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• The inner proton structure has been probed via processes 
such as deep inelastic (e.g., e-+p) scatterings.


High-energy proton structure and the parton model

2

Feynman’s parton model (1969):
• Quarks and gluons are “frozen” in the transverse plane due to Lorentz 

contraction;

• During a hard collision, the struck quark/gluon (parton) appears to the 

probe that it does not interact with its surroundings.

Richard P. Feynman
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• Unpolarized PDF :


• Helicity PDF :

fi(x)

Δfi(x)

Parton distribution functions (PDFs)
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P

i = g

i = u, d, c, s, t, b
xP

PP

helicity: +1/2 helicity: -1/2

xP xP-
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• PDFs are the basic inputs for Standard Model predictions in 
high-energy scattering experiments.


PDFs and precision tests for the Standard Model

4

Perturbative and well known 🙂

Nonperturbative and not well known 🙁

g gt

t t

H

fg(x1) fg(x2)
Higgs production 
from gluon-gluon 
fusion at LHC:

σ = fg(x1) fg(x2) ̂σgg→H
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• PDFs are the basic inputs for Standard Model predictions in 
high-energy scattering experiments.


PDFs and precision tests for the Standard Model
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In reverse, PDFs can be 
fitted from a global analysis 

of experimental data!

Perturbative and well known 🙂

Nonperturbative and not well known 🙁

g gt

t t

H

fg(x1) fg(x2)
Higgs production 
from gluon-gluon 
fusion at LHC:

σ = fg(x1) fg(x2) ̂σgg→H
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• The PDFs have been measured extensively at the state-of-
the-art accelerator experiments since the late 1960s.


PDFs from experiments

5

SLAC, US

DESY, Germany
FermiLab, US

CERN, Europe
RHIC@BNL, US Jefferson Lab, US
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• The next-generation machine: the Electron-Ion Collider (EIC)

PDFs from experiments
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EIC Yellow Report,

R. Abul Khalek et al., 2103.05419.

$1.6—2.6 Billion, to be completed in 2030.ar
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An approximate picture of the PDF

7

Cross sections 

Structure Functions

Quark and Gluon Distributions

Introduction

Elastic 3 free quarks 3 bound quarks Quarks + sea + self-
interacting gluons

No proton 
substructure

3 free valence 
quarks

3 bound 
valence quarks

3 valence quarks 
+ sea + gluons

Picture credit, 
Fernanda Steffans

f(x) f(x) f(x) f(x)
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An approximate picture of the PDF
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Cross sections 

Structure Functions

Quark and Gluon Distributions

Introduction

Elastic 3 free quarks 3 bound quarks Quarks + sea + self-
interacting gluons

No proton 
substructure

3 free valence 
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3 bound 
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PDFs from experiments
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NNPDF Collaboration, EPJ C77 (2017)

Unpolarized PDF
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ
2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [98], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s
+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than its NNPDF3.0 counterpart in the x

⇠
< 0.03 region, while

it becomes smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light
quarks and strangeness are larger than 3.0 at intermediate x, with the largest deviation seen
for the strange and antidown PDFs, while at both small and large x there is good agreement
between the two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly

23

xfi(x, Q2 =10 GeV2)

🤔

👍
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PDFs from experiments
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NNPDF Collaboration, EPJ C77 (2017)
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ
2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [98], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s
+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than its NNPDF3.0 counterpart in the x

⇠
< 0.03 region, while

it becomes smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light
quarks and strangeness are larger than 3.0 at intermediate x, with the largest deviation seen
for the strange and antidown PDFs, while at both small and large x there is good agreement
between the two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly

23

xfi(x, Q2 =10 GeV2)

🤔

👍

xΔfi(x, Q2 =10 GeV2)

Helicity PDF

NNPDFpol1.1, Particle Data Group (2019)

🤔
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PDFs from experiments
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Article

Table 1 | Ratios of σD to 2σH.

xt bin 〈xt〉 〈xb〉 〈M〉 〈PT 〉 σD/(2σH) ± stat. ± syst. δxt

(GeV/c2) (GeV/c)

