

Probing New Physics with Double Beta Decays

Lukáš Gráf

lukas.graf@mpi-hd.mpg.de

Max Planck Institute for Nuclear Physics, Heidelberg

Fermilab Theory Seminar

Dirac vs Majorana

• neutrinos – left-handed, neutral and massive fermions

 \rightarrow two ways to define neutrino mass

- Dirac mass as other fermions, but tiny ($\approx 10^{-12}$) couplings to Higgs $m_D \nu_L \nu_R^c \subset y_\nu L H \nu_R^c$
- Majorana mass only left-handed neutrino \rightarrow lepton number violation

 $m_M \overline{\nu}_L \nu_L^c$

 $1/\Lambda_{\rm NP}$

 $\langle H \rangle \overset{i}{\times}$

Double Beta Decays

- two-neutrino double beta decay $2\nu\beta\beta: (A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$
- neutrinoless double beta decay \rightarrow LNV, mediated by Majorana neutrinos $0\nu\beta\beta: (A, Z) \rightarrow (A, Z + 2) + 2e^{-}$
- experiments: $T_{1/2}^{2\nu\beta\beta} \sim 10^{18} 10^{21} \text{ y}$ $T_{1/2}^{0\nu\beta\beta} \sim (0.1 \text{ eV}/m_{\nu})^2 \times 10^{26} \text{ y}$

KamLAND-Zen, LEGEND, CUORE, NEMO-3, CUPID, (n)EXO, ...

- a variety of isotopes: ⁷⁶Ge, ¹³⁶Xe, ...
- variants $0\nu\beta^+\beta^+: (A,Z) \to (A,Z-2) + 2e^+$ $0\nu\beta^+EC: (A,Z) + e^- \to (A,Z-2) + e^+$ $0\nu ECEC: (A,Z) + 2e^- \to (A,Z-2)$

lukas.graf@mpi-hd.mpg.de

Neutrinoless Double Beta Decay

lukas.graf@mpi-hd.mpg.de

Probing New Physics with Standard Double Beta Decay

Three Active Neutrinos

- effective neutrino mass: $m_{\beta\beta} = m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i\phi_{12}} + m_3 s_{13}^2 e^{i(\phi_{13} 2\delta)}$
- two possible v mass orderings
 - normal vs inverted
- uncertainty from unknown Majorana phases
- accidental cancellation possible for normal ordering
- $0\nu\beta\beta$ provides bound on $m_{\beta\beta}$
- cosmology gives the upper bound on sum of neutrino masses
- possible exclusion of inverted ordering

F. F. Deppisch, LG, F. lachello, J. Kotila: PRD 102 [2009.10119]

Nuclear Matrix Elements

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

• hadronic current

$$J^{\mu}(q) = g_V \gamma^{\mu} - g_A \gamma^{\mu} \gamma^5 + \frac{ig_W}{2m_N} \sigma^{\mu\nu} q_{\nu} - g_P \gamma^5 q^{\mu} q^{\mu$$

 non-relativistic expansion → nuclear matrix elements

$$\mathcal{M}_{0\nu} = g_A^2 \mathcal{M}_{GT} - g_V^2 \mathcal{M}_F + g_A^2 \mathcal{M}_T$$
$$\mathcal{M}_F = \langle h^F(q^2) \rangle$$
$$\mathcal{M}_{GT} = \langle h^{GT}(q^2)(\sigma_a \cdot \sigma_b) \rangle$$
$$\mathcal{M}_T = \langle h^T(q^2)3(\sigma_a \cdot r_{ab})(\sigma_b \cdot r_{ab}) - (\sigma_a \cdot \sigma_b) \rangle$$

- dependence on isotope and operator
- alternative derivation: chiral EFT
- calculation many-body problem
- different nuclear structure models, factor of 2-3 uncertainties

New Physics & 0vßß

- plethora of New Physics scenarios may be responsible for 0vββ
- left-right symmetric models $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

• R-parity violating SUSY, Majorons, Extra Dimensions ...

