NLO mixed QCD-electroweak corrections to Higgs boson production at the LHC

Marco Bonetti

Seminars of the Fermilab Theory Group

In collaboration with K. Melnikov, E. Panzer, V. A. Smirnov, L. Tancredi

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

Topics

- Motivations & Overview
- 2 ggH: two & three loops
- 3 ggHg: two loops
- 5 Conclusions & Outlook

2012 direct detection of the Higgs boson

• SM complete: all particles observed, all free parameters fixed

- 2012 direct detection of the Higgs boson
 - SM complete: all particles observed, all free parameters fixed
- 2012 present no new particle detected after the Higgs boson
 - Still open questions: neutrino masses baryogenesis dark matter ...

- 2012 direct detection of the Higgs boson
 - SM complete: all particles observed, all free parameters fixed
- 2012 present no new particle detected after the Higgs boson
- Still open questions: neutrino masses baryogenesis dark matter ...

Hunting for New Physics

- Direct observation: On-shell production and subsequent decay
- Indirect search: Unveil deviations in known processes
 - Accurate experimental results
 Small theoretical uncertainties

- 2012 direct detection of the Higgs boson
 - SM complete: all particles observed, all free parameters fixed
- 2012 present no new particle detected after the Higgs boson
- Still open questions: neutrino masses baryogenesis dark matter ...

Hunting for New Physics

- Direct observation: On-shell production and subsequent decay
- Indirect search: Unveil deviations in known processes
 - Accurate experimental results
 Small theoretical uncertainties

Higgs boson: good candidate

- Yukawa coupling
- Only spin-0 elementary particle in the SM
- Key ingredient of EW symmetry breaking

Higgs production modes

ggH	VVH	WH	ZH	tŦH	Total
$44.1^{+11\%}_{-11\%}$	$3.78^{+2\%}_{-2\%}$	$1.37^{+2\%}_{-2\%}$	$0.88^{+5\%}_{-5\%}$	$0.51^{+9\%}_{-13\%}$	50.6

Higgs production modes

ggH	VVH	WH	ZH	tŦH	Total
$44.1^{+11\%}_{-11\%}$	$3.78^{+2\%}_{-2\%}$	$1.37^{+2\%}_{-2\%}$	$0.88^{+5\%}_{-5\%}$	$0.51^{+9\%}_{-13\%}$	50.6

Effects of BSM physics

$$\sigma_{gg
ightarrow H} \propto C_t^2 rac{m_H^4}{v^2}$$

Higgs production modes

g	gН	VVH	WH	ZH	tŦΗ	Total
44.1	$^{+11\%}_{-11\%}$	$3.78^{+2\%}_{-2\%}$	$1.37^{+2\%}_{-2\%}$	$0.88^{+5\%}_{-5\%}$	$0.51^{+9\%}_{-13\%}$	50.6

Effects of BSM physics

$$\sigma_{gg \to H} \propto C_t^2 \frac{m_H^4}{v^2} \left(1 + 2 \frac{C_Q}{C_t} \frac{v}{m_Q} + \dots \right) \xrightarrow[m_Q \sim 5 \text{ TeV}]{} \frac{\delta g_{ggH}}{g_{ggH}} \sim 1 - 5\%$$

Higgs production modes

ggH	VVH	WH	ZH	tŦH	Total
$44.1^{+11\%}_{-11\%}$	$3.78^{+2\%}_{-2\%}$	$1.37^{+2\%}_{-2\%}$	$0.88^{+5\%}_{-5\%}$	$0.51^{+9\%}_{-13\%}$	50.6

Effects of BSM physics

$$\sigma_{gg \to H} \propto C_t^2 \frac{m_H^4}{v^2} \left(1 + 2 \frac{C_Q}{C_t} \frac{v}{m_Q} + \dots \right) \xrightarrow[m_Q \sim 5 \text{ TeV}]{} \frac{\delta g_{ggH}}{g_{ggH}} \sim 1 - 5\%$$

Theoretical uncertainties

$\delta(scale)$	$\delta(PDF/TH)$	$\delta(EW)$	$\delta(t, b, c)$	$\delta(1/m_t)$	$\delta(PDF)$	$\delta(\alpha_s)$
+0.10 pb -1.15 pb +0.21% -2.37%	$\pm 0.56~ m pb$ $\pm 1.16\%$	$\pm 0.49 \text{pb} \\ \pm 1\%$	$\pm 0.40 \ pb$ $\pm 0.83\%$	±0.49 pb ±1%	$\pm 0.90~{ m pb}$ $\pm 1.86\%$	+1.27 pb -1.25 pb +2.61% -2.58%

Higgs production modes

ggH	VVH	WH	ZH	tŦH	Total
$44.1^{+11\%}_{-11\%}$	$3.78^{+2\%}_{-2\%}$	$1.37^{+2\%}_{-2\%}$	$0.88^{+5\%}_{-5\%}$	$0.51^{+9\%}_{-13\%}$	50.6

Effects of BSM physics

$$\sigma_{gg \to H} \propto C_t^2 \frac{m_H^4}{v^2} \left(1 + 2 \frac{C_Q}{C_t} \frac{v}{m_Q} + \dots \right) \xrightarrow[m_Q \sim 5 \text{ TeV}]{} \frac{\delta g_{ggH}}{g_{ggH}} \sim 1 - 5\%$$

Theoretical uncertainties

$\delta(scale)$	$\delta(PDF/TH)$	$\delta(EW)$	$\delta(t, b, c)$	$\delta(1/m_t)$	$\delta(PDF)$	$\delta(\alpha s)$
+0.10 pb -1.15 pb +0.21% -2.37%	$\pm 0.56~ m pb$ $\pm 1.16\%$	$\pm 0.49 ext{ pb} \\ \pm 1\%$	$\pm 0.40 \text{ pb} \\ \pm 0.83\%$	±0.49 pb ±1%	$\pm 0.90 \ { m pb} \ \pm 1.86\%$	+1.27 pb -1.25 pb +2.61% -2.58%

What is the form of QCD-EW contributions and of $\delta(EW)$?

Marco Bonetti	(RWTH TTK))
---------------	------------	---

NLO QCD-EW $PP \rightarrow H + j$

[ph0404071] [ph0407249] [ph0610033]

Exact LO Electroweak contributions

Yukawa coupling $\alpha_{s\alpha} \mathbf{Y}_{t}$

Electroweak coupling $\alpha_{s} \alpha^{2} v$

[ph0404071] [ph0407249] [ph0610033]

Exact LO Electroweak contributions

- Dominated by top quark
- \bullet ~0.5% of $\sigma_{
 m QCD}^{
 m LO}$

[ph0404071] [ph0407249] [ph0610033]

[ph0404071] [ph0407249] [ph0610033]

[ph0404071] [ph0407249] [ph0610033]

NLO QCD-EW $PP \rightarrow H + j$

QCD-EW contributions at the LHC

$$\sigma_{PP \to H+j}(\mu) = \int_0^1 \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f_{a/P}(x_1,\mu) f_{b/P}(x_2,\mu) \overline{\sigma}_{ab \to H+j}$$

