A lattice QCD calculation of the hadronic light-by-light contribution to the magnetic moment of the muon

Harvey Meyer
J. Gutenberg University Mainz

Fermilab, Theoretical Physics Seminar 10 June 2021 (virtual format)

$(g-2)_{\mu}$: an early test of quantum electrodynamics

- in classical electromagnetism, the angular momentum L of a charged particle is associated with a magnetic moment $\mu \propto L$.
- ▶ the electron and its heavier cousin the muon carry an intrinsic angular momentum, s = spin, $s_z = \pm \hbar/2$.
- ▶ for the magnetic moment associated with the spin, one writes

$$\mu = g \cdot \frac{e}{2m} \cdot s$$
, $(e = \text{charge}, m = \text{mass})$

- ightharpoonup g = 2 in Dirac's theory (1928)
- $a_{\mu} \equiv (g-2)_{\mu}/2 = F_2(0) = \frac{\alpha}{2\pi} + O(\alpha^2) \simeq 0.00116$ (Schwinger 1948; $a_{\mu} = a_e$ to this order).
- ightharpoonup corrections to $(g-2)_{\mathrm{lepton}}$ from new heavy particle $\propto (m_{\mathrm{lepton}}^2/M_{\mathrm{heavy}}^2)$.

$(g-2)_{\mu}$: a history of testing the Standard Model

Fig. from Jegerlehner 1705.00263

Fig. from Muon g-2 collab, PRL 126, 141801 (2021)

- After 2020 Theory White Paper and announcement by Fermilab Muon (q-2) experiment (7 April 2021): $a_u^{\text{exp}} a_u^{\text{SM}} = (251 \pm 59) \cdot 10^{-11}$
- $ightharpoonup 4.2\sigma$, with practically equal contributions to the error from theory and experiment.

Source of dominant uncertainties in SM prediction for $(g-2)_{\mu}$

Hadronic vacuum polarisation

HVP:
$$O(\alpha^2)$$
, about $7000 \cdot 10^{-11}$ \Rightarrow target accuracy: $\lesssim 0.5\%$

Hadronic light-by-light scattering

HLbL:
$$O(\alpha^3)$$
, about $100 \cdot 10^{-11}$ \Rightarrow target accuracy: $\lesssim 15\%$.

Recall:
$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (251 \pm 59) \cdot 10^{-11}$$
.

Harvey Mever

Approaches to a_{μ}^{HLbL}

- 1. Model calculations: (the only approach until 2014)
 - based on pole- and loop-contributions of hadron resonances
- Dispersive representation: the Bern approach has been worked out furthest.
 - identify and compute contributions of most important intermediate states
 - determine/constrain the required input (transition form factors, $\gamma^*\gamma^* \to \pi\pi$ amplitudes, . . .) dispersively
- 3. Experimental program: provide input for model & dispersive approach, e.g. $(\pi^0, \eta, \eta') \to \gamma \gamma^*$ at virtualities $Q^2 \lesssim 3 \, \text{GeV}^2$; active program at BES-III.
- 4. Lattice calculations:
 - RBC-UKQCD T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, Ch. Lehner, . . .
 - Mainz N. Asmussen, E.-H. Chao, A. Gérardin, J. Green, J. Hudspith, HM, A. Nyffeler,

Harvey Meyer

Models for a_n^{HLbL}

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
π^0, η, η'	85±13	82.7±6.4	83±12	114±10	-	114±13	99 ± 16
axial vectors	2.5±1.0	1.7±1.7	_	22±5	-	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	_	_	_	-	-7±7	-7±2
π , K loops	-19 ± 13	-4.5±8.1	_	_	_	-19±19	-19±13
π, K loops +subl. N_C	_	_	_	0±10	-	_	-
quark loops	21±3	9.7±11.1	_	_	_	2.3 (c-quark)	21±3
Total	83±32	89.6±15.4	80±40	136±25	110±40	105 ± 26	116 ± 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael. Vainshtein '09; N = AN '09, JN = Jegerlehner, AN '09

Table from A. Nyffeler, PhiPsi 2017 conference

One further estimate: NB. much smaller axial-vector contribution

$$a_{\mu}^{\rm HLbL} = (103 \pm 29) \times 10^{-11}$$
 Jegerlehner 1809.07413

Wisdom gained from model calculations Prades, de Rafael, Vainshtein 0901.0306

heavy (charm) quark loop makes a small contribution

$$a_{\mu}^{\mathrm{HLbL}} = (\frac{\alpha}{\pi})^3 N_c \mathcal{Q}_c^4 c_4 \frac{m_{\mu}^2}{m_c^2} + \dots, \qquad c_4 \approx 0.62.$$

Light-quarks: (A) charged pion loop is negative, proportional to m_{π}^{-2} :

$$a_{\mu}^{\text{HLbL}} = (\frac{\alpha}{\pi})^3 c_2 \frac{m_{\mu}^2}{m_{\pi}^2} + \dots, \qquad c_2 \approx -0.065.$$