0.130 − 0.160 0.147 0.688 4.71 0.651 1.211 ± 0.052 ± 0.053 0.013

0.160 − 0.195 0.179 0.611 4.88 0.717 1.141 ± 0.043 ± 0.025 0.016

0.195 − 0.240 0.216 0.554 5.11 0.757 1.196 ± 0.042 ± 0.044 0.019

0.240 − 0.290 0.263 0.519 5.46 0.786 1.165 ± 0.046 ± 0.032 0.022

0.290 − 0.350 0.315 0.498 5.87 0.785 1.193 ± 0.050 ± 0.034 0.026

0.350 − 0.450 0.385 0.477 6.36 0.776 1.113 ± 0.064 ± 0.039 0.030

Cross section ratios σD/(2σH) binned in xt with their statistical and systematic uncertainties and the average values for the kinematic variables of each xt bin.
The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column is the experimental
resolution in xt as determined by Monte Carlo simulations.

Figure 2 | Ratios of d̄(x) to ū(x).
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CT18NLO, SeaQuest kinematics
CTEQ6m, SeaQuest kinematics

Ratios of d̄(x) to ū(x) in the proton (red filled circles) with their statistical (vertical bars) and systematic (yellow boxes) uncertainties extracted from the present
data based on next-to-leading order calculations of the Drell-Yan cross sections. Also shown in the open black squares are the results obtained by the NuSea
experiment with statistical and systematic uncertainties added in quadrature4 . The cyan band shows the predictions of the meson-baryon model of Alberg and
Miller26 and the green band shows the predictions of the statistical parton distributions of Basso, Bourrely, Pasechnik and Soffer22. The red solid (blue dashed)
curves show the calculated ratios of d̄(x) to ū(x) with CT1830 (CTEQ636) parton distributions at the scales of the SeaQuest results. The horizontal bars on the
data points indicate the width of the bins.

ratio d̄(x)/ū(x) above the measured x region was estimated by vary-
ing this value from 1.0 to 0.5 and 2.0. The spread of the results due
to the choice of initial parton distributions was always less than half of
the statistical error. Each xt bin was subdivided into multiple xb sub-
bins. The cross sections for hydrogen and deuterium were calculated
separately for each sub-bin at the 〈xt〉, 〈xb〉, and 〈M〉 of that sub-bin
and an acceptance weighted sum was used to determine the final cross
section. These distributions are given in Extended Data Tab. 3. Cal-
culations using only one average xt and xb for each xt bin were less
reliable. It was also found that a leading order extraction of d̄(x)/ū(x)
using leading order parton distributions and cross section calculations
gave very similar results for the ratios compared to the NLO results.

The resulting ratios of d̄(x) to ū(x) distributions starting with the
CT18 distributions are given in Table 2 at the scale of each xt bin
and displayed in Fig. 2, and compared there with the NuSea results.
The trends between the two experiments at higher xt are quite dif-
ferent. No explanation has been found yet for the differing results,
even though there is a small overlap in the members of the NuSea and
SeaQuest collaborations. The present data are reasonably described by
the predictions of the statistical parton distributions of Basso, Bourrely,
Pasechnik and Soffer22 or by the chiral effective perturbation theory of
Alberg and Miller,26 also shown in Fig. 2. These two calculations em-

phasize rather different non-perturbative mechanisms that lead to the
differences in d̄(x) and ū(x). The present data show that d̄ is greater
than ū for the entire x range measured by this experiment. This pro-
vides important support for these and other non-perturbative mecha-
nisms of the QCD structure of the proton that were disfavored by the
NuSea results.