F. F. Deppisch, M. Hirsch, H. Päs: J. Phys. G 39 (2012), 124007

New Physics & 0vßß

- plethora of New Physics scenarios may be responsible for Ονββ
- left-right symmetric models $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

• R-parity violating SUSY, Majorons, Extra Dimensions ...

F. F. Deppisch, M. Hirsch, H. Päs: J. Phys. G 39 (2012), 124007

Effective Approach to Ονββ

- effectively, a variety of different mechanisms beyond the standard scenario may contribute to $0\nu\beta\beta$ long-range and short-range
 - e.g. 0303205, 1208.0727, 1708.09390, 1806.02780, 1806.06058, 2009.10119
- Ονββ half-life limit sets constraints on effective couplings accurate calculation of nuclear matrix elements and phase-space factors is crucial for estimating these limits

Effective Approach to Ονββ

- effectively, a variety of different mechanisms beyond the standard scenario may contribute to $0\nu\beta\beta$ long-range and short-range
 - e.g. 0303205, 1208.0727, 1708.09390, 1806.02780, 1806.06058, 2009.10119
- Ονββ half-life limit sets constraints on effective couplings accurate calculation of nuclear matrix elements and phase-space factors is crucial for estimating these limits

Ονββ Mechanisms

- $\begin{array}{c} \text{ standard mass mechanism} \\ \Gamma^{0\nu\beta\beta}_{m_{\nu}} \sim m_{\nu}^{2}G_{F}^{4}m_{F}^{2}Q_{\beta\beta}^{5} \sim \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right)^{2}(10^{26} \text{ y})^{-1} \\ \text{ non-standard long-range mechanisms} \\ \Gamma^{0\nu\beta\beta}_{\text{LR}} \sim v^{2}\Lambda^{-6}_{O_{7}}G_{F}^{2}m_{F}^{4}Q_{\beta\beta}^{5} \sim \left(\frac{10^{5} \text{ GeV}}{\Lambda_{O_{7}}}\right)^{6}(10^{26} \text{ y})^{-1} \\ \text{ non-standard short-range mechanisms} \\ \Gamma^{0\nu\beta\beta}_{\text{SR}} \sim \Lambda^{-10}_{O_{9}}m_{F}^{6}Q_{\beta\beta}^{5} \sim \left(\frac{5 \text{ TeV}}{\Lambda_{O_{9}}}\right)^{10}(10^{26} \text{ y})^{-1} \\ \end{array}$
- due to the intrinsic helicity flip, non-standard long-range mechanisms in typical scenarios suppressed indirectly by neutrino mass
- e.g. left-right symmetric models: small Yukawa coupling $(y_{\nu}v = \sqrt{m_{\nu}M_N})$

J. C. Helo, M. Hirsch and T. Ota, JHEP 06, 006 (2016), [1602.03362]

Short-Range Ονββ Mechanisms

example: general formula for half-life of 0vββ induced by the short-range mechanisms
 + the standard mechanism and their mutual interference:

- phase-space factors $G^{(0)}$ evaluated using radial electron wave functions satisfying the Dirac equation with potential taking into account the finite nuclear size and the electron screening
- nuclear matrix elements M_I hadronization procedure + IBM-2

Nuclear Model: IBM-2

- numerical values of relevant NMEs computed using the Interacting Boson Model (collaboration with F. lachello) for a large variety of isotopes
- IBM-2 the very large shell model space truncated to states built from pairs of nucleons with J = 0, 2
- these pairs bosons are then assumed to be collective
- Hamiltonian constructed phenomenologically, two and four valence-nucleon states generated by a schematic interaction
- fermion operators mapped onto a boson space
- matrix elements of the mapped operators evaluated with realistic wave functions
 J. Barea and F. lachello, Phys. Rev. C79 [044301] (2009)