QCD-EW contributions at the LHC

$$\sigma_{PP \to H+j}(\mu) = \int_0^1 \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f_{\mathsf{a}/P}(x_1,\mu) f_{\mathsf{b}/P}(x_2,\mu) \overline{\sigma}_{\mathsf{a}\mathsf{b} \to H+j}$$

We consider $\alpha^2 v$ contributions

QCD-EW contributions at the LHC

$$\sigma_{PP \to H+j}(\mu) = \int_0^1 \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f_{a/P}(x_1, \mu) f_{b/P}(x_2, \mu) \overline{\sigma}_{ab \to H+j}$$

We consider $\alpha^2 v$ contributions

{q, q} suppressed by PDFs
NNLO small (cfr. HEFT + QCD)

Marco Bonetti (RWTH TTK)

 $gg \rightarrow H$: form factor decomposition

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

 $gg \rightarrow H$: form factor decomposition

$$\sum_{\substack{\alpha^2 v \alpha_S^{(2)} \\ \mathbf{p}_2, c_2, \lambda_2}} \sum_{\substack{\beta \in \mathbf{p}_2, c_2, \lambda_2}} \delta^{\mathbf{c}_1 \mathbf{c}_2} \epsilon_{\lambda_1}(\mathbf{p}_1) \cdot \epsilon_{\lambda_2}(\mathbf{p}_2) \mathcal{F}\left(s, m_W^2, m_Z^2\right)$$

• LO: 3 two-loop diagrams

• vNLO: 47 three-loop diagrams

$$\mathcal{F}\left(s, m_W^2, m_Z^2\right) = -i \frac{\alpha^2 \alpha_S(\mu) v}{64\pi \sin^4 \theta_w} \sum_{V=W,Z} C_V A(m_V^2/s, \mu^2/s)$$

 $gg \rightarrow H$: form factor decomposition

• LO: 3 two-loop diagrams
•
$$C_W = 4$$

 $\{u, d, c, s\}$
• $C_W = A_{\{u, d, c, s\}}$
• $C_Z = \frac{2}{\cos^4 \theta_w} \left(\frac{5}{4} - \frac{7}{3}\sin^2 \theta_w + \frac{22}{9}\sin^4 \theta_w\right)$
 $\{u, d, s, c, b\}$
• $A(m^2/s, \mu^2/s) = A_{LO}(m^2/s) + \frac{\alpha_S(\mu)}{2\pi}A_{vNLO}(m^2/s, \mu^2/s) + \mathcal{O}(\alpha_S^2)$

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

[Chetyrkin...,1981][Gehrmann...,1999]

 $A(m^2/s, \mu^2/s)$: sum of over 10 000 2 & 3-loop Feynman Integrals

[Chetyrkin...,1981][Gehrmann...,1999]

 $A(m^2/s, \mu^2/s)$: sum of over 10 000 2 & 3-loop Feynman Integrals Not all FIs are independent!

[Chetyrkin...,1981][Gehrmann...,1999]

 $A(m^2/s, \mu^2/s)$: sum of over 10 000 2 & 3-loop Feynman Integrals Not all FIs are independent!

Integration-by-Parts Identities

$$\int \frac{\partial}{\partial k^{\mu}} \left(q^{\mu} \prod_{j=1}^{J} \frac{1}{\mathcal{D}_{j}^{a_{j}}} \right) d^{D}k = 0, \qquad q^{\mu} = k^{\mu}, p^{\mu}$$

Lorentz Invariance
 Symmetries

Dim. Reg.

[Chetyrkin...,1981][Gehrmann...,1999]

 $A(m^2/s, \mu^2/s)$: sum of over 10 000 2 & 3-loop Feynman Integrals Not all FIs are independent!

Integration-by-Parts Identities

$$\int \frac{\partial}{\partial k^{\mu}} \left(q^{\mu} \prod_{j=1}^{J} \frac{1}{\mathcal{D}_{j}^{a_{j}}} \right) d^{D}k = 0, \qquad q^{\mu} = k^{\mu}, p^{\mu}$$

Lorentz Invariance
 Symmetries
 Dim. Reg.

System of linear relations among FIs

[Chetyrkin...,1981][Gehrmann...,1999]

 $A(m^2/s, \mu^2/s)$: sum of over 10 000 2 & 3-loop Feynman Integrals Not all FIs are independent!

Integration-by-Parts Identities

$$\int \frac{\partial}{\partial k^{\mu}} \left(q^{\mu} \prod_{j=1}^{J} \frac{1}{\mathcal{D}_{j}^{a_{j}}} \right) d^{D}k = 0, \qquad q^{\mu} = k^{\mu}, p^{\mu}$$

Lorentz Invariance
 Symmetries
 Dim. Reg.

System of linear relations among FIs

Master Integrals Basis of loop integrals for the amplitude

• 2-loop: 12 MIs

3-loop: 95 MIs

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

Evaluation of Master Integrals

Change of variables

-

- Only one dimensionful variable
- Rationalization of square roots

$$y := \frac{\sqrt{1 - 4m^2/s} - 1}{\sqrt{1 - 4m^2/s} + 1}$$

s

Evaluation of Master Integrals

Change of variables

- Only one dimensionful variable
- Rationalization of square roots

$$v := rac{\sqrt{1-4m^2/s}-1}{\sqrt{1-4m^2/s}+1}$$

S

Oimensional analysis

J

$$\mathbf{I}(s, y, \epsilon) = (-s)^{a-L\epsilon} \mathbf{J}(y, \epsilon)$$

Evaluation of Master Integrals

Change of variables

- Only one dimensionful variable
- Rationalization of square roots

$$y := \frac{\sqrt{1 - 4m^2/s} - 1}{\sqrt{1 - 4m^2/s} + 1}$$

S

Oimensional analysis

$$\mathbf{I}(s, y, \epsilon) = (-s)^{a-L\epsilon} \mathbf{J}(y, \epsilon)$$

Sevaluation of $J(y, \epsilon)$ using Differential Equations

Differentiate the MIs w.r.t. masses or scalar kinematic invariants

$$\frac{\partial}{\partial (m^2)} \longrightarrow = -2 \longrightarrow$$

Differentiate the MIs w.r.t. masses or scalar kinematic invariants

Apply IBPs to recover the MIs (MI for subtopologies may arise)

$$-\underbrace{\frown}_{=} -\frac{1-2\epsilon}{4m^2+s} -\underbrace{\frown}_{=} -\frac{1-\epsilon}{m^2(4m^2+s)}$$

Differentiate the MIs w.r.t. masses or scalar kinematic invariants

Apply IBPs to recover the MIs (MI for subtopologies may arise)

$$-\underbrace{\frown}_{=} -\frac{1-2\epsilon}{4m^2+s} -\underbrace{\frown}_{=} -\frac{1-\epsilon}{m^2(4m^2+s)} -\underbrace{\frown}_{=}$$

Include in cascade DEs for all the MIs in the subgraphs

$$\begin{cases} \frac{\partial}{\partial(m^2)} & \longrightarrow & = \frac{2-4\epsilon}{4m^2+s} & \longrightarrow & + \frac{2-2\epsilon}{m^2(4m^2+s)} \\ \frac{\partial}{\partial(m^2)} & \longrightarrow & = -\frac{1-\epsilon}{m^2} & & & \\ \end{cases}$$

