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• My aim it to generalize the connections between the following 
three: 

• 1) Hilbert space of QFT 

• 2) The path integral formulation 

•  3) Thermodynamics.

• The motivations comes from the following observation:  Hilbert 
spaces are  huge places.  e.g. 1) even 500 spin 1/2 particle, its 
dimension is 2^500, who cares?,  2) for a QFT in volume V, 
dimension of Hilbert space scales with exp[V]).

• We do not really care about the details of all states in all 
occasions equally.  Sometimes, low energy states are important, 
and for some other physical phenomena, the growth of density of 
states of  high energy states is important. 

Statement of the problem-I 



• Thermal partition functions or state sums (with appropriate Boltzmann 
weights) of a QFT usually exhibit a phase transition (or rapid crossover) 
as a function of the inverse  temperature. 

• You can for example show that in order to get the well-known Stefan-
Boltzmann law of blackbody radiation, the density of states must grow 
as:  

• So, for such a phenomena, we cannot be ignorant of high energy states or 
the growth of density of states. 

Statement of the problem-II 
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• On the other hand, many QFTs that are relevant to condensed 
matter or high energy physics has asymptotic freedom or infrared 
freedom. That means, there is always a range of temperature T at 
which these theories become weakly coupled. 

• For example, asymptotic freedom  (as in QCD) tells us that the 
phenomena at the scale of  T becomes weakly coupled, and 
calculable if T is high.  But at such T,  partition function is 
extremely contaminated,  every state contribute on the same 
footing. 

• Given a general QFT and its Hilbert space, can we construct a 
different state sum  which remains analytic while staying in 
thermodynamic limit? 

• This is my main question for the talk. I believe a positive answer 
to this question will have a positive impact in understanding QFT.

Statement of the problem-II 



Simple and not so simple examples of 
symmetry graded state sums



Q

Q†

Supersymmetric theories 

I(�) = tr [(�1)F e��H ]

Just the ground states contribute (assuming the spectrum is discrete), 
protected by exact supersymmetry. Witten,82



N-dimensional simple harmonic oscillator
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Dramatic cancellation in the graded sum. 

Large-N limit: Only ground state contribute, couter-part of super-
symmetric Witten index, but  in a boring bosonic QM.



Z++(�, L) = tr [(�1)F e��HL ] = 0.
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Bosons Fermions BosonsFermions

Massless Adjoint QCD

Bosonic vacuum Fermionic vacuum

SU(N) 2d QCD(adj)

Exact Bose-Fermi degeneracy without supersymmetry.  
Mixed-anomaly protected spectral degeneracy!  
Cherman, Jacobson, Tanizaki, MU 2019, Komargodski et.al. 2020, Klebanov et.al. 2021  
Delmastro, Gaiotto, Gomis, 2021

Mixed anomaly between (Z2)F and (Z2)� for N even.

*Fairly non-trivial theory. A number of works  in 90s. But its true nature started  to reveal itself since 2019. 
Understanding it fully requires new concepts.* But here is one strange fact about N-even case.



SU(N) 4d QCD(adj)

Tremendous spectral cancellation. (No susy, not level by level) Cherman, Shifman, MU 2018

Identical to supersymmetric theories in a similar set-up. De Pietro, Komargodski 2014

⇢B(E)� ⇢F (E) ⇠ e
p
`E

The graded density of states ⇢B(E)� ⇢F (E) for QCD(adj) defined on a curved
3-manifold has the scaling of a 2d QFT. (In the large-N limit.)

eZ(�) = tr [(�1)F e��H ]



How does QCD compare with these QFTs? 

Not much resemblance. 
At even-Nc, QCD Hilbert space is manifestly bosonic. 
For odd-N, at large-N, baryons become heavy with O(N) mass 
and finite part of the Hilbert space is again bosonic. 



• In 2012, w/Gerald Dunne, we introduced the idea of resurgence 
and trans-series in QFT.  As an example, we studied CP(N) 
model by using an SU(N) symmetry-twisted boundary 
conditions on 

• Quite remarkably, almost all interesting non-perturbative 
properties of the compactified theory matches to the expected 
properties of infinite volume limit.  E.g. 

• Mass gap of the order of strong scale

• Renormalons

• Multi-branched theta angle dependence

• These results are in sharp distinction with  elegant work of 
Affleck (82) which study the same theory with thermal 
compactification, and none of these survive. 