Constraints on New Physics

• considering a single contribution at a time: $T_{1/2}^{-1} = \left| |\epsilon|^2 |\mathcal{G}_{0\nu}|\mathcal{M}_{0\nu}|^2 \right|$

 \rightarrow NMEs + PSFs + exp. limits on half-life \rightarrow bounds on effective couplings

Isotope	$T^{\rm exp}_{1/2}~[{\rm yr}]$		$ m_{\beta\beta} $	$ \epsilon_1^{XX} $	$ \epsilon_1^{XY} $	$ \epsilon_2^{XX} $	$ \epsilon_3^{XX} $	$ \epsilon_3^{XY} $	ϵ_4	$ \epsilon_5^{XX} $	$ \epsilon_5^{XY} $
			[meV]	$[10^{-10}]$							
$^{76}\mathrm{Ge}$	1.8×10^{26}	9	118	2.90	2.84	88.4	77.1	154	130	102	68.1
$^{82}\mathrm{Se}$	2.4×10^{24}	77	599	15.9	15.5	445	375	768	654	764	440
$^{96}\mathrm{Zr}$	9.2×10^{21}	78	9130	85.5	84.8	5640	8510	12600	11300	1200	1110
$^{100}\mathrm{Mo}$	1.1×10^{24}	79	733	6.10	6.04	401	608	901	774	84.1	77.5
$^{116}\mathrm{Cd}$	2.2×10^{23}	80	2720	22.3	22.1	1430	2090	3170	2800	321	294
$^{128}\mathrm{Te}$	1.1×10^{23}	81	13300	283	277	9300	8080	17300	12100	7630	5390
$^{130}\mathrm{Te}$	3.2×10^{25}	82	252	5.38	5.27	178	153	336	270	158	112
$^{136}\mathrm{Xe}$	1.1×10^{26}	83	114	2.50	2.45	83.4	72.5	157	127	74	52.4
$^{150}\mathrm{Nd}$	2.0×10^{22}	84	3830	45.5	45.1	2730	3590	6190	5240	659	596

 $m_{\beta\beta} = \sum U_{ei}^2 m_{\nu_i} \qquad \epsilon_1 J J j + \epsilon_2 J^{\mu\nu} J_{\mu\nu} j + \epsilon_3 J^{\mu} J_{\mu} j + \epsilon_4 J^{\mu} J_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu} J j_{\mu}$

F. F. Deppisch, LG, F. lachello, J. Kotila: PRD 102 [2009.10119]

Constraints on New Physics

• considering a single contribution at a time: $T_{1/2}^{-1} = |\epsilon|^2 \mathcal{G}_{0\nu} |\mathcal{M}_{0\nu}|^2$

 \rightarrow NMEs + PSFs + exp. limits on half-life \rightarrow bounds on effective couplings

$$m_{\beta\beta} = \sum U_{ei}^2 m_{\nu_i} \qquad \epsilon_1 J J j + \epsilon_2 J^{\mu\nu} J_{\mu\nu} j + \epsilon_3 J^{\mu} J_{\mu} j + \epsilon_4 J^{\mu} J_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu} J j_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu} J j_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu} J j_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu\nu} J j_{\mu\nu} j^{\mu\nu} + \epsilon_5 J^{\mu\nu} J j_{$$