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + i$

Fermilab 24.06.2021 10/26

Differentiate the MIs w.r.t. masses or scalar kinematic invariants

Apply IBPs to recover the MIs (MI for subtopologies may arise)

$$-\underbrace{\frown}_{m^2} = -\frac{1-2\epsilon}{4m^2+s} - \underbrace{\frown}_{m^2} - \frac{1-\epsilon}{m^2(4m^2+s)} - \underbrace{\frown}_{m^2}$$

Include in cascade DEs for all the MIs in the subgraphs

Closed system of linear Partial Differential Equations

$$rac{\partial \mathbf{J}(y,\epsilon)}{\partial y} = A(y,\epsilon) \mathbf{J}(y,\epsilon)$$

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + i$

A simple form for FIs

[Henn,2013][Argeri...,2014]

Marco Bonetti (RWTH TTK)

A simple form for FIs

[Henn,2013][Argeri...,2014]

$$\epsilon^{3}(-s) \xrightarrow{\epsilon^{3}}_{\epsilon^{\ast}} = \epsilon^{0} \quad 1 +$$

$$+ \epsilon^{1} \quad [-3\log(-s)] +$$

$$+ \epsilon^{2} \quad \frac{9\log^{2}(-s) - \pi^{2}}{2} +$$

$$+ \epsilon^{3} \quad \left[\frac{-9\log^{3}(-s) - 3\pi^{2}\log(-s)}{2} - 28\zeta(3)\right] +$$

$$+ \quad O\left(\epsilon^{4}\right)$$

• Constants from logs: $\pi \rightsquigarrow \log(-1)$, $\zeta(2k) \rightsquigarrow \pi^{2k} \rightsquigarrow \log^{2k}(-1)$ • ϵ^n coefficients are related to $\log^n x \rightsquigarrow \int \frac{1}{\xi_1} \cdots \int \frac{1}{\xi_n} d\xi_n \dots d\xi_1$ • $\frac{\partial}{\partial s} \left[\epsilon^3(-s) - \xi_{\chi_n} \right] = \frac{-3\epsilon}{s} \left[\epsilon^3(-s) - \xi_{\chi_n} \right]$

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$
Uniformly Transcendental functions

[Henn,2013][Di Vita...,2014]

$\epsilon^{3}(-s) - \frac{\epsilon^{3}}{\epsilon^{3}}$ is a Uniformly Transcendental function

Uniformly Transcendental functions

[Henn,2013][Di Vita...,2014]

 $\epsilon^{3}(-s)$ is a Uniformly Transcendental function

Weight W

Number of nested integrations over $d \log R(\xi)$, $R(\xi)$ rational functions

$$F_n(y) = \int_0^y \cdots \int_0^{\xi_n} \mathrm{d} \log R_n(\xi) \ldots \mathrm{d} \log R_1(\xi) \quad \Rightarrow \quad W(F_n) := n$$

Weight w functions in rational points give weight w constants W(Q) = 0, W(π) = 1, W(ζ(n)) = n
W(F_a F_b) = W(F_a) + W(F_b)

Uniformly Transcendental functions

[Henn,2013][Di Vita...,2014]

 $\epsilon^{3}(-s)$ is a Uniformly Transcendental function

Weight W

Number of nested integrations over $d \log R(\xi)$, $R(\xi)$ rational functions

$$F_n(y) = \int_0^y \cdots \int_0^{\xi_n} \mathrm{d} \log R_n(\xi) \ldots \mathrm{d} \log R_1(\xi) \quad \Rightarrow \quad W(F_n) := n$$

Weight w functions in rational points give weight w constants W(Q) = 0, W(π) = 1, W(ζ(n)) = n
W(F_a F_b) = W(F_a) + W(F_b)

UT function

Function having a finite ϵ -expansion with weight *n* coefficients at order ϵ^n

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

The UT Cauchy problem

[Remiddi...,1999][Henn,2013][Lee,2014]

A UT function $\mathbf{F}(y, \epsilon)$ satisfies

The UT Cauchy problem

[Remiddi...,1999][Henn,2013][Lee,2014]

A UT function $\mathbf{F}(y, \epsilon)$ satisfies

Differential Equations

$$\frac{\mathrm{d}}{\mathrm{d}y} \mathbf{F}(y, \epsilon) = \epsilon \sum_{a=1}^{A} B_{a} \frac{\mathrm{d} \log R_{a}(y)}{\mathrm{d}y} \mathbf{F}(y, \epsilon)$$

Canonical form ϵ -homogeneousFuchsian systemonly simple poles in y

The UT Cauchy problem

[Remiddi...,1999][Henn,2013][Lee,2014]

A UT function $\mathbf{F}(y, \epsilon)$ satisfies

Differential Equations

$$\frac{\mathrm{d}}{\mathrm{d}y} \mathbf{F}(y, \epsilon) = \epsilon \sum_{a=1}^{A} B_{a} \frac{\mathrm{d} \log R_{a}(y)}{\mathrm{d}y} \mathbf{F}(y, \epsilon)$$

Canonical form ϵ -homogeneousFuchsian systemonly simple poles in y

Boundary Conditions

Integration constants solutions equated at $y \rightarrow y_0$ to boundary functions

$$\lim_{y \to y_0} [\mathbf{F}(y, \epsilon) - \mathbf{L}(y, \epsilon)] = 0$$

 y_0 rational point: $L(y \rightarrow y_0, \epsilon)$ is also UT

Marco Bonetti (RWTH TTK)

A two-steps approach

1 Study of $J(y, \epsilon)$

[Argeri...,2014][Gehrmann...,2014]

[Lee, 2014] [Primo..., 2016] [Gituliar..., 2017] [Frellesvig..., 2017] [Meyer, 2017]

- $A(y,\epsilon) \rightsquigarrow A_0(y) + \epsilon A_1(y) [+ \dots]$
- Building blocks

- Maximal cut
 - All possible propagators are put on-shell
 - DEs: all terms not featuring cut propagators are put to 0
 - $\bullet~$ Requiring MIs with d log-form in all remaining integration variables

A two-steps approach

1 Study of $J(y, \epsilon)$

[Argeri...,2014][Gehrmann...,2014]

[Lee, 2014] [Primo..., 2016] [Gituliar..., 2017] [Frellesvig..., 2017] [Meyer, 2017]

- $A(y,\epsilon) \rightsquigarrow A_0(y) + \epsilon A_1(y) [+ \dots]$
- Building blocks

- Maximal cut
 - All possible propagators are put on-shell
 - DEs: all terms not featuring cut propagators are put to 0
 - $\bullet\,$ Requiring MIs with $d\log\mbox{-}form$ in all remaining integration variables

• Integrating away of $A_0(y)$

Fuchsian structure can be spoiled: logs in $A_1(y)$

 Algebraic techniques: Fuchsia & CANONICA BC can become non-UT: rescaling of lower UT MIs by ε-polynomials

[Smirnov,2002]

Large-Mass Expansion

• MIs are functions of $p_1 \sim p_2 \sim \sqrt{s}$ and m

[Smirnov,2002]

- MIs are functions of $p_1 \sim p_2 \sim \sqrt{s}$ and m
- Mathematical limit: $m^2 \gg s \quad \Leftrightarrow \quad y \to 1$

[Smirnov,2002]

- MIs are functions of $p_1 \sim p_2 \sim \sqrt{s}$ and m
- Mathematical limit: $m^2 \gg s \quad \Leftrightarrow \quad y \to 1$
- Diagrammatic approach: sum over non-vanishing contributions, with
 - $k_i \sim \sqrt{s}$ or $k_i \sim m$
 - Large momentum cannot be created, destroyed or provided by external legs: it must form at least one closed flow along the internal lines.