• Why small circle theory knows all NP properties? 

One last example and background story

S1 ⇥ R1
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Quick review of CP(N-1) with tbc.
Point-wise modulus and phase splitting:   complexified hyperspherical coordinates
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Build a new line operator, counter-part of the Wilson line, the sigma holonomy: 

Twisted boundary conditions= Turning on a background SU(N) field
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ni(x1, x2 + L) = ⌦ijnj(x1, x2)



The dependence of perturbative spectrum to the  
flavor -holonomy background

Same as gauge theory on R3 x S1: Spectrum become dense in the L=fixed, and N-large  
⟹ Imprint of the large-N volume independence  (large-N or Eguchi-Kawai reduction).

Here, we will study non-pert. effects in the long-distance effective theory within 
Born-Oppenheimer approx. in case (b) for finite-N. 
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In thermal box, and high T, associated with trivial holonomy, the fractionalization does 
not occur (Affleck, 80s). Plot is for CP(2)

In spatial box, and small-L, associated with non-trivial holonomy, the fractionalization 
does occur. Large-2d BPST instanton in CP(2) fractionates into 3-types. (Dunne,MÜ, 2012)

Topological configurations, 1-defects 

Gauge theory counter-part on  R3 x S1 :   
Monopole-instantons or 3d-instanton and twisted instanton.  
(caloron constituents) : van Baal, Kraan, (97/98), Lee-Yi (97)



Topological configurations, 1-defects, formally 

Kk : Sk =
4⇡

g2
⇥ (µk+1 � µk) =

SI

N
, k = 1, . . . , N

Fractional instantons:  Associated with the N-nodes of the affine Dynkin diagram 
of SU(N) algebra.  The twisted-instanton is present only because the theory is  locally 
2d! Also derived in Bruckmann et.al.(07, o9)
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The mass gap at  small-S1:  Same as large-N.  Due to fractional instantons!  
Our small circle still keeps in mind exp[-SI/N] in long distance dynamics!

In the small-S1 regime, this solves the large-N vs. instanton puzzle! 
BPST instantons are unimportant, kink-instantons survive large-N limit!
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Why things work the way they do? Hilbert 
space distillation idea.  Sulejmanpasic (2016), Dunne, Tanizaki, MU (2018)

In path integral formalism, becomes:

ZCP(N�1)
⌦ = tr[e��H

NfY

k

e
i
2⇡k
Nf

Qk ]

where Qk is the number operator for nk quanta.

ni(x1, x2 + L) = ⌦ijnj(x1, x2)

in operator formalism,



• The global symmetry of  CP(N-1) model is actually PSU(N) but 
not SU(N). Hilbert space constitute reps of PSU(N). There is no 
gauge invariant fundamental rep of SU(N) in the physical 
spectrum. There are only meson-like excitations. E.g. CP(1)

Hilbert space distillation in QFT: CP(N-1)

(nn†)kj (x) 2 AdjN , n(x)(ei
R y
x a)(n†)(y) : singlet
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Z⌦(L) � (�1)⇥ e��Eadj + 1⇥ e��Esinglet + . . . !|{z}
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0

Large-N limit: Only ground state contribute, couter-part of super-
symmetric Witten index in a non-trivial bosonic QFT! 

HMMM!



Mixed Anomaly in CP(N-1)

• There is a mixed ’t Hooft anomaly between PSU(N) and C at ✓ = ⇡. If

we gauge PSU(N), topological charge happens to be quantized in units of 1/N
and theta angle becomes periodic in units of 2⇡N . As a result, C ceases to be

a symmetry at ✓ = ⇡ implying mixed anomaly.

• Mixed anomaly persists on R1⇥S1 if and only if the tbc is ZN symmetric.



Can this work in QCD?
• Assume mu = md = ms � 0 limit and as an example, consider scalar

meson sector.
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s=1/2 octet  graded state-sum
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This looks encouraging, but nothing related to pure glue sector 
cancels!  



SQCD QCD(F/adj) N = 1 SYM

QCD(F) YM

mqa!1 m a!1

m�!1 m�!1

m a!1

Modify the theory to  QCD(F/adj).