F. F. Deppisch, LG, F. lachello, J. Kotila: PRD 102 [2009.10119]

Sterile Neutrino Constraint

lukas.graf@mpi-hd.mpg.de

Probing New Physics with Standard Double Beta Decay

Distinguishing Ονββ Mechanisms

- phase-space observables electron energy spectra, angular correlation
- comparison with other $\beta\beta$ modes $\rightarrow \beta+\beta+$, EC $\beta+$, ECEC typically suppressed
- decay rate ratios for different isotopes $\mathrm{R}^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X}) \equiv \frac{T_{1/2}^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X})}{T_{1/2}^{\mathcal{O}_i}(^{76}\mathrm{Ge})} = \frac{|\mathcal{M}^{\mathcal{O}_i}(^{76}\mathrm{Ge})|^2 G^{\mathcal{O}_i}(^{76}\mathrm{Ge})}{|\mathcal{M}^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X})|^2 G^{\mathcal{O}_i}(^{\mathrm{A}}\mathrm{X})}$
 - → ratio of half-lives = ratio of NMEs x ratio of PSFs, the unknown coupling drops out $R_{ij}^{\mathcal{O}_i}(^AX) = \frac{R^{\mathcal{O}_i}(^AX)}{R^{\mathcal{O}_j}(^AX)}$
 - distinguishing 2 specific operators quantified using
- applied to the "master formula" framework of 1806.02780

V. Ciriigliano, W. Dekens, J. de Vries, M.L. Graesser, E. Mereghetti: JHEP 12 [1806.02780]

- PSFs \rightarrow 4 distinguishable groups of operators
- ratios: in principle 12 distinguishable groups of operators
 - main issue: unknown low energy constants (LECs) → large uncertainties
 → LQCD computations vital

Distinguishing: Phase Space

• electron energy spectra and angular correlation of the emitted electrons

Distinguishing: Isotope Ratios

$$+ C_{\rm SL}^{(6)} \left(\overline{u_R} d_L\right) \left(\overline{e_L} \nu_L^c\right) + C_{\rm SR}^{(6)} \left(\overline{u_L} d_R\right) \left(\overline{e_L} \nu_L^c\right) + C_{\rm T}^{(6)} \left(\overline{u_L} \sigma^{\mu\nu} d_R\right) \left(\overline{e_L} \sigma_{\mu\nu} \nu_L^c\right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(6)} = \frac{1}{\sqrt{2}v} \left[C_{\rm VL}^{(6)} \left(\overline{u_L} \gamma^{\mu} d_L\right) \left(\overline{e_L} \partial_{\mu} \nu_L^c\right) + C_{\rm VR}^{(6)} \left(\overline{u_R} \gamma^{\mu} d_R\right) \left(\overline{e_L} \partial_{\mu} \nu_L^c\right) \right] + h.c.$$

$$\mathcal{L}_{\Delta L=2}^{(6)} = \frac{1}{\sqrt{2}v} \left[C_{\rm VL}^{(6)} \left(\overline{u_L} \gamma^{\mu} d_L\right) \left(\overline{e_L} \partial_{\mu} \nu_L^c\right) + C_{\rm VR}^{(6)} \left(\overline{u_R} \gamma^{\mu} d_R\right) \left(\overline{e_L} \partial_{\mu} \nu_L^c\right) \right] + h.c.$$

LG, M. Lindner, O. Scholer: in preparation

Ονββ ΤοοΙ

- user inputs:
 - scale + selection of operators
 - isotope(s), type of NMEs
- data inputs:
 - nuclear matrix elements
 - phase-space factors
 - low-energy constants or nucleon form factors
- outputs:
 - half-life formula for the given case
 - limits on selected couplings
 - $m_{\beta\beta}$ vs. m_{ν} plots, etc.
 - chosen contour plots showing correlations of different parameters

What about 2vββ?

- searches for $0\nu\beta\beta$ decay growing tonne-scale experiments planned
- \rightarrow background: large amount of the 2v $\beta\beta$ decay data collected ~ 10⁵ 10⁶ events

- New Physics in $2\nu\beta\beta$ decay? What would it look like?
 - right-handed currents? F. F. Deppisch, LG, F. Simkovic: PRL 125 [2003.11836]
 - neutrino self-interactions? F. F. Deppisch, LG, W. Rodejohann, X. Xu: PRD RC 102 [2004.11919]
 - sterile neutrinos or light fermions? P. D. Bolton, F. F. Deppisch, LG, F. Simkovic: PRD 103 [2011.13387]