The next major step to help distinguish between the various mod-
els is to measure how much the spin and angular momentum of the
antiquarks contribute to the total spin of the proton. It has long been
realized that these models make rather different predictions for the con-
tribution of the total spin of the proton carried by the antiquarks.16,17

For example, meson-nucleon models predict little spin is carried by
the antiquarks, the statistical model predicts the difference in spin

∆d̄(x) − ∆ū(x) = −
[

d̄(x)− ū(x)
]

and chiral soliton models23

predict ∆d̄(x) − ∆ū(x) = −5/3
[

d̄(x)− ū(x)
]

. Experiments are
planned or underway at Fermilab, the Thomas Jefferson National Ac-
celerator Facility, Brookhaven National Laboratory, and the European

Organization for Nuclear Research to pursue this goal.16,17

These results impact the reach of a p-p collider like the Large
Hadron Collider for new physics. For example production of high
mass Z′ and W ′ particles has been shown to be dominated by light

Ratios of sea quark distributions, d̄(x)/ū(x)

SeaQuest Collaboration, Nature 590 (2021).
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PDFs from experiments
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Particle Data Group, 2019

World data on the spin-dependent structure function g1(x, Q2)

25 18. Structure Functions
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Figure 18.14: World data on the spin-dependent structure function gp
1 as a function of Q2 for

various values of x The lines represent the Q2 dependence for each value of x, as determined from
a NLO QCD fit. The dashed ranges represent the region with W 2 < 10 (GeV/c2)2. References:
EMC—J. Ashman et al., Phys. Lett. B206, 363 (1988); Nucl. Phys. B328, 1 (1989); E143—
K. Abe et al., Phys. Rev. D58, 112003 (1998); SMC—B. Adeva et al., Phys. Rev. D58, 112001
(1998); HERMES—A. Airapetian et al., Phys. Rev. D75, 012007 (2007); E155—P.L. Anthony
et al., Phys. Lett. B493, 19 (2000); COMPASS—M.G. Alekseev et al., Phys. Lett. B690, 466
(2010), C. Adolph, et al., Phys. Lett. B753, 18 (2016); CLAS—K.V. Dharmawardane et al., Phys.
Lett. B641, 11 (2006) (which also includes resonance region data not shown on this plot — there
is also low W 2 CLAS data in Y. Prok et al., Phys. Rev. C90, 025212 (2014) and N. Guler et al.,
Phys. Rev. C92, 055201 (2015)).

6th December, 2019 11:50am

First-principles calculation of 
(spin-dependent) PDFs can 

provide important complementary 
information to the global analysis!
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• Lattice gauge theory (1974): a systematically improvable 
approach to solve non-perturbative QCD.

Lattice QCD

11

lattice 
spacing a}

lattice size L, 
e.g., L=32,48.

Simulating real-time dynamics has been extremely 
difficult due to the issue of analytical continuation. 🙁

z + ct = 0
z − ct ≠ 0

Imaginary time: t → iτ O(iτ) ?→ O(t) Partonic observables are 
defined on the light-cone
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Large-Momentum Effective Theory (LaMET)
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PDF :

Cannot be calculated 

on the lattice

f(x) Quasi-PDF :

Directly calculable on 

the lattice

f̃(x, Pz)

z + ct = 0, z − ct ≠ 0 t = 0, z ≠ 0

f̃(x, Pz) = ∫
dz
2π

eibz(xPz)⟨P | ψ̄(bz)f(x) = ∫
db−

2π
e−ib−(xP+)⟨P | ψ̄(b−)

×
γ+

2
W[b−,0]ψ(0) |P⟩ ×

γz

2
W[bz,0]ψ(0) |P⟩
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Large-Momentum Effective Theory (LaMET)
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PDF :

Cannot be calculated 

on the lattice

f(x) Quasi-PDF :

Directly calculable on 

the lattice

f̃(x, Pz)

Related by Lorentz boost

z

t
pn

z/2�z/2

� �zp
2

�zp
2

z + ct = 0, z − ct ≠ 0 t = 0, z ≠ 0

f̃(x, Pz) = ∫
dz
2π

eibz(xPz)⟨P | ψ̄(bz)f(x) = ∫
db−

2π
e−ib−(xP+)⟨P | ψ̄(b−)