(B) The neutral-pion exchange is positive, $\log^2(m_\pi^{-1})$ divergent: Knecht, Nyffeler, Perrottet, de Rafael PRL88 (2002) 071802

$$a_{\mu}^{\rm HLbL} = \left(\frac{\alpha}{\pi}\right)^3 N_c \frac{m_{\mu}^2}{48\pi^2 (F_{\pi}^2/N_c)} \left[\log^2 \frac{m_{\rho}}{m_{\pi}} + \mathcal{O}\left(\log \frac{m_{\rho}}{m_{\pi}}\right) + \mathcal{O}(1)\right].$$

For real-world quark masses: using form factors for the mesons is essential, and resonances up to 1.5 GeV can still be relevant \Rightarrow medium-energy QCD.

Wick-contraction topologies in HLbL amplitude $\langle 0|T\{j_x^\mu j_y^\nu j_z^\lambda j_0^\sigma\}|0\rangle$

First two classes of diagrams thought to be dominant, with a cancellation between them:

	Weight factor of:	fully connected	(2,2) topology
$SU(2)_{\mathrm{f}}$: $m_s = \infty$	isovector-meson exchange isoscalar-meson exchange π^\pm loop (-28/81 \in (3,1) topol.)	$34/9 \approx 3.78$ 0 34/81	$-25/9 \approx -2.78$ 1 75/81
$SU(3)_{\mathrm{f}}$: $m_s = m_{ud}$	octet-meson exchange singlet-meson exchange	3 0	-2 1

Large- N_c argument by J. Bijnens, 1608.01454; see also 1712.00421; Fig. by J. Green.

Direct lattice calculation of HLbL in $(g-2)_{\mu}$

At first, this was thought of as a QED+QCD calculation [pioneered in Hayakawa et al., hep-lat/0509016].

Today's viewpoint: the calculation is considered a QCD four-point Green's function, to be integrated over with a weighting kernel which contains all the QED parts.

RBC-UKQCD: calculation of $a_{\mu}^{\rm HLbL}$ using coordinate-space method in muon rest-frame; photon+muon propagators:

- either on the $L \times L \times L$ torus (QED_L) (1510.07100-present)
- or in infinite volume (QED $_{\infty}$) (1705.01067–present).

Mainz:

manifestly covariant QED_{∞} coordinate-space approach, averaging over muon momentum using the Gegenbauer polynomial technique (1510.08384–present).

Analogy: hadronic vacuum polarization in x-space HM 1706.01139

$$a_{\mu}^{\text{hvp}} = \int d^4x \ H_{\mu\nu}(x) \left\langle j_{\mu}(x)j_{\nu}(0) \right\rangle_{\text{QCD}},$$

$$j_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \dots; \qquad H_{\mu\nu}(x) = -\delta_{\mu\nu}\mathcal{H}_{1}(|x|) + \frac{x_{\mu}x_{\nu}}{x^{2}}\mathcal{H}_{2}(|x|)$$

Kernel known in terms of Meijer's functions: $\mathcal{H}_i(|x|) = \frac{8\alpha^2}{3m^2} f_i(m_\mu |x|)$ with

$$f_{2}(z) = \frac{G_{2,4}^{2,2}\left(z^{2} \middle| \frac{7}{4,5,1,1}\right) - G_{2,4}^{2,2}\left(z^{2} \middle| \frac{7}{4,5,0,2}\right)}{8\sqrt{\pi}z^{4}},$$

$$f_{1}(z) = f_{2}(z) - \frac{3}{16\sqrt{\pi}} \cdot \left[G_{3,5}^{2,3}\left(z^{2} \middle| \frac{1,\frac{3}{2},2}{2,3,-2,0,0}\right) - G_{3,5}^{2,3}\left(z^{2} \middle| \frac{1,\frac{3}{2},2}{2,3,-1,-1,0}\right)\right].$$

Coordinate-space approach to a_{μ}^{HLbL} , Mainz version

- $ightharpoonup ar{\mathcal{L}}_{[
 ho,\sigma];\mu
 u\lambda}(x,y)$ computed in the continuum & infinite-volume
- ightharpoonup no power-law finite-volume effects & only a 1d integral to sample the integrand in |y|.

[Asmussen, Gérardin, Green, HM, Nyffeler 1510.08384, 1609.08454]

Tests of the framework and adjustments to the kernel

Integrands (Lepton loop, method 2)

Correspondings integrals

- ▶ The QED kernel $\bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ is parametrized by six 'weight' functions of the variables $(x^2,x\cdot y,y^2)$.
- $\bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\mu\nu\lambda}(x,y) = \bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \partial_{\mu}^{(x)}(x_{\alpha}e^{-\Lambda m_{\mu}^{2}x^{2}/2})\bar{\mathcal{L}}_{[\rho,\sigma];\alpha\nu\lambda}(0,y)$ $- \partial_{\nu}^{(y)}(y_{\alpha}e^{-\Lambda m_{\mu}^{2}y^{2}/2})\bar{\mathcal{L}}_{[\rho,\sigma];\mu\alpha\lambda}(x,0),$
- Using this kernel, we have reproduced (at the 1% level) known results for a range of masses for:
 - 1. the lepton loop (spinor QED, shown in the two plots);
 - 2. the charged pion loop (scalar QED);
 - 3. the π^0 exchange with a VMD-parametrized transition form factor.