M. Agostini, E. Bossio, A. Ibarra, X. Marcano: PLB 815 [2012.09281]

Exotic 2vββ Decay – RHCs

• $2\nu\beta\beta$ decay in presence of right-handed currents? \rightarrow Lagrangian:

$$\mathcal{L} = \frac{G_F \cos \theta_C}{\sqrt{2}} \left((1 + \delta_{\rm SM} + \epsilon_{LL}) j_L^{\mu} J_{L\mu} + \epsilon_{RL} j_L^{\mu} J_{R\mu} + \epsilon_{LR} j_R^{\mu} J_{L\mu} + \epsilon_{RR} j_R^{\mu} J_{R\mu} \right) + \text{h.c.}$$

with $j_{L,R}^{\mu} = \bar{e} \gamma^{\mu} (1 \mp \gamma_5) \nu, \ J_{L,R}^{\mu} = \bar{u} \gamma^{\mu} (1 \mp \gamma_5) d$

• take the one linear in exotic effective coupling ϵ_{xR} , calculate the observables and get the bound imposed by the experimental data

• rate:
$$[T_{1/2}^{2\nu\beta\beta}]^{-1} = \epsilon_{XR}^2 G_{2\nu\beta\beta} |M_{2\nu\beta\beta}|^2$$

• here, results for 100Mo, but other isotopes similar

Electron Energy Distribution

 2vββ decay (both the SM and the exotic RHC-induced contributions) distribution in total kinetic (left) and single electron kinetic (right) energy

Probing New Physics with Standard Double Beta Decay

Electron Angular Correlation

• angular correlation of the electrons in the SM $2\nu\beta\beta$ decay (left) and the exotic $2\nu\beta\beta$ decay induced by right-handed lepton currents (right)

F. F. Deppisch, LG, F. Simkovic: PRL 125 [2003.11836]

Bound on ϵ_{XR} Coupling

- total rate nuclear matrix elements not accurate enough
- electron energy distribution small deviations, could be probed, but certain degeneracy given by nuclear structure effects
- best option: measure the angular correlation of the emitted electrons and look for the forward-backward asymmetry
- possible at NEMO-3 experiment using ¹⁰⁰Mo (or in future at SuperNEMO)
- insensitive of the overall rate
- largely insensitive to the NMEs

NMEs: QRPA used in our case, but very similar results expected to be obtained with other nuclear structure models

Bound on $\epsilon_{_{XR}}$ Coupling

• angular distribution: $\frac{\mathrm{d}\Gamma^{2\nu}}{\mathrm{d}\cos\theta} = \frac{\Gamma^{2\nu}}{2} \left(1 + K^{2\nu}\cos\theta\right)$

with correlation factor: $K^{2\nu} \approx K_{
m SM}^{2\nu} + \alpha \, \epsilon_{XR}^2$, for 100 Mo: $\alpha \approx 6.1$

- forward-backward asymmetry: $A_{\theta}^{2\nu} = \frac{N_{\theta > \pi/2} N_{\theta < \pi/2}}{N_{\theta > \pi/2} + N_{\theta < \pi/2}} = \frac{1}{2}K^{2\nu}$
- estimated accuracy of NEMO-3: $K_{\rm SM}^{2\nu} = -0.63 \pm 0.0027$

ightarrow bound on the effective coupling at 90% CL: $\epsilon_{XR} \lesssim 2.7 imes 10^{-2}$

- more stringent limit than the one obtained from the standard beta decay measurements
- SuperNEMO would further improve this bound to: $\epsilon_{XR} \lesssim 4.8 \times 10^{-3}$
- estimates only, a dedicated experimental analysis necessary