×
γ+

2
W[b−,0]ψ(0) |P⟩ ×

γz

2
W[bz,0]ψ(0) |P⟩
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Large-Momentum Effective Theory (LaMET)
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t
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� �zp
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�zp
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f̃(x, Pz) ?= f(x)
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12

PDF :

Cannot be calculated 

on the lattice

f(x) Quasi-PDF :

Directly calculable on 

the lattice

f̃(x, Pz)

Related by Lorentz boost

z

t
pn

z/2�z/2

� �zp
2

�zp
2

z + ct = 0, z − ct ≠ 0 t = 0, z ≠ 0

f̃(x, Pz) = ∫
dz
2π

eibz(xPz)⟨P | ψ̄(bz)f(x) = ∫
db−

2π
e−ib−(xP+)⟨P | ψ̄(b−)

×
γ+

2
W[b−,0]ψ(0) |P⟩ ×
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✘
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• Quasi-PDF: ;


• PDF: including .

Pz ≪ Λ

Pz = ∞, Pz ≫ Λ

Large-Momentum Effective Theory (LaMET)

13

• The limits  and  are not exchangeable;


• For , their infrared (nonperturbative) physics are the same.

Pz ≪ Λ Pz ≫ Λ
Pz ≫ ΛQCD

f̃(x, Pz) = C (x, Pz /μ) ⊗ f(x, μ) + O(
Λ2

QCD

P2
z

)
Perturbative matching Power corrections

• X. Ji, PRL 110 (2013); SCPMA57 (2014). 

• X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);

• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, arXiv: 2004.03543.

: the ultraviolet lattice cutoff, Λ ∼ 1/a

• It is the large-momentum state, instead of 
the operator, that filters out collinear 
modes in the field operators;


• Contribution from the collinear modes is 
identical to the PDF.
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• Factorization formula:


• The formula can be inverted order by order in :αs

Large-Momentum Effective Theory (LaMET)

14

f̃(y, Pz) = ∫
1

−1

dx
|x |

C ( y
x

,
μ

xPz ) f(x, μ)+𝒪 (
Λ2

QCD

(yPz)2
,

Λ2
QCD

((1 − y)Pz)2 )
• X. Ji, PRL 110 (2013); SCPMA57 (2014);

• X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);

• Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018);

• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD98 (2018).

• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, arXiv: 2004.03543.

f(x, μ) = ∫
∞

−∞

dy
|y |

C−1 ( x
y

,
μ

yPz ) f̃(y, Pz)+𝒪 (
Λ2

QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )
Controlled power expansion for  at finite x ∈ [xmin, xmax] Pz
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• Large-momentum expansion:


• Matching coefficient:

Precision calculation of the x-dependence of PDFs

15

f(x, μ) = ∫
∞

−∞

dy
|y |

C ( x
y

,
μ

yPz ) f̃(y, Pz, μ)+𝒪 (
Λ2

QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )

ξ =
x
y

where the matching coefficient is

C(1)

(
ξ,

µ

yP z

)
= −αsCF

2π
δ(1− ξ)

[
3

2
ln

µ2

4x2P 2
z
+

5

2

]

− αsCF

2π






(
1 + ξ2

1− ξ
ln

ξ

ξ − 1
+ 1

)

+

ξ > 1

(
1 + ξ2

1− ξ

[
− ln

µ2

y2P 2
z
+ ln

(
4ξ(1− ξ)

)
− 1

]
+ 1

)

+

0 < ξ < 1

(
−1 + ξ2

1− ξ
ln

−ξ
1− ξ

− 1

)

+

ξ < 0

.

(1.2)

In the limit of ξ → 1, we have

lim
ξ→1

C

(
ξ,

µ

|y|P z

)
=
αsCF

2π

[
2 ln |1− ξ|
|1− ξ| − 2

1− ξ
ln

µ2

(yP z)2
θ(1− ξ) +

3

2|1− ξ|

]
, (1.3)

which are similar to the structures that lead to threshold logs in DIS and DY cross sections.
To better illustrate this, let us look at the coordinate space factorization of the matrix
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where the Harmonic numbers are Hn =
∑n

i=1 1/i and H(2)
n =

∑n
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2.
Hn diverges logarithmically as lnN as N → ∞, and H2

n constitutes a double log in
this limit. They originate from the Mellin moments of terms proportional to
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)

+

,
1

(1− α)+
, (1.8)

which is robust in the matching coefficient. The leading logs are αk
s ln

k+1 n, and the
subleading logs are αk

s ln
k n.