L =
1

2g2
trF 2
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NfX

a=1

 a�µDµ 
a + 2 tr��µDµ�

G =
SU(Nf )L ⇥ SU(Nf )R ⇥ U(1)V ⇥ U(1)AD ⇥ Z2gcd(Nc,Nf )

ZNc ⇥ (ZNf )L ⇥ (ZNf )R ⇥ (Z2) 
.

Extra global  U(1)-axial relative to QCD. In SQCD, this is called 
U(1) R-symmetry. 



We consider this theory with vector-like flavor twisted b.c. on R3 x S1.  

⌦0
F = diag(1,!, · · · ,!Nf�1), ! = e

2⇡i
Nf .

 
B.c. explicitly (but controllably)   breaks non-abelian chiral symmetry to its 
maximal torus.  

Gmax�ab =
U(1)

Nf�1
L ⇥ U(1)

Nf�1
R ⇥ U(1)V ⇥ U(1)AD ⇥ Z2gcd(Nc,Nf )

ZNc ⇥ (ZNf )L ⇥ (ZNf )R ⇥ (Z2) 
.

But there are two tremendous gains. I will explain first in detail.
Second gain will be just stated.  (It tells us that this b.c. is unique in order to 
preserve certain mixed anomaly polynomial upon compactification.)  

 (x4 + �) = � (x4)⌦
0
F

�(x4 + �) = +�(x4)



Normally, in the presence of fundamental fermions, we loose center 
symmetry and Polyakov loops ceases to be a good order parameter.  

The reason for this is that a gauge transformation aperiodic up to an 
element of the center of the group does not respect the original b.c., 
hence center symmetry is violated.  But now, we have 
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0
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0
F .

This again changes b.c. but !⌦0
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Color-Flavor Center (CFC) symmetry 
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Action of CFC symmetry: 

Cherman,  Sen,  Unsal,  Wagman,  Yaffe, 2017 
(symmetry realization)
Iritani, Itou, Misumi 2015  (simulations)
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One-loop: Gross, Pisarski, Yaffe 1981

Two-loop: 
Korthals Altes, Pisarski and  Sinkovics, 99, 
Guo and  Du, 2018, 

Fairly difficult, two results look different.  
But turns out to be identical due to non-trivial 
Bernoulli polynomial  identities. 
This is proven by Takuya Kanazawa 2019.

Gauge holonomy potentials

For thermal gauge holonomy potential, we need:

In our case, we need invoke appropriate b.c.
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V1-loop,⌦0
F
[⌦]

V1-loop[⌦]

V2-loop,⌦0
F
[⌦]

Center-Symmetric minimum at two-loop order

Frustration and collapse of one-loop potential

Thermal Flavor and Z2 twisted b.c.

Frustration, collapse and a new governance

All three fields works against 
what we want to achieve.  

Exponential  
Degeneracy in N
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Explicit center breaking

Since this sounds like magic, I want to show you first step of the  
calculation. Second step is fairly difficult.  
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Remarkably simple result in Veneziano type large-Nc limit:

Major point:  Potential respects CFC  (by our construction) and CFC is 
stable at small circle!

Similar to stability of center symmetry in QCD(adj) on small circle.
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• Micro interpretation: Microscopic counting of gluons and quarks. The
numbers appearing in free energy such as (N2

c �1), (N2
c �1), 4NfNc count

respectively, the number of microscopic bosonic and fermionic degrees of
freedom in the QFT.

• Macro interpretation: Counting of macroscopic states, the hadrons in
physical Hilbert space H. The inverse Laplace transform of the partition
function is the density of states of hadrons:

Z(�) ⇠ e��Fthermal ⇠ e+aN2
cV3T
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3/4N1/2
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1/4

⇢SB(E) is the Stefan-Boltzmann growth. SB growth is special in the sense
that it is the largest asymptotic growth in a local finite-Nc QFT. Only at
Nc = 1 and string theory, one can obtain a Hagedorn-growth.

What does it mean for thermal and graded density of states? 
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• Again same as supersymmetric theories and QCD(adj)  on M3 x S1. 
(Di Pietro, Komargodski  2014,   Cherman, Shifman, MU, 2018)

• Graded density of states is the one of a 2d QFT. 

• Remarkable degree of cancellation.



SU(Nc) ! U(1)Nc�1 .
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Gauge dynamics on small R3 x S1
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Fractional instantons (or monopole-instantons)

Self-duality eq. 