Exotic 2vββ – Sterile Neutrino

- idea: one of the neutrinos emitted in the decay is sterile
- consider either mixing with the active neutrinos, or right-handed current

$$\mathcal{L} = \frac{G_F \cos \theta_C}{\sqrt{2}} \left[(1 + \delta_{\rm SM}) j_L^{\mu} J_{L\mu} + V_{eN} j_L^{N\mu} J_{L\mu} + \epsilon_{LR} j_R^{N\mu} J_{L\mu} + \epsilon_{RR} j_R^{N\mu} J_{R\mu} \right] + \text{h.c.}$$

• total differential $2\nu\beta\beta$ decay rate – incoherent sum of the sterile neutrino and SM rates for a given sterile mass m_N and total electron kinetic energy E_K

$$\frac{d\Gamma^{2\nu}(\boldsymbol{\xi})}{dE_K} = (1 - |V_{eN}|^2)^2 \frac{d\Gamma_{\rm SM}^{2\nu}}{dE_K} + (1 - |V_{eN}|^2)|V_{eN}|^2 \frac{d\Gamma_N^{2\nu}(m_N)}{dE_K}$$

• similar expression for the case with the right-handed coupling

$$\frac{d\Gamma^{2\nu}(\boldsymbol{\xi})}{dE_K} = \frac{d\Gamma_{\rm SM}^{2\nu}}{dE_K} + |\epsilon_{XR}|^2 \, \frac{d\Gamma_N^{2\nu}(m_N)}{dE_K}$$

• again: right-handed current modifies also the angular correlation

Exotic 2vββ – Sterile Neutrino

lukas.graf@mpi-hd.mpg.de

Probing New Physics with Standard Double Beta Decay

Exotic 2v\beta\beta - Sterile Neutrino

P. D. Bolton, F. F. Deppisch, LG, F. Simkovic: PRD 103 [2011.13387]

Probing New Physics with Standard Double Beta Decay

vSI & Hubble Tension

- observations: discrepancy between Cosmic Microwave Background (CMB) and local measurements (redshifts of Type Ia supernovae) of the Hubble constant
- \rightarrow "Hubble tension" of about 4σ
- if correct, new cosmology or particle physics
- possible solution: neutrino self-interaction (vSI)
- vSI would inhibit the free streaming of neutrinos in the early Universe
- effectively: $G_S(\nu\nu)(\nu\nu)$, where G_s should be much larger than G_F
- strong interaction, but only neutrinos involved → not easy to test in a lab, light scalar mediator probed by meson decays, Z invisible decay, LHC searches, supernova neutrinos ... what about double beta decay?

N. Blinov, K. J. Kelly, G. Z. Krnjaic, S. D. McDermott: PRL 123 [1905.02727]

K.-F. Lyu, E. Stamou, Emmanuel, L.-T. Wang: PRD 103 [2004.10868]

- previous literature: indirect limit on vSI from neutrinoless double
 beta decay with Majoron emission
 K. Blum, Y. Nir, M. Shavit: PLB 785 [1802.08019]
 T. Brune, H. Paes: PRD 99 [1808.08158]
- assumed: scalar emitted, thus its mass constrained the Q value of the decay
- bound on vv φ : $g_{\phi} \lesssim 10^{-4} 10^{-5}$ \rightarrow for m_{ϕ} = 1 MeV: $G_S \lesssim (10 - 10^3) G_F$
- the limit does not apply for $m_{\phi} > Q$ and assumes that a light scalar is mediated
- our approach: effective interaction, derive a bound independent of the undelying physics and applicable for $m_{\phi} > Q$

• idea: effective vSI $G_S(\nu\nu)(\nu\nu)$ would induce a new, exotic contribution to double beta decay – see the figure:

• rate:
$$\Gamma_{\nu \mathrm{SI}} = \left| \frac{G_S m_e}{2R} \right|^2 \mathcal{G}_{\nu \mathrm{SI}} |\mathcal{M}_{0\nu}|^2$$

 nuclear matrix element approximately same as for 0vββ decay

• phase space ~ $2\nu\beta\beta$ decay

$$\mathcal{G}_{\nu \text{SI}} = \frac{2c_{\nu \text{SI}}}{15} \int dp_1 dp_2 p_1^2 p_2^2 (Q - T_{12})^5 F^2(p_1, p_2)$$