– 2 –

State-of-the-art: next-to-next-to-leading order (NNLO) 
matching for the non-singlet quark quasi-PDF.

• L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);

• Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021).
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• Matching coefficient:

Precision calculation of the x-dependence of PDFs
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– 2 –

ln
μ2

y2P2
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= ln
μ2

x2P2
z

+ ln
x2

y2

dC(ξ, μ /(xPz))
d ln(xPz)

=
αsCF

π [P(0)
qq (ξ) −

3
2

δ(1 − ξ)]
X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, arXiv: 2004.03543.

Similar to DGLAP evolution:

State-of-the-art: next-to-next-to-leading order (NNLO) 
matching for the non-singlet quark quasi-PDF.

• L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);

• Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021).
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State-of-the-art: next-to-next-to-leading order (NNLO) 
matching for the non-singlet quark quasi-PDF.

• L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);

• Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021).
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C(ξ, μ /(yPz)) ∼
αsCF

2π [ 2 ln |1 − ξ |
|1 − ξ |

−
2

1 − ξ
ln

μ2

P2
z

−
2

1 − ξ ]
+

Threshold logarithms:

X. Gao, YZ et al., 2102.01101.

Large-x behavior of the 
extracted PDF is sensitive to 

the large threshold logarithms.

State-of-the-art: next-to-next-to-leading order (NNLO) 
matching for the non-singlet quark quasi-PDF.

• L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);

• Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021).
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Systematic procedure in lattice calculation

f(x)

Pz ≫ ΛQCD

f̃(x, Pz)

✘

Lattice 
renormalization

a → 0

⃗P
f̃(x, Pz, a)

a

Perturbative QCD 
matching and 

power corrections

16
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For example, the isovector (u-d) PDFs of the proton, with RI/
MOM lattice renormalization and NLO matching:

Encouraging results have been obtained so far:

17
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However, using RI/MOM scheme is problematic at long range 
because it introduces uncontrolled nonperturbative effects.
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Hybrid scheme (controlling the power corrections)

18

OΓ
B(z, a) = ψ̄0(z)ΓW0[z,0]ψ0(0) = eδm|z| Zj1(a)Zj2(a)OΓ

R(z)

See X. Ji, YZ, et al., NPB 964 
(2021) and references therein.

h̃(z, Pz) = ⟨P |O(z, μ) |P⟩

zzS zL

Ratio-type schemes:

• RIMOM


• Hadron matrix 
elements


• Vacuum expectation 
value

ZX = ⟨q |OΓ(z) |q⟩

ZX = ⟨Pz
0 = 0 |OΓ(z) |Pz

0 = 0⟩

ZX = ⟨Ω |OΓ(z) |Ω⟩
a ≪ zS ≪ Λ−1

QCD

A “minimal” subtraction:

• Wilson-line mass subtraction δm;


• Overall renormalization Zj ’s.

OΓ
R(z, μR) = Zhybrid(a, μR)e−δm|z|OΓ

B(z, a)

Physical 
extrapolation

zL ∼ Λ−1
QCD
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0 = 0 |OΓ(z) |Pz

0 = 0⟩

ZX = ⟨Ω |OΓ(z) |Ω⟩
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A “minimal” subtraction:

• Wilson-line mass subtraction δm;


• Overall renormalization Zj ’s.

