar,Degrassi,Giardino,Gröber,Vitti '21] [Chen,Heinrich,Jones,Kerner,Klappert,Schlenk '20]

+ various higher-order efforts, mostly HEFT and LME

0000	•000000000	0000000	0000000	0	0
0000	••••••••	0000000	0000000	0	0
Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup

High-Energy Expansion: $\{m_h, m_z\}$

Seek an expansion in the region $s, t \gg m_t^2 > \{m_H^2, m_Z^2\}$:

amplitude in terms of Feynman integrals: *I*({*m_H*², *m_Z*²}, *m_t*², *s*, *t*, *ε*)
 expand around {*m_H*², *m_Z*²} → 0:

$$I(m_H^2,\ldots) = I(0,\ldots) + m_H^2 \frac{d}{dm_H^2} I(0,\ldots) + \cdots$$

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	0000000	0000000	0	0

High-Energy Expansion: $\{m_h, m_z\}$

Convergence of m_H expansion in LO $gg \rightarrow HH$:

[Davies, Mishima, Steinhauser, Wellmann '18]

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	0000000	0000000	0	0

High-Energy Expansion: $\{m_h, m_z\}$

Convergence of m_Z expansion in LO $gg \rightarrow ZZ$:

[Davies, Mishima, Steinhauser, Wellmann '20]

(Z pol. sums contain $p^{\mu}p^{\mu'}/m_Z^2$ term.)

Introduction	High-Energy Expansion 000●000000	Padé Approximants	Results	Conclusion o	Backup o
IBP rec	luction				

With this expansion in mind, we can perform IBP reduction (with FIRE) only for the integrals with massless external legs. [Smirnov '19]

- ▶ this removes scale(s) $\{m_H, m_Z\}$ from the problem easier!
- (pySecDec-based numerical evaluations do not expand, but rather set $m_H^2/m_t^2 = 12/23$, $m_Z^2/m_t^2 = 23/83$ in the reduction)

At two loops, results in 131 planar MIs, 30 non-planar MIs.

The reduction and MIs do not depend on $\{m_H, m_Z\}$:

▶ we can use them for $gg \rightarrow HH$, $gg \rightarrow ZZ$, $gg \rightarrow ZH$, ...

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	0000000	0000000	0	0

High-Energy Expansion: *m*_t

Seek an expansion in the region $s, t \gg m_t^2 > \{m_H^2, m_Z^2\}$:

Master Integral coefficients: simple Taylor series in m_t .

Master Integrals:

• Differentiate w.r.t. m_t^2 , IBP reduce result. System of DEs:

$$\frac{d}{dm_t^2}\vec{J}=M(\boldsymbol{s},t,m_t^2,\epsilon)\cdot\vec{J}.$$

$$\frac{d}{d m_t^2} \boxed{=} \frac{2(s+t)}{st - 4m_t^2(s+t)} \boxed{=} -\frac{2s}{m_t^2(s - 4m_t^2)(4m_t^2(s+t) - st)} \times \\ -\frac{2t}{m_t^2(t - 4m_t^2)(4m_t^2(s+t) - st)} \boxed{=} +\frac{4(2m_t^2(s+t) - st)}{m_t^4(4m_t^2 - s)(4m_t^2 - t)(4m_t^2(s+t) - st)} \times + \mathcal{O}(\epsilon)$$

- Substitute series ansatz: $J = \sum_{i} \sum_{j} \sum_{k} C_{ijk}(s, t) \epsilon^{i} (m_{t}^{2})^{j} \log (m_{t}^{2})^{k}$,
 - Solve system of *linear* equations for *C_{ijk}*.
 - Requires some C_{ijk} as boundary conditions.

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion o	Backup o

Boundary Conditions

Expansion-by-Regions yields Mellin-Barnes integrals for leading m_t^2 behaviour of the MIs, which depend on s, t. [asy.m Pak, Smirnov '11]

- Easiest way: set s = 1, expand MB integrals around t = 0,
- ► Fit expansions to basis of HPLs to obtain leading *C*_{ijk}.

• Use BCs to determine C_{ijk} to desired depth in m_t , using DEs.

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	0000000000	00000000	0000000	0	0

Master Integral Results

MI-level comparison: *m_t* expansion vs. pySecDec numerical values:

[Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke '18]

 $\operatorname{Re}\left[\operatorname{G6}\left[1, 1, 1, 1, 1, 1, 1, 0, 0\right] \cdot \operatorname{m}_{t}^{2} \cdot \operatorname{s}^{2}\right]\right|_{c^{0}}$ 0 -5 m_1^2 m^4 -10 m_1^8 m_{t}^{16} -15pySecDec 250500 750 1000 1250 \sqrt{s} [GeV]

double box: 6 massive (m_t) , 1 massless prop. Real part, ϵ^0

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	0000000000	0000000	0000000	0	0

Form Factor Expansions

Renorm. and IR subtraction: $F_i^{(1),fin} = F_i^{(1),IR-div} - K_g^{(1)}F_i^{(0)}$.

In $gg \rightarrow HH$, NLO F_{tri} known analytically (from $gg \rightarrow H$):

Introduction	High-Energy Expansion ○○○○○○○●○	Padé Approximants	Results	Conclusion o	Backup o
	_	_			

Form Factor Expansions

 $gg \rightarrow H\!H,\,F_{box}$ form factors are not known analytically for comparison:

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion o	Backup o

$gg ightarrow HH V_{fin}$

"Virtual finite cross-section" V_{fin} , m_t^{30} , m_t^{32} curves:

Compare with numerics, hhgrid [Heinrich, Jones, Kerner, Luisoni, Vryonidou '17]

For lower p_T values, high-energy expansion doesn't converge well.