Actions of the leading saddles

Monopole operators (if fermion zero modes were not there)

ai4� ⌘ vi + �i, F i
µ⌫ = g2/(2⇡�)✏µ⌫↵@

↵�i, i = 1, . . . Nc

Gauge holonomy     Dual photon



Index theorem and fermion zero modes

⇥
I↵1 , I↵2 , . . . , I↵Nc

⇤
= [2, 2, . . . , 2]| {z }

adj. fermion

+ [2, 2, . . . , 2]| {z }
fund. fermion

I↵i = 2 adjoint

I↵i =

NfX

a=1

(sign[✏a � vi]� sign[✏a � vi+1]) • Generalization of APS to R3 x S1, 

• Nye-Singer, 2000,  Poppitz-MU  2008

Thanks to flavor twist, otherwise 
all fundamental zero modes would 
be localized to one monopole.
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Grand canonical ensemble and EFT on R3 ⇥ S1
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Non-perturbative contributions of critical points 
(inluding critical points at infinity).
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Snapshot of Euclidean vacuum

This is the result of reliable semi-classics. It is unrelated to the so 
called dilute instanton gas (which is not reliable semi-classics.) 



A thought provoking question: 

Can gluons acquire a chiral charge? 

 Sounds absurd? 

Wait and see…



Mixing of topological shift symmetry and chiral symmetry

Topological shift symmetry

[U(1)J ]
Nc�1 : � ! � + ", Jµ = @µ�

Protects gaplessness of dual photons to all orders in 
perturbation theory.  
Lkin. =

g2

16⇡2�

�
(@µ�)

2 + (@µ�)
2
�

Non-perturbatively, monopoles violate it. 

@µJµ = @µBµ = ⇢m(x) 6= 0

RHS is monopole density



Consider a collection of ni monopoles of type ↵i for i = 1, . . . , Nc sprinkled in

between two asymptotic time slice. The magnetic charge non-conservation is

�Qm = Qm(t = 1)�Qm(t = �1) =

Z
d2xF12

���
t=+1

t=�1

=

Z

S2
1

F12

=
4⇡

g

NcX

i=1

ni↵i

=
4⇡

g
(n1 � nNc , n2 � n1, n3 � n2, . . . , nNc�1 � nNc)

These charges violate emergent [U(1)J ]
Nc�1

explicitly and completely. However,

the non-conservation of magnetic charge is not whole story in theories with

dynamical fermions.

What charges are violated or conserved at the monopole event? 



The axial current associated with non-abelian chiral symmetry in 4d: J
5A
µ =

 �µ�5T
A
 where T

A
are generators of SU(Nf ). Charges are: Q

5A
=

R
d
3
x  

†
�5T

A
 .

These charge commutes with the Hamiltonian [H,Q5A
] = 0 for all A.

In the the graded partition function, we have SU(Nf )V charges along Cartan

sub-algebra turned on, and the operator H
0
= H � i

P
a2Cartan

✏a
� Qa only com-

mutes with the Cartan generators of the axial charges, [H
0
,Q5A

] = 0 for all

A 2 Cartan.

Consider again collection of ni monopoles of type ↵i for i = 1, . . . , Nc sprinkled
in between two asymptotic time slice. Then, the apparent axial charge non-
conservation will be

�Q5 = Q5(t = 1)�Q5(t = �1)

=

NfX

A=1

nA↵A

= 2
�
n1 � nNf , n2 � n1, n3 � n2, . . . , nNf�1 � nNf

�

A puzzle about chiral symmetry

But non-abelian chiral symmetry is non-anomalous and all 
non-perturbative effects must respect it. What is going on? 



Assume Nf = Nc. It is clear that magnetic charge non-conservation and chiral
charge non-conservation are exactly proportional to each other for any back-
ground. In fact, we can construct a linear combination of these two-charges
which is respected by all non-perturbative and topological configurations:

Q̃ =
g

4⇡
Qm �Q5, such that �Q̃ = 0

What does this mean?  Here, chiral symmetry is a 
symmetry in microscopic theory.   While topological shift 
symmetry is a emergent symmetry  in EFT,  valid to all 
orders in perturbation theory.  So, the genuine microscopic 
symmetry here is only chiral symmetry, and this whole 
mechanism is present  so that the chiral charge of the 
fermion bilinear can be transferred to gauge fluctuations! 

i.e. gauge fluctuations acquire a chiral charge!  