OΓ
R(z, μR) = Zhybrid(a, μR)e−δm|z|OΓ

B(z, a)

Physical 
extrapolation

zL ∼ Λ−1
QCD

Coordinate-Space Factorization (or OPE):

h̃(λ = zPz, z2μ2) = ∫
1

0
dα 𝒞(α, z2μ2) h(αλ, μ)+𝒪(z2Λ2

QCD)

h̃(λ = zPz, z2μ2) =
∞

∑
n=0

(−iλ)n

n!
Cn (z2μ2)an(μ)+𝒪(z2Λ2

QCD)

“Ioffe-time distribution”, Radyushkin, Phys.Rev.D 96 (2017);

Current-current correlator, Braun and Mueller, EPJC 55 
(2008); Ma and Qiu, PRL120 (2018).

Suitable for calculating moments or model fitting of the PDFs.
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• Wilson-clover fermion on 2+1 flavor HISQ configurations.

Lattice data

19

3

ensemble mqa m⇡Lt nz z range #cfgs (#ex,#sl)

a, Lt ⇥ L3

a = 0.06 fm, -0.0388 5.85 0,1 [0,15] 100 (1, 32)

64⇥ 483 2,3,4,5 [0,8] 525 (1, 32)

[9,15] 416 (1, 32)

[16,24] 364 (1, 32)

a = 0.04 fm, -0.033 3.90 0,1 [0,32] 314 (3, 96)

64⇥ 643 2,3 [0,32] 314 (4, 128)

4,5 [0,32] 564 (4, 128)

TABLE I. Details of the measurements on two lattice ensem-
bles used in this paper. For each ensemble, we have specified
the bare Wilson fermion quark mass mqa corresponding to
a 300 MeV pion mass m⇡, the temporal extent Lt of the
lattice in m⇡ units. We specify the number of gauge config-
urations used (#cfgs) and the number of exact and sloppy
inversions per configurations (#ex,#sl) for di↵erent Wilson-
line lengths z used in three-point functions and the pion mo-
mentum Pz = 2⇡nz/(La).

tadpole improved Wilson-Clover valence quarks. That
is, we used the Wilson-Clover quark propagator in the
Wick contractions required in the computations of the
three-point and two-point functions, and the gauge links
that went into the construction of the propagator were
smoothened using 1 step of HYP smearing [57]. We set

the clover coe�cient csw = u�3/4

0
, where u0 is the average

plaquette with 1-HYP smearing; we used csw = 1.02868
and 1.0336 for a = 0.06 fm and 0.04 fm respectively.
We tuned the Wilson-Clover quark mass mqa in both
the ensembles so that the valence pion mass, m⇡, is 300
MeV. Through an initial set of tuning runs we determined
mqa = �0.0388 for a = 0.06 fm and mqa = �0.033 for
a = 0.04 fm lattices. For this pion mass, the values of
m⇡Lt on the a = 0.06 fm and 0.04 fm lattices are 5.85
and 3.89 respectively. Thus it would be more important
to take care of wrap around e↵ects in the finer lattice
and we do so in the analysis. With the usage of 1-HYP
smeared gauge links in the Wilson-Clover operator, we
did not find any exceptional configurations at both the
lattice spacings, as noted by absence of any anomaly in
the convergence of the Dirac operator inversions. We
used the a = 0.06 fm ensemble in our previous analysis
of the valence PDF of pion [42]. With this work, we have
increased the statistics used in this ensemble by more
than two times.

The most basic element of this computation is the
Wilson-Dirac quark propagator inverted over boost
smeared sources and sinks [58] as we discuss more in the
next section on two-point functions. We used the multi-
grid algorithm [59] for the Wilson-Dirac operator inver-
sions to get the quark propagators. These calculations
were performed on GPU using the QUDA suite [60–62].