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion o	Backup o

Padé Approximants

Approximate a function f(x) using a *rational polynomial*:

$$f(x) \approx [n/m](x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{1 + b_1 x + b_2 x^2 + \dots + b_m x^m}$$

Use series coefficients of f(x) to fix $a_0, \ldots, a_n, b_1, \ldots, b_m$.

- Agrees with series to order n + m (but not beyond)
- Can be a better approximation of f(x) than the truncated series.
- Even beyond the radius of convergence!

Proceed by example:

$$f(x)=\frac{\log{(1+x)}}{1+x},$$

approximate around x = 0, radius of convergence: x < 1.

Start with Taylor series to various orders:

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	0000000	0000000	0	0

Ratio to exact function:

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	00000000	0000000	0	0

Higher-order Padé approximants approximate f(x) well, far beyond radius of convergence of the series.

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	00000000	0000000	0	0

Use a set of Padé approximants to provide a central value and error estimate.

Padé Approximants: Master Integral Level

Dashed lines: m_t^{30} , m_t^{32} . Smaller p_T values: series doesn't converge. Solid lines: Padé approximant. Points: pySecDec.

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	0000000	0000000	0	0

Padé Approximants: applied to *m_t* **expansion**

In small-*m*_t expansions:

- Replace $m_t^{2k} \to m_t^{2k} x^k$ and $m_t^{2k-1} \to m_t^{2k-1} x^k$,
- Set variables (m_t, s, t, etc) to numerical values,
- Padé approximants at x = 0, then evaluate at x = 1. [7/8], [8/7], [7/9], [8/8], [9/7]

Central value and error:

- Padé approximants have poles in the complex x plane, which can lead to poor behaviour if close to x = 1.
- Compute a weighted average and deviation, with ω_i = β_i² / ∑_j β_j². β_i is the distance from x = 1 to the nearest pole.

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	0000000	000000	0	0

Form Factor Approximations

Two example Form Factors for $gg \rightarrow ZZ$:

- ▶ the high-energy exp. diverges around \sqrt{s} ≈ 750GeV as usual
- the Padé-based approximation continues to lower \sqrt{s} values

[Davies, Mishima, Steinhauser, Wellmann '20]

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	0000000	000000	0	0

Comparison with $gg \rightarrow ZZ$ numerical V_{fin}

Padé-improved V_{fin} shows excellent agreement with pySecDec-based evaluation above $\sqrt{s} \approx 3m_t$. [Agarwal,Jones,von Manteuffel '20]

Introduction	High-Energy Expansion	Padé Approximants	Results oo●oooo	Conclusion o	Backup o
Deturn		VZ			

Return to $gg \rightarrow HH V_{fin}$

The Padé curves allow a much better comparison with numerical results.

Augment hhgrid with high-energy input points?

Introduction	High-Energy Expansion	Padé Approximants	Results ○○○●○○○	Conclusion o	Backup ⊙
Return	to $gg \rightarrow HH$	V _{fin}			

${\sim}6300$ points from <code>pySecDec</code>, ${\sim}5100$ high-energy Padé points

Introduction	High-Energy Expansion	Padé Approximants	Results 0000●00	Conclusion o	Backup o

$gg \to H\!H$ Distributions

Real radiation added, convoluted with PDF:

[Davies, Heinrich, Jones, Kerner, Mishima, Steinhauser, Wellmann '19]

Introduction	High-Energy Expansion	Padé Approximants	Results ○○○○○●○	Conclusion o	Backup o
gg ightarrow Z	H V _{fin}				

Similarly, we construct a V_{fin} for ZH. [Davies,Mishima,Steinhauser '20] Blue curves show high-energy exp.; does not converge for $p_T <= 300$.

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion	Backup
0000	000000000	00000000	000000	0	0

Comparison with $gg \rightarrow ZH$ numerical V_{fin}

In progress: $gg \rightarrow ZH$ comparison. Blue: pySecDec, Red+Green: Padé

Data points: [Chen,Heinrich,Jones,Kerner,Klappert,Schlenk]

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion ●	Backup o
Conclu	sions				

- Two-loop 2 \rightarrow 2 amplitudes which depend on extra mass scales are not known analytically.
- Nonetheless we can learn about their behaviour through expansions in various limits, and direct numerical evaluations.
- High-energy expansions give the behaviour of the amplitudes in a region which is difficult to describe precisely by numerical evaluation.
 - Padé approximants significantly improve the high-energy description

Introduction	High-Energy Expansion	Padé Approximants	Results	Conclusion o	Backup ●
Backup	: V _{fin}				

For $gg \rightarrow HH$,

$$V_{fin} = \frac{\alpha_s^2(\mu)}{16\pi^2} \frac{G_F^2 s^2}{64} \left[C + 2 \left(F_1^{(0)*} F_1^{(1)} + F_2^{(0)*} F_2^{(1)} + c.c. \right) \right]$$

with

$$C = \left[\left| F_1^{(0)} \right|^2 + \left| F_2^{(0)} \right|^2 \right] \left(C_A \pi^2 - C_A \log^2 \frac{\mu^2}{s} \right)$$

We use: $F_i = \underbrace{F_i^{(0)}}_{exact} + \underbrace{\alpha_s F_i^{(1)}}_{expanded}$ to construct V_{fin} .