[Smirnov,2002]

- MIs are functions of $p_1 \sim p_2 \sim \sqrt{s}$ and m
- Mathematical limit: $m^2 \gg s \quad \Leftrightarrow \quad y \to 1$
- Diagrammatic approach: sum over non-vanishing contributions, with
 - $k_i \sim \sqrt{s}$ or $k_i \sim m$
 - Large momentum cannot be created, destroyed or provided by external legs: it must form at least one closed flow along the internal lines.
- Integrands expanded in $\sim \sqrt{s}$ to obtain the large-mass integrals

۲

[Smirnov,2002]

- MIs are functions of $p_1 \sim p_2 \sim \sqrt{s}$ and m
- Mathematical limit: $m^2 \gg s \quad \Leftrightarrow \quad y \to 1$
- Diagrammatic approach: sum over non-vanishing contributions, with
 - $k_i \sim \sqrt{s}$ or $k_i \sim m$
 - Large momentum cannot be created, destroyed or provided by external legs: it must form at least one closed flow along the internal lines.
- Integrands expanded in $\sim \sqrt{s}$ to obtain the large-mass integrals

Form of the final result

Form of the final result

Form of the final result

• Weight drop: only up to W = 5 for the finite part of a 3-loop amplitude

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

Renormalized amplitude

[Catani,1998]

1 UV div. α_{S} renormalization only

$$\alpha_{5}^{0} = \alpha_{5}(\mu^{2}) \left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)^{\epsilon} S_{\epsilon}^{-1} \left[1 + \alpha_{5}(\mu^{2})\frac{\beta_{0}}{\epsilon} + O\left(\alpha_{5}^{2}(\mu^{2})\right)\right]$$

IR div. described by Catani's formula, removed by real corrections

$$A_{\rm vNLO} = \mathbf{I}_{gg}^{(1)} A_{\rm LO} + A_{\rm vNLO}^{\rm fin}$$
$$\mathbf{I}_{g}^{(1)} = \left(-\frac{s}{\mu^2}\right)^{-\epsilon} \frac{e^{\epsilon \gamma_E}}{\Gamma(1-\epsilon)} \left[-\frac{C_A}{\epsilon^2} - \frac{\beta_0}{\epsilon}\right]$$

Renormalized amplitude

[Catani,1998]

 $\textcircled{O} \quad \textbf{UV div.} \ \ \alpha_{\mathcal{S}} \ \text{renormalization only}$

$$\alpha_{5}^{0} = \alpha_{5}(\mu^{2}) \left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)^{\epsilon} S_{\epsilon}^{-1} \left[1 + \alpha_{5}(\mu^{2})\frac{\beta_{0}}{\epsilon} + O\left(\alpha_{5}^{2}(\mu^{2})\right)\right]$$

2 IR div. described by Catani's formula, removed by real corrections

$$A_{\rm vNLO} = \mathbf{I}_{gg}^{(1)} A_{\rm LO} + A_{\rm vNLO}^{\rm fin}$$

$$\mathbf{I}_{g}^{(1)} = \left(-\frac{s}{\mu^2}\right)^{-\epsilon} \frac{e^{\epsilon\gamma_E}}{\Gamma(1-\epsilon)} \left[-\frac{C_A}{\epsilon^2} - \frac{\beta_0}{\epsilon}\right]$$

$$A_{\rm LO}(m_Z^2/m_H^2, 1) = -6.880846 - i \, 0.5784119$$

$$A_{\rm LO}(m_W^2/m_H^2, 1) = -10.71693 - i \, 2.302953$$

$$A_{\rm vNLO}^{\rm fin}(m_Z^2/m_H^2, 1) = -2.975801 - i \, 41.19509$$

$$A_{\rm vNLO}^{\rm fin}(m_W^2/m_H^2, 1) = -11.31557 - i \, 54.02989$$

 $s = \mu = m_H = 125.09 \text{ GeV}, \ m_W = 80.385 \text{ GeV}, \ m_Z = 91.1876 \text{ GeV}, \ N_C = 3, \ N_f = 5$

Renormalized amplitude

[Catani,1998]

1 UV div. α_S renormalization only

$$\alpha_{5}^{0} = \alpha_{5}(\mu^{2}) \left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)^{\epsilon} S_{\epsilon}^{-1} \left[1 + \alpha_{5}(\mu^{2})\frac{\beta_{0}}{\epsilon} + O\left(\alpha_{5}^{2}(\mu^{2})\right)\right]$$

IR div. described by Catani's formula, removed by real corrections

$$A_{\text{vNLO}} = \mathbf{I}_{gg}^{(1)} A_{\text{LO}} + A_{\text{vNLO}}^{\text{fin}}$$

$$\mathbf{I}_{g}^{(1)} = \left(-\frac{s}{\mu^{2}}\right)^{-\epsilon} \frac{e^{\epsilon\gamma_{E}}}{\Gamma(1-\epsilon)} \left[-\frac{C_{A}}{\epsilon^{2}} - \frac{\beta_{0}}{\epsilon}\right]$$
Cut analysis
$$s = 0 \qquad s = m^{2}$$
2 loops
3 loops
$$Hq\overline{q} = 0 \qquad \text{for } m_{q} = 0$$

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

$$\begin{aligned} f^{c_1c_2c_3}\epsilon^{\mu}_{\lambda_1}(\mathbf{p}_1) \ \epsilon^{\nu}_{\lambda_2}(\mathbf{p}_2) \ \epsilon^{\rho}_{\lambda_3}(\mathbf{p}_3) \ \times \\ [\mathcal{F}_1g_{\mu\nu}p_{2\rho} + \mathcal{F}_2g_{\mu\rho}p_{2\nu} + \mathcal{F}_3g_{\nu\rho}p_{2\mu} + \mathcal{F}_4p_{3\mu}p_{1\nu}p_{2\rho}] \end{aligned}$$

• rNLO: 21 two-loop diagrams

• rNLO: 21 two-loop diagrams

$$\mathcal{F}_{j}\left(s,t,m_{H}^{2},m_{W}^{2},m_{Z}^{2}\right) = -\frac{(\alpha\alpha_{s})^{3/2}m_{W}}{16\pi\sin^{3}\theta_{w}}\sum_{V=W,Z}C_{V}A_{j}(s,t,m_{H}^{2},m_{V}^{2})$$

rNLO: 21 two-loop diagrams

$$\mathcal{F}_{j}(s,t,m_{H}^{2},m_{W}^{2},m_{Z}^{2}) = -\frac{(\alpha\alpha_{s})^{3/2}m_{W}}{16\pi\sin^{3}\theta_{w}}\sum_{V=W,Z}C_{V}A_{j}(s,t,m_{H}^{2},m_{V}^{2})$$