We used boosted quark source [58] and sink with Gaus-
sian profile, as we discussed in detail in [42]. Instead of
using the gauge-covariant Wuppertal smearing [63] to im-

nz Pz (GeV) ⇣

a = 0.06 fm a = 0.04 fm

0 0 0 0

1 0.43 0.48 0

2 0.86 0.97 1

3 1.29 1.45 2/3

4 1.72 1.93 3/4

5 2.15 2.42 3/5

TABLE II. Table of momenta Pz in GeV at the two lattice
spacings. The values of the ⇣ used in the boosted Gaussian
sources used for each Pz is also shown.

plement the Gaussian profiled quark sources, we gauge-
fixed the configurations in the Coulomb gauge to con-
struct the sources as we found it to be computationally
less expensive. We fixed the radius of the Gaussian pro-
file on a = 0.06 fm and a = 0.04 fm ensembles to be
0.312 fm and 0.208 fm respectively. We discussed the de-
tails of tuning the Gaussian smearing parameters in the
Appendix of [42]. Using these quark propagators, we are
able to compute hadron two-point and three-point func-
tions in hadrons boosted to momentum Pz = 2⇡nz/(La).
We tabulate the details of the statistics used in the

two ensembles in Table I. We increased the statistics in
two ways (a) using statistically uncorrelated gauge field
configurations, which are labeled as #cfg in Table I, and
(b) by using All Mode Averaging (AMA) [64] on each
gauge configuration. In order to mitigate the reduction in
the signal-to-noise ratio in both the three-point and two-
point functions as one increases Pz / nz, we used more
gauge field configurations for larger nz than at smaller
ones. In a = 0.06 fm ensemble, we e↵ectively increased
the statistics 32 times by using 1 exact Dirac operator
inversion and 32 sloppy inversions in the AMA per con-
figuration. In the a = 0.04 fm ensemble, we increased the
number of exact and sloppy solves for nz = 2, 3 and more
for nz = 4, 5. We used a stopping criterion of 10�10 and
10�4 for the exact and sloppy inversions respectively.

III. ANALYSIS OF EXCITED STATES IN THE
TWO-POINT FUNCTION OF BOOSTED PION

In this section, we discuss the computation of boosted
pion correlators and the extraction of the excited state
contributions. Using a smeared (s) pion source ⇡s(P, t)

⇡s(P, t) =
X

x

ds(x, t)�5us(x, t)e
�iP.x, (3)

for pion ⇡+ that is moving with spatial momentum P =
(0, 0, Pz) along the z-direction, we computed the two-
point function of pions

Css
0

2pt
(ts;Pz) =

⌦
⇡s0(P, ts)⇡

†
s
(P, 0)

↵
. (4)

mπ = 300 MeV mπ = 140 MeV

a = 0.076 fm

Pz = 0 GeV

483 × 64 643 × 64

0.51 GeV
0.76 GeV
1.02 GeV

1.27 GeV

1.78 GeV

1.53 GeV

2.04 GeV
2.29 GeV

643 × 64

0.25 GeV

• X. Gao, YZ, et al., PRD102 (2020).

• X. Gao, YZ, et al., 2102.01101.



YONG ZHAO, 05/06/2021

• Polyakov loop


• Renormalization condition:

Wilson-line mass renormalization

20

⟨Ω | |Ω⟩
T → ∞

R ∝ exp[−V(R)T]

Vlat(r, a)
r=r0

+ 2δm(a) = 0.95/r0

δm(a) =
1
a ∑

n

cnαn
s (1/a) + δm lat

0

C. Bauer, G. Bali and A. Pineda, PRL108 (2012).

aδm(a = 0.04 fm) = 0.1508(12)

δm lat
0 ∼ ΛQCD

aδm(a = 0.06 fm) = 0.1586(8)

aδm(a = 0.076 fm) = 0.1597(16)
A. Bazavov et al., TUMQCD, PRD98 (2018).
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• Check of continuum limit:

Wilson-line mass renormalization

21

lim
a→0

e−δm(z−z0)
h̃(z, a, Pz = 0)
h̃(z0, a, Pz = 0)

=
h̃(z, Pz = 0, μ)
h̃(z0, Pz = 0, μ)

a=0.04 fm, z0=6a
a=0.06 fm, z0=4a
a=0.076 fm, z0=3a

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

OΓ
B(z, a) = eδm|z| Zj1(a)Zj2(a)OΓ

R(z)

z, z0 ≫ a

Preliminary
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• Matching to the MSbar scheme:

Wilson-line mass renormalization

22

eδmMS
0 (z−z0) lim

a→0
e−δm(z−z0)

h̃(z, a, Pz = 0)
h̃(z0, a, Pz = 0)

=
h̃(z, Pz = 0, μ)
h̃(z0, Pz = 0, μ)

z, z0 ≫ a

h̃MS(z, Pz = 0, μ) = C0(αs(μ), z2μ2) + 𝒪(z2Λ2
QCD) z ≪ Λ−1

QCD

Perturbative:

• Known to NNLO


• 3-loop anomalous 
dimension available.