Integrand at $m_\pi = m_K \simeq 415\,\mathrm{MeV}$

 Partial success in understanding the integrand in terms of familiar hadronic contributions. $\begin{array}{l} {\color{red} \blacktriangleright} \ \, \text{Reasonable understanding of} \\ \text{magnitude of finite-size effects.} \\ \text{$(L_{\rm H200}=2.1\,{\rm fm},\ L_{\rm N202}=3.1\,{\rm fm})$} \end{array}$

2006.16224 Chao et al. (EPJC)

$a_{\prime\prime}^{ m HLbL}$ at $m_\pi=m_K\simeq 415$ MeV

[Chao, Gérardin, Green, Hudspith, HM 2006.16224 (EPJC)]

$$a_{\mu}^{\text{hlbl,SU(3)}_{f}} = (65.4 \pm 4.9 \pm 6.6) \times 10^{-11}.$$

Guesstimating the result at physical quark masses: correct for π^0 exchange

$$a_{\mu}^{\rm hlbl,SU(3)_f} - a_{\mu}^{\rm hlbl,\pi^0,SU(3)_f} + a_{\mu}^{\rm hlbl,\pi^0,phys} = (104.1 \pm 9.1) \times 10^{-11}.$$

Estimate based on lattice QCD calculation of $\pi^0 \to \gamma^* \gamma^*$ transition form factor [Gérardin, HM, Nyffeler 1903.09471 (PRD)].

Integrand of connected contribution at $m_\pi \approx 200\,\mathrm{MeV}$

- using four local vector currents
- based on 'Method 2'.

En-Hung Chao, Renwick Hudspith, Antoine Gérardin, Jeremy Green, HM, Konstantin Ottnad 2104.02632

Truncated integral for $a_{\mu}^{\rm HLbL}$

- **Extend reach of the signal by two-param.** fit $f(y) = A|y|^3 \exp(-M|y|)$;
- ightharpoonup provides an excellent description of the π^0 exchange contribution in infinite volume.
- We see a clear increase of the magnitude of both connected and disconnected contributions.

Chiral, continuum, volume extrapolation

Connected contribution

disconnected contribution

Total light-quark contribution:

- vol. dependence: $\propto \exp(-m_{\pi}L/2)$
- pion-mass dependence fairly mild (!)

Separate extrapolation of conn. & disconn.

Ansatz:
$$Ae^{-m_{\pi}L/2} + Ba^2 + CS(m_{\pi}^2) + D + Em_{\pi}^2$$

be chirally singular behaviour cancels in sum of connected and disconnected.

Extrapolation to the sum of conn. & disconn.

Ansatz:
$$Ae^{-m_{\pi}L/2} + Ba^2 + D + Em_{\pi}^2$$

- results very stable with respects to cuts in a, m_{π} or $m_{\pi}L$.
- largest systematic comes from choice of continuum limit ansatz.
- final result: central value from fitting these results with a constant; systematic error set to $\sqrt{(1/N)\sum_{i=1}^N(y_i-\bar{y})^2}$ as a measure of the spread of the results.

Overview table

Contribution	$Value \times 10^{11}$
Light-quark fully-connected and $(2+2)$	107.4(11.3)(9.2)
Strange-quark fully-connected and $(2+2)$	-0.6(2.0)
(3+1)	0.0(0.6)
(2+1+1)	0.0(0.3)
(1+1+1+1)	0.0(0.1)
Total	106.8(14.7)

- error dominated by the statistical error and the continuum limit.
- all subleading contributions have been tightly constrained and shown to be negligible.

[Chao et al, 2104.02632]

Strange contribution

Ensemble C101 ($48^3 \times 96$, a = 0.086 fm, $m_{\pi} = 220$ MeV)

NB. Strange integrand has a factor 17 suppression due to charge factor.

(2,2) disconnected contributions.

Extrapolation of strange contributions

Sum of connected-strange + (2,2) topology with ss and sl quark-line content.

Final strange contribution is very small as a result of cancellations.

Conclusion on a_{μ}^{HLbL}

[Fig. from 2104.02632]

- Results from the Bern dispersive framework and from two independent lattice QCD calculations are in good agreement and have comparable uncertainties.
- It is now practically excluded that $a_{\mu}^{\rm HLbL}$ can by itself explain the tension between the SM prediction and the experimental value of a_{μ} .
- Epilogue: $a_{\mu}^{\rm HLbL}$ is a tale of many cancellations, both between the exchange of different mesons and also between Wick-contraction topologies in lattice QCD.