• Reduction to 61 MIs modulus permutations

• rNLO: 21 two-loop diagrams

$$\mathcal{F}_{j}(s,t,m_{H}^{2},m_{W}^{2},m_{Z}^{2}) = -\frac{(\alpha\alpha_{s})^{3/2} m_{W}}{16\pi\sin^{3}\theta_{w}} \sum_{V=W,Z} C_{V} A_{j}(s,t,m_{H}^{2},m_{V}^{2})$$

- Reduction to 61 MIs modulus permutations
- $d \log DEs$ containing 4 different square roots

• rNLO: 21 two-loop diagrams

$$\mathcal{F}_{j}(s,t,m_{H}^{2},m_{W}^{2},m_{Z}^{2}) = -\frac{(\alpha\alpha_{S})^{3/2} m_{W}}{16\pi\sin^{3}\theta_{w}} \sum_{V=W,Z} C_{V} A_{j}(s,t,m_{H}^{2},m_{V}^{2})$$

- Reduction to 61 MIs modulus permutations
- d log DEs containing 4 different square roots
 - Single MIs contain at most 3 square roots and are rationalizable
 - No global rationalization found

$gg \to Hg$: form factor decomposition

• rNLO: 21 two-loop diagrams

$$\mathcal{F}_{j}(s,t,m_{H}^{2},m_{W}^{2},m_{Z}^{2}) = -\frac{(\alpha\alpha_{S})^{3/2} m_{W}}{16\pi\sin^{3}\theta_{w}} \sum_{V=W,Z} C_{V} A_{j}(s,t,m_{H}^{2},m_{V}^{2})$$

- Reduction to 61 MIs modulus permutations
- d log DEs containing 4 different square roots
 - Single MIs contain at most 3 square roots and are rationalizable
 - No global rationalization found

DEs uneffective for ggHg

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

[Panzer,2014]

Direct integration over Feynman parameters

[Panzer,2014]

Direct integration over Feynman parameters

$$\sum_{j=0}^{\mathcal{D}_4} \sum_{j=0}^{\mathcal{D}_4} \propto \int_0^1 \mathrm{d}x_2 \int_0^1 \mathrm{d}x_1 \int_0^1 \mathrm{d}x_3 \int_0^1 \mathrm{d}x_4 \frac{\delta(1-X)}{\left[\sum x_j \mathcal{D}_j\right]^A}$$
$$\propto \int_0^1 \mathrm{d}x_2 \, G(x_2 + \sqrt{\alpha x_2 + \beta} \dots; x_2) + \dots$$

[Panzer,2014]

19/26

Direct integration over Feynman parameters

$$\begin{array}{c} \sum_{\mathcal{D}_{4}} \sum_{\mathcal{D}_{3}} \sum_{\mathcal{D}_{2}} \sum_{\mathcal{D}_{2$$

Linear reducibility

There exists an integration order for the kernel f_0

$$\int_0^{+\infty} \mathrm{d} z_1 \cdots \int_0^{+\infty} \mathrm{d} z_k f_0$$

such that each integral is a hyperlog of the next integration variable.

- Integration over d logs: result as GPLs
- No integration variables under square roots: no rationalization needed Marco Bonetti (RWTH TTK) NLO QCD-EW $PP \rightarrow H + i$ Fermilab 24.06.2021

[Panzer,2014]

19/26

Direct integration over Feynman parameters

$$\begin{array}{c} \sum_{\mathcal{D}_{4}} \sum_{\mathcal{D}_{3}} \sum_{\mathcal{D}_{2}} \sum_{\mathcal{D}_{2$$

Linear reducibility

There exists an integration order for the kernel f_0

$$\int_0^{+\infty} \mathrm{d} z_1 \cdots \int_0^{+\infty} \mathrm{d} z_k f_0$$

such that each integral is a hyperlog of the next integration variable.

- Integration over d logs: result as GPLs
- No integration variables under square roots: no rationalization needed Marco Bonetti (RWTH TTK) NLO QCD-EW $PP \rightarrow H + i$ Fermilab 24.06.2021

[Panzer,2014]

Direct integration over Feynman parameters

$$\sum_{j=0}^{1} \sum_{\mathcal{D}_{2}} \sum_{i=0}^{1} \sum_{j=0}^{1} \sum_{i=0}^{1} \frac{\mathrm{d}x_{3}}{\mathrm{d}x_{3}} \int_{0}^{1} \mathrm{d}x_{2} \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}x_{4} \frac{\delta(1-X)}{\left[\sum x_{j}\mathcal{D}_{j}\right]^{A}}$$

$$\propto \int_{0}^{1} \mathrm{d}x_{3} G(\alpha + \sqrt{\beta} \dots; x_{3}) + \dots$$

Linear reducibility

There exists an integration order for the kernel f_0

$$\int_0^{+\infty} \mathrm{d} z_1 \cdots \int_0^{+\infty} \mathrm{d} z_k f_0$$

such that each integral is a hyperlog of the next integration variable.

- Integration over d logs: result as GPLs
- No integration variables under square roots: no rationalization needed Marco Bonetti (RWTH TTK) NLO QCD-EW $PP \rightarrow H + i$ Fermilab 24.06.2021

19/26

[Tarasov,1996][Lee,2010][von Manteuffel...,2015]

- 2-loop MIs in general divergent
- LO amplitude finite

[Tarasov,1996][Lee,2010][von Manteuffel...,2015]

- 2-loop MIs in general divergent
- LO amplitude finite

Quasi-finite basis

$$\mathcal{I}^{D+2}(a_1,\ldots,a_7) = \frac{16}{s \, t \, u \, (D-4) \, (D-3)} \int \tilde{d}^D k_1 \, \tilde{d}^D k_1 \, \frac{G(k_1,k_2,p_1,p_2,p_3)}{\mathcal{D}_1^{a_1} \ldots \mathcal{D}_7^{a_7}}$$

- UV finiteness: negative SDD by rising powers of (massive) propagators
- IR finiteness: Gram determinant cures soft & collinear divergences

[Tarasov,1996][Lee,2010][von Manteuffel...,2015]

- 2-loop MIs in general divergent
- LO amplitude finite

Quasi-finite basis

$$\mathcal{I}^{D+2}(a_1,\ldots,a_7) = \frac{16}{s \, t \, u \, (D-4) \, (D-3)} \int \tilde{d}^D k_1 \, \tilde{d}^D k_1 \, \frac{G(k_1,k_2,p_1,p_2,p_3)}{\mathcal{D}_1^{a_1} \ldots \mathcal{D}_7^{a_7}}$$

- UV finiteness: negative SDD by rising powers of (massive) propagators
- IR finiteness: Gram determinant cures soft & collinear divergences

[Tarasov,1996][Lee,2010][von Manteuffel...,2015]

- 2-loop MIs in general divergent
- LO amplitude finite

Quasi-finite basis

$$\mathcal{I}^{D+2}(a_1,\ldots,a_7) = \frac{16}{s \, t \, u \, (D-4) \, (D-3)} \int \tilde{d}^D k_1 \, \tilde{d}^D k_1 \, \frac{G(k_1,k_2,p_1,p_2,p_3)}{\mathcal{D}_1^{a_1} \ldots \mathcal{D}_7^{a_7}}$$