• L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);

• Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021).

• V. Braun and K. G. Chetyrkin, JHEP 07 (2020).

Non-perturbative:

• Leading infrared renormalon 

contribution is quadratic

∝ z2Λ2
QCD

• V. Braun, A. Vladimirov and J.-H. Zhang, PRD99 (2019).

Renormalon in the Wilson-line mass correction.
C. Bauer, G. Bali and A. Pineda, PRL108 (2012);

C. Alexandrou et al. (ETMC), 2011.00964.



YONG ZHAO, 05/06/2021

• Matching to the MSbar scheme:


• Use both fixed-order and renormalization-group improved (RGI) 
NNLO OPE formulae;


• Two parameter fit to a wide range of z.

Wilson-line mass renormalization

23

e−δm(z−z0)
h̃(z, a, Pz = 0)
h̃(z0, a, Pz = 0)

= e−δmMS
0 (z−z0)

C0(αs(μ), z2μ2) + Λz2

C0(αs(μ), z2
0 μ2) + Λz2

0
z0 ≫ a

X. Gao, YZ et al., 2102.01101.
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• Matching to the MSbar scheme:


• Fixed-order OPE leads to excellent fits, while RGI OPE does not;


• The a-dependences of the parameters are negligible.

Wilson-line mass renormalization

24

zmax = 0.48 fm zmax = 0.60 fm zmax = 0.72 fm
a = 0.04 fm,
µ = 2.0 GeV

�
2

dof = 0.33,
�m0 ! 0.166,
⇤ ! �0.0475

�
2

dof = 0.26,
�m0 ! 0.164,
⇤ ! �0.0485

�
2

dof = 0.45,
�m0 ! 0.167,
⇤ ! �0.0472

a = 0.06 fm,
µ = 2.0 GeV

�
2

dof = 0.0015,
�m0 ! 0.169,
⇤ ! �0.0485

�
2

dof = 0.024,
�m0 ! 0.173,
⇤ ! �0.0468

�
2

dof = 0.24,
�m0 ! 0.179,
⇤ ! �0.044

zmax = 0.532 fm zmax = 0.608 fm zmax = 0.684 fm
a = 0.076 fm,
µ = 2.0 GeV

�
2

dof = 0.011,
�m0 ! 0.171,
⇤ ! �0.0449

�
2

dof = 0.11,
�m0 ! 0.174,
⇤ ! �0.0436

�
2

dof = 0.38,
�m0 ! 0.178,
⇤ ! �0.0421

Table 4: �m0 in unit of GeV, ⇤ in unit of GeV2, and � in unit of GeV4.

FO: d, f = 0 zmax = 0.48 fm zmax = 0.60 fm zmax = 0.72 fm
a = 0.04 fm, µ = 3.2 GeV �

2

dof = 0.10,
�m0 ! 0.212,
⇤ ! �0.014,
� ! �0.0019

�
2

dof = 0.28,
�m0 ! 0.188,
⇤ ! �0.036,
� ! �0.0006

�
2

dof = 0.47,
�m0 ! 0.174,
⇤ ! �0.047,
� ! 0.00004

a = 0.06 fm, µ = 3.2 GeV �
2

dof = 0.003,
�m0 ! 0.184,
⇤ ! �0.043,
� ! �0.0003

�
2

dof = 0.004,
�m0 ! 0.171,
⇤ ! �0.052,
� ! 0.0002

�
2

dof = 0.011,
�m0 ! 0.163,
⇤ ! �0.058,
� ! 0.0005

a = 0.04 fm, µ