[U(1)A]
Nf�1 : ( Ri 

i
L) ! ei"i( Ri 

i
L), ��! ��

U(1)AD : ( Ri 
i
L) ! e�2i�( Ri 

i
L), ��! e2i���

e↵i·z ! e�i"ie↵i·z, "i = ↵i · "

Hence, monopole operator is invariant under continuous chiral 
symmetry. But to achieve this, the dual photon must acquire a 
chiral charge. This is inevitable consequence of the index theorem.

Mi =

8
>>>>>>>>>><

>>>>>>>>>>:

e�Sie
� 4⇡

g2
↵i·�+i↵i·�( Ri i

L)(↵i · �)2, m� = 0, m = 0

e�Sif� e
� 4⇡

g2
↵i·�+i↵i·�( Ri i

L), m� > 0, m = 0

e�Sif e
� 4⇡

g2
↵i·�+i↵i·�(↵i · �)2, m� = 0, m > 0

e�Sif� e
� 4⇡

g2
↵i·�+i↵i·�, m� > 0, m > 0



Chiral symmetry order parameters: Because of the topological shift and
chiral symmetry mixing, in gauge theories in general there are two types of
chiral order parameters:

Monopole (magnetic flux) operators : e↵i·z

Fermion bilinears, multilinears :  Ra 
b
L, tr��, ( Ra 

b
L tr��)

In all calculable examples in semi-classical domain on R3 ⇥S1, �SB occurs due
to condensation of the magnetic flux operators.



Chiral symmetry breaking

hVAC|e�↵i·z|VACi = e
� 4⇡

g2
(vi+1�vi)he�

4⇡
g2

↵i·�+i↵i·�i = e�S0ei�i ,

Diag[ei�1 , . . . , ei�Nf ] 2 TNf�1

QCD(F/adj)

[U(1)A]
Nf�1 ⇥ U(1)AD �! U(1)AD

There is a U(1) part of chiral symmetry that is not broken. 
Is this sensible? 
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Adiabatic continuity

?

?

mqa

Nf= Nc  SQCD vs. QCD(F/adj)

detM �BB = ⇤2Nc .

Ma
b = ⇤2�ba

Seiberg 1994

Adiabatic continuity between SQCD and QCD(F/adj).  

Recall that QCD(F/adj) can be obtained from SQCD with mass 
deformation for scalars. 



m = 1 ⇤ ⌧ m < 1 m = 0
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�YM
c

�YM
c �QCD
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a) b) c)

ZN
ZN ZN

ZN ZN

ZN�S

�S
�S

?

QCD(F)
To obtain QCD(F), turn on a mass for adjoint. In this case, we 
obtain adiabatic continuity between small and large circle as 
shown in the phase diagram.  

CFC unbroken, and chirally broken small and large circle regime. 
The ground state is maximal torus of chiral Lagrangian.  



R4R3 ⇥ S1

�

Adiabatic continuity?

Strong couplingWeak coupling

�-SB
Unbroken CFC

Persistent mixed anomaly:
2lcm(Nf , Nc)

2⇡

Z
B(2) ^B(1)

Persistent mixed anomaly

A mixed ’t Hooft  anomaly that exists on  R4 persists upon 
compactification if and only if the flavor twisted b.c. are used. 

Different phases  are consistent with the mixed anomaly.  



⌃(x) =

2

6664

ei↵1·� 0
0 ei↵2·�

. . .

ei↵Nf
·�

3

7775

From microscopic point of view, there are exactly Nf-1 dual 
photons in small circle theory that remain gapless. 

In the Nf=Nc  chirally broken vacuum, we can also calculate fermion bilinear. 

h i
L Rji ⇠ �ij�

�3e�S0ei�i = �ij⇤
3ei�i

using the one loop beta function of Nf=Nc QCD. (remarkably, this is 
the  same mechanism with N=1 SYM (Hollowood, Khoze,Davies,Mattis 99) , but 
after going through many intermediate steps! 

S⌦F =

Z

R3⇥S1


f2
⇡

4
tr |Dµ⌃|2

�
Chiral Lagrangian in flavor holonomy background

Only Nf-1 meson remain exactly gapless at large circle. 