- UV finiteness: negative SDD by rising powers of (massive) propagators
- IR finiteness: Gram determinant cures soft & collinear divergences

MIs are shifted into finite integrals and divergent sub-graphsGood choices do not worsen the poles in the coefficients

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

A simpler form of the amplitude

The amplitude is still a large expressions up to W = 4

A simpler form of the amplitude

The amplitude is still a large expressions up to W = 4• Spinor-helicity amplitudes

$$\begin{split} \mathcal{A}_{+++}^{\prime \text{NLO}} &= \frac{m_{H}^{2}}{\sqrt{2}\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \, \frac{su}{m_{H}^{2}} \left(\mathcal{F}_{1} + \frac{t}{u} \mathcal{F}_{2} + \frac{t}{s} \mathcal{F}_{3} + \frac{t}{2} \mathcal{F}_{4} \right) \\ \mathcal{A}_{++-}^{\prime \text{NLO}} &= \frac{[12]^{3}}{\sqrt{2}m_{H}^{2} [13] [23]} \, \frac{u m_{H}^{2}}{s} \left(\mathcal{F}_{1} + \frac{t}{2} \mathcal{F}_{4} \right) \end{split}$$
A simpler form of the amplitude

The amplitude is still a large expressions up to W = 4• Spinor-helicity amplitudes

$$\mathcal{A}_{+++}^{\text{rNLO}} = \frac{m_H^2}{\sqrt{2}\langle 12\rangle\langle 23\rangle\langle 31\rangle} \frac{su}{m_H^2} \left(\mathcal{F}_1 + \frac{t}{u}\mathcal{F}_2 + \frac{t}{s}\mathcal{F}_3 + \frac{t}{2}\mathcal{F}_4\right)$$
$$\mathcal{A}_{++-}^{\text{rNLO}} = \frac{[12]^3}{\sqrt{2}m_H^2[13][23]} \frac{um_H^2}{s} \left(\mathcal{F}_1 + \frac{t}{2}\mathcal{F}_4\right)$$
$$\text{All + weight drop}$$
$$\mathcal{A}_{++}^{\text{LO}} \max W = 3$$
$$\mathcal{A}_{+++}^{\text{rNLO}} \max W = 5$$
$$\mathcal{A}_{+++}^{\text{rNLO}} \max W = 3$$
$$\mathcal{A}_{+++}^{\text{rNLO}} \max W = 4$$

• Basis for rational prefactors

A simpler form of the amplitude

The amplitude is still a large expressions up to W = 4• Spinor-helicity amplitudes

$$\mathcal{A}_{+++}^{\text{rNLO}} = \frac{m_{H}^{2}}{\sqrt{2}\langle 12\rangle\langle 23\rangle\langle 31\rangle} \frac{su}{m_{H}^{2}} \left(\mathcal{F}_{1} + \frac{t}{u}\mathcal{F}_{2} + \frac{t}{s}\mathcal{F}_{3} + \frac{t}{2}\mathcal{F}_{4}\right)$$
$$\mathcal{A}_{++-}^{\text{rNLO}} = \frac{[12]^{3}}{\sqrt{2}m_{H}^{2}[13][23]} \frac{um_{H}^{2}}{s} \left(\mathcal{F}_{1} + \frac{t}{2}\mathcal{F}_{4}\right)$$
$$\text{All + weight drop}$$
$$\mathcal{A}_{++}^{\text{LO}} \max W = 3$$
$$\mathcal{A}_{++}^{\text{rNLO}} \max W = 5$$
$$\mathcal{A}_{+++}^{\text{rNLO}} \max W = 3$$
$$\mathcal{A}_{++-}^{\text{rNLO}} \max W = 4$$

- Basis for rational prefactors
 - Not all rational prefactors are linearly independent
 - PSLQ to find relations on $\mathbb Q$

A simpler form of the amplitude

The amplitude is still a large expressions up to W = 4Spinor-helicity amplitudes

$$\mathcal{A}_{+++}^{\text{rNLO}} = \frac{m_{H}^{2}}{\sqrt{2}\langle 12\rangle\langle 23\rangle\langle 31\rangle} \frac{su}{m_{H}^{2}} \left(\mathcal{F}_{1} + \frac{t}{u}\mathcal{F}_{2} + \frac{t}{s}\mathcal{F}_{3} + \frac{t}{2}\mathcal{F}_{4}\right)$$
$$\mathcal{A}_{++-}^{\text{rNLO}} = \frac{[12]^{3}}{\sqrt{2}m_{H}^{2}[13][23]} \frac{um_{H}^{2}}{s} \left(\mathcal{F}_{1} + \frac{t}{2}\mathcal{F}_{4}\right)$$
$$\text{All + weight drop}$$
$$\mathcal{A}_{++}^{\text{LO}} \max W = 3$$
$$\mathcal{A}_{++}^{\text{rNLO}} \max W = 5$$
$$\mathcal{A}_{+++}^{\text{rNLO}} \max W = 3 \qquad \mathcal{A}_{++-}^{\text{rNLO}} \max W = 4$$

- Basis for rational prefactors
 - Not all rational prefactors are linearly independent
 - PSLQ to find relations on Q
- GPL manipulation

 - $\mathcal{A}_{+++}^{rNLO} \ni log, Li_2, Li_3$: fast, stable expressions $\mathcal{A}_{++-}^{rNLO} \ni log, Li_2, Li_3, G_4$ (to be done: $G_4 \rightarrow Li_4, Li_{2,2}$)

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

Fermilab 24.06.2021 21/26

$$\sigma_{PP \to H+j} = \int_0^1 \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f_{a/P}(x_1, \mu) f_{b/P}(x_2, \mu) \overline{\sigma}_{ab \to H+j}$$

$$\sigma_{PP \to H+j} = \int_0^1 \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f_{g/P}(x_1, \mu) f_{g/P}(x_2, \mu) \overline{\sigma}_{gg \to H+g}$$

gg channel enhanced by luminosity

$$\sigma_{PP \to H+j} = \int_0^1 \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f_{g/P}(x_1, \mu) f_{g/P}(x_2, \mu) \overline{\sigma}_{gg \to H+g}$$

 gg channel enhanced by luminosity
 PDFs suppress extra gluon with large momentum Soft limit