 \rightarrow vSI could affect 2v $\beta\beta$ decay – total rate, but also spectra

• compare to $2\nu\beta\beta$ rate: $\Gamma_{2\nu} = G_{2\nu}|M_{2\nu}|^2$

F. F. Deppisch, LG, W. Rodejohann, X. Xu: PRD RC 102 [2004.11919]

- using condition $\Gamma_{\nu SI}/\Gamma_{2\nu}^{ex} < 1$ effective self-interaction G_s can be constrained using the predicted total rate
- result: vSI preferred by cosmology is disfavoured by 2vββ decay experimental data

	48 Ca	$^{76}\mathrm{Ge}$	¹³⁶ Xe	$^{100}\mathrm{Mo}$	$^{128}\mathrm{Te}$	¹³⁰ Te
$Q/{ m MeV}$	4.263 [46]	2.039 [47]	2.458 [48]	3.034 [47]	0.8659 [49]	2.527 [50]
$T_{1/2}^{2 u}/ ext{year}$	$5.30 imes 10^{19}$	1.88×10^{21}	2.17×10^{21}	6.88×10^{18}	2.25×10^{24}	$7.91 imes 10^{20}$
$(\Gamma_{ m \nu SI})^{-1}/{ m year}$	2.52×10^{18}	1.42×10^{20}	1.55×10^{19}	2.94×10^{18}	4.04×10^{22}	9.08×10^{18}
$\Gamma_{\nu \rm SI} / \Gamma_{2\nu}^{\rm ex}$	78.6	49.5	528	8.76	209	326
$G_S/G_F <$	4.32×10^8	5.44×10^8	1.67×10^8	1.29×10^9	2.65×10^8	2.12×10^8

F. F. Deppisch, LG, W. Rodejohann, X. Xu: PRD RC 102 [2004.11919]

- for energy dependent G_s and $m_{\phi} \gtrsim Q$: total kinetic energy distribution of the emitted electrons is distorted, angular correlation also affected
 - \rightarrow possibly by an order of magnitude more stringent limit than from the total rate

F. F. Deppisch, LG, W. Rodejohann, X. Xu: PRD RC 102 [2004.11919]

Conclusion

- $0\nu\beta\beta$ interface of particle, nuclear, atomic physics
- a variety of different mechanisms besides the standard light neutrino exchange can contribute to $0\nu\beta\beta \rightarrow$ effective description
- to investigate the underlying new particle physics necessary to distinguish among different $0\nu\beta\beta$ mechanisms difficult \rightarrow complementarity
- combining various contributions \rightarrow involved, tedious calculations with a variety of inputs $\rightarrow 0\nu\beta\beta$ Tool on the way
- observation of $0\nu\beta\beta$ decay is the primary goal of the searches, but the collected $2\nu\beta\beta$ decay data can also probe new physics
- $2\nu\beta\beta$ decay can put constraints e.g. on right-handed currents, sterile neutrinos, neutrino self-interactions

Conclusion

- $0\nu\beta\beta$ interface of particle, nuclear, atomic physics
- a variety of different mechanisms besides the standard light neutrino exchange can contribute to $0\nu\beta\beta \rightarrow$ effective description
- to investigate the underlying new particle physics necessary to distinguish among different $0\nu\beta\beta$ mechanisms difficult \rightarrow complementarity
- combining various contributions \rightarrow involved, tedious calculations with a variety of inputs $\rightarrow 0\nu\beta\beta$ Tool on the way
- observation of $0\nu\beta\beta$ decay is the primary goal of the searches, but the collected $2\nu\beta\beta$ decay data can also probe new physics
- $2\nu\beta\beta$ decay can put constraints e.g. on right-handed currents, sterile neutrinos, neutrino self-interactions

Thank You for attention!