$$\left| \underbrace{\overset{\overset{\overset{}}{\overset{}}_{\mathcal{A}}}_{\mathcal{A}} \underbrace{\overset{}}_{\mathcal{A}}}_{\mathcal{A}} \underbrace{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_2}{p_1 \cdot p_g p_2 \cdot p_g}}_{\text{Eikonal factor}} \right|^{\overset{\overset{}}{\overset{}}_{\mathcal{A}}} \underbrace{\overset{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_2}{p_1 \cdot p_g p_2 \cdot p_g}}_{\mathcal{A}}}_{\mathcal{A}} \underbrace{\overset{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_2}{p_1 \cdot p_g p_2 \cdot p_g}}_{\mathcal{A}} \right|^{\overset{\overset{}}{\overset{}}}_{\mathcal{A}} \underbrace{\overset{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_2}{p_1 \cdot p_g p_2 \cdot p_g}}_{\mathcal{A}} \left| \underbrace{\overset{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_2}{p_1 \cdot p_g p_2 \cdot p_g}}_{\mathcal{A}} \right|^{\overset{}}_{\mathcal{A}} \underbrace{\overset{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_2}{p_1 \cdot p_g p_2 \cdot p_g}}_{\mathcal{A}} \right|^{\overset{}}_{\mathcal{A}} \underbrace{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_2}{p_1 \cdot p_g p_2 \cdot p_g}}_{\mathcal{A}} \right|^{\overset{}}_{\mathcal{A}} \underbrace{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_2}{p_1 \cdot p_g p_2 \cdot p_g}}_{\mathcal{A}} \right|^{\overset{}}_{\mathcal{A}} \underbrace{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_2}{p_1 \cdot p_g p_2 \cdot p_g}}_{\mathcal{A}} \right|^{\overset{}}_{\mathcal{A}} \underbrace{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_g p_2 \cdot p_g}{p_1 \cdot p_g p_2 \cdot p_g}}_{\mathcal{A}} \right|^{\overset{}}_{\mathcal{A}} \underbrace{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_g p_2 \cdot p_g}{p_1 \cdot p_g p_2 \cdot p_g}}_{\mathcal{A}} \bigg|^{\overset{}}_{\mathcal{A}} \underbrace{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_g p_2 \cdot p_g}{p_1 \cdot p_g p_2 \cdot p_g p_2 \cdot p_g}} \bigg|^{\overset{}}_{\mathcal{A}} \underbrace{\overset{}}{\overset{}}_{\mathcal{A}} \underbrace{\frac{2 p_1 \cdot p_g p_2 \cdot p_g p_g \cdot p_g p_g \cdot p_g \cdot$$

.

$$\sigma_{PP \to H+j} = \int_0^1 \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f_{g/P}(x_1, \mu) f_{g/P}(x_2, \mu) \overline{\sigma}_{gg \to H}^{\text{LO}} z \ G(z, \mu, \alpha_S)$$

$$G = \delta(1-z) + \frac{\alpha_S}{2\pi} \left[8C_A \left(\mathcal{D}_1 + \frac{\mathcal{D}_0}{2} \log \frac{m_H^2}{\mu^2} \right) + \left(\frac{2\pi^2}{3} C_A + \frac{\sigma_{\text{vNLO}}^{\text{fin}}}{\sigma_{\text{LO}}} \right) \delta(1-z) \right]$$

$$z := m_H^2/(s_h x_1 x_2)$$

 gg channel enhanced by luminosity
 PDFs suppress extra gluon with large momentum Soft limit

$$\sigma_{PP \to H+j} = \int_0^1 \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f_{g/P}(x_1, \mu) f_{g/P}(x_2, \mu) \overline{\sigma}_{gg \to H}^{\text{LO}} z \ G(z, \mu, \alpha_S)$$

$$G = \delta(1-z) + \frac{\alpha_S}{2\pi} \left[8C_A \left(\mathcal{D}_1 + \frac{\mathcal{D}_0}{2} \log \frac{m_H^2}{\mu^2} \right) + \left(\frac{2\pi^2}{3} C_A + \frac{\sigma_{\text{vNLO}}^{\text{fin}}}{\sigma_{\text{LO}}} \right) \delta(1-z) \right]$$

$$z := m_H^2/(s_h x_1 x_2)$$

 gg channel enhanced by luminosity
 PDFs suppress extra gluon with large momentum Soft limit

$$\sigma_{PP \to H+j} = \int_0^1 \int_0^1 dx_1 dx_2 f_{g/P}(x_1, \mu) f_{g/P}(x_2, \mu) \overline{\sigma}_{gg \to H}^{LO} z G(z, \mu, \alpha_S)$$

$$G = \delta(1-z) + \frac{\alpha_S}{2\pi} \left[8C_A \left(\mathcal{D}_1 + \frac{\mathcal{D}_0}{2} \log \frac{m_H^2}{\mu^2} \right) + \left(\frac{2\pi^2}{3} C_A + \frac{\sigma_{\text{vNLO}}^{\text{fin}}}{\sigma_{\text{LO}}} \right) \delta(1-z) \right]$$

$$z := m_H^2/(s_h x_1 x_2)$$

gg channel enhanced by luminosityPDFs suppress extra gluon with large momentum

Soft limit

$$\left| \underbrace{\overset{\overset{\overset{\overset{}}}{\underset{g_{g}}}}_{f_{g}} \underbrace{\overset{\overset{}}{\underset{g_{g}}}}_{EW} \underbrace{\overset{}}_{f_{g}} \underbrace{\frac{E_{g} \rightarrow 0}{\underbrace{4\pi}}}_{Eg} \underbrace{\frac{\alpha_{S}}{4\pi} C_{A} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot p_{g} p_{2} \cdot p_{g}}}_{Eikonal factor} \right|_{g_{g}} \underbrace{\overset{\overset{\overset{}}}{\underset{g_{g}}}}_{f_{g}} \underbrace{\overset{\overset{}}{\underset{g_{g}}}}_{f_{g}} \underbrace{\frac{2 p_{1} \cdot p_{2}}{\underbrace{\mu_{g}}}}_{g_{g}} \underbrace{\frac{2 p_{1} \cdot p_{2}}}{\underbrace{\mu_{g}}}}_{g_{g}} \underbrace{$$

$$\sigma_{\text{LO}}^{\text{QCD-EW}} = +5.3\% \ \sigma_{\text{LO}}^{\text{QCD-EW}}$$
$$\sigma_{\text{NLO}}^{\text{QCD-EW}} = +5.35\%\sigma_{\text{NLO}}^{\text{QCD-EW}}$$

NLO QCD-EW $PP \rightarrow H + j$

£.

[Becchetti...,2020]

[Becchetti...,2020]

- Evaluation of canonical ggHg MIs using generalized power series
- IR terms locally subtracted (FKS or COLORFUL)
- Interfered with HEFT in pure QCD

[Becchetti...,2020]

- Evaluation of canonical ggHg MIs using generalized power series
- IR terms locally subtracted (FKS or COLORFUL)
- Interfered with HEFT in pure QCD

$$\sigma^{(\alpha_{\varsigma}^2 \alpha^2 + \alpha_{\varsigma}^3 \alpha^2)}_{gg \to H + X} = 1.467(2)^{+18.7\%}_{-14.6\%} (\mu_R \text{ var}) \pm 2\% (\text{PDF}) \text{ pb} \ \Rightarrow \ +5.1\%$$

[Becchetti...,2020]

- Evaluation of canonical ggHg MIs using generalized power series
- IR terms locally subtracted (FKS or COLORFUL)
- Interfered with HEFT in pure QCD

 $\sigma^{(\alpha_5^2\alpha^2 + \alpha_5^3\alpha^2)}_{gg \to H + X} = 1.467(2)^{+18.7\%}_{-14.6\%}(\mu_R \text{ var}) \pm 2\%(\mathsf{PDF}) \text{ pb} \ \Rightarrow \ +5.1\%$

- Small reduction of scale uncertainty (as in pure QCD)
- Factorization-like approximations are good

[Becchetti...,2020]

- Evaluation of canonical ggHg MIs using generalized power series
- IR terms locally subtracted (FKS or COLORFUL)
- Interfered with HEFT in pure QCD

$$\sigma_{gg \to H+X}^{(\alpha_{S}^{2}\alpha^{2}+\alpha_{S}^{3}\alpha^{2})} = 1.467(2)_{-14.6\%}^{+18.7\%} (\mu_{R} \text{ var}) \pm 2\% (\text{PDF}) \text{ pb} \quad \Rightarrow \quad +5.1\%$$

- Small reduction of scale uncertainty (as in pure QCD)
- Factorization-like approximations are good

Best estimate

Heavy-quark mass
 effects

 Top quark contributions • Higher-order QCD corrections

$$\sigma_{gg \to H+X}^{(\mathsf{EW},\mathsf{best})} = (7.11 \pm 0.6)\% \ \sigma_{gg \to H+X}^{(\mathsf{HEFT},\alpha_5^2\alpha + \alpha_5^3\alpha)}$$

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + j$

[PRELIMINARY]

$$T_{j_{1}j_{2}}^{c_{3}}\overline{\mathbf{v}}_{s_{1}}(\mathbf{p}_{1})\left[\left(\mathbf{p}_{3}\mathbf{p}_{2}^{\mu}-\gamma^{\mu}\mathbf{p}_{2}\cdot\mathbf{p}_{3}\right)\left(\mathcal{F}_{1}+\gamma_{5}\mathcal{F}_{51}\right)+\left(\mathbf{p}_{3}\mathbf{p}_{1}^{\mu}-\gamma^{\mu}\mathbf{p}_{1}\cdot\mathbf{p}_{3}\right)\left(\mathcal{F}_{2}+\gamma_{5}\mathcal{F}_{52}\right)\right]u_{s_{2}}(\mathbf{p}_{2})\epsilon_{\mu}^{\lambda_{3}}(\mathbf{p}_{3})$$

• LO: 3 one-loop diagrams

• vNLO: 45 two-loop diagrams

[PRELIMINARY]

$$T_{j_{1}j_{2}}^{c_{3}}\overline{v}_{s_{1}}(\mathbf{p}_{1})\left[\left(p_{3}^{\mu}p_{2}^{\mu}-\gamma^{\mu}p_{2}\cdot p_{3}\right)\left(\mathcal{F}_{1}+\gamma_{5}\mathcal{F}_{51}\right)+\left(p_{3}^{\mu}p_{1}^{\mu}-\gamma^{\mu}p_{1}\cdot p_{3}\right)\left(\mathcal{F}_{2}+\gamma_{5}\mathcal{F}_{52}\right)\right]u_{s_{2}}(\mathbf{p}_{2})\epsilon_{\mu}^{\lambda_{3}}(\mathbf{p}_{3})$$

• LO: 3 one-loop diagrams

- vNLO: 45 two-loop diagrams
- γ_5 connects to external quarks

Polarized states

$$\mathcal{A}_{+-+} = \frac{[23]^2}{\sqrt{2}[12]} \left[\mathcal{F}_1\left(t, u, m_H^2, m_W^2, m_Z^2, \mu^2\right) - \mathcal{F}_{51}\left(t, u, m_H^2, m_W^2, m_Z^2, \mu^2\right) \right]$$

[PRELIMINARY]

$$T_{j_{1}j_{2}}^{c_{3}}\overline{v}_{s_{1}}(\mathbf{p}_{1})\left[\left(p_{3}^{\mu}p_{2}^{\mu}-\gamma^{\mu}p_{2}\cdot p_{3}\right)\left(\mathcal{F}_{1}+\gamma_{5}\mathcal{F}_{51}\right)+\left(p_{3}^{\mu}p_{1}^{\mu}-\gamma^{\mu}p_{1}\cdot p_{3}\right)\left(\mathcal{F}_{2}+\gamma_{5}\mathcal{F}_{52}\right)\right]u_{s_{2}}(\mathbf{p}_{2})\epsilon_{\mu}^{\lambda_{3}}(\mathbf{p}_{3})$$

• LO: 3 one-loop diagrams

- vNLO: 45 two-loop diagrams
- γ_5 connects to external quarks

Polarized states

$$\mathcal{A}_{+-+} = \frac{[23]^2}{\sqrt{2}[12]} \left[\mathcal{F}_1\left(t, u, m_H^2, m_W^2, m_Z^2, \mu^2\right) - \mathcal{F}_{51}\left(t, u, m_H^2, m_W^2, m_Z^2, \mu^2\right) \right]$$

• 91 MIs (up to crossings)

[PRELIMINARY]

$$T_{j_{1}j_{2}}^{c_{3}}\overline{v}_{s_{1}}(\mathbf{p}_{1})\left[\left(p_{3}^{\mu}p_{2}^{\mu}-\gamma^{\mu}p_{2}\cdot p_{3}\right)\left(\mathcal{F}_{1}+\gamma_{5}\mathcal{F}_{51}\right)+\left(p_{3}^{\mu}p_{1}^{\mu}-\gamma^{\mu}p_{1}\cdot p_{3}\right)\left(\mathcal{F}_{2}+\gamma_{5}\mathcal{F}_{52}\right)\right]u_{s_{2}}(\mathbf{p}_{2})\epsilon_{\mu}^{\lambda_{3}}(\mathbf{p}_{3})$$

• LO: 3 one-loop diagrams

- vNLO: 45 two-loop diagrams
- γ_5 connects to external quarks

Polarized states

$$\mathcal{A}_{+-+} = \frac{[23]^2}{\sqrt{2}[12]} \left[\mathcal{F}_1\left(t, u, m_H^2, m_W^2, m_Z^2, \mu^2\right) - \mathcal{F}_{51}\left(t, u, m_H^2, m_W^2, m_Z^2, \mu^2\right) \right]$$

- 91 MIs (up to crossings)
- Huge expressions: work in progress!

Conclusions & Outlook

• QCD-EW corrections to $PP \rightarrow H + j$: important for precision physics

Conclusions & Outlook

- QCD-EW corrections to $PP \rightarrow H + j$: important for precision physics
- Full analytical NLO computation of light-quark gg
 ightarrow H(g)
- [Becchetti...,2020] Evaluation of $\sigma_{gg \rightarrow H+X}^{(\alpha_S^2 \alpha^2 + \alpha_S^2 \alpha^2)}$

Conclusions & Outlook

- QCD-EW corrections to $PP \rightarrow H + j$: important for precision physics
- Full analytical NLO computation of light-quark gg
 ightarrow H(g)
- [Becchetti...,2020] Evaluation of $\sigma_{gg \rightarrow H+X}^{(\alpha_5^2 \alpha^2 + \alpha_5^3 \alpha^2)}$
- Still work to do

The road ahead

- Analytic computation of NLO qg
 ightarrow Hq(g)
- Implementation of qg channel in the cross section

• Very long run: implementation of top quark effects

NLO QCD-EW $PP \rightarrow H + j$

Thank you for your attention

Marco Bonetti (RWTH TTK)

NLO QCD-EW $PP \rightarrow H + i$

Fermilab 24.06.2021 26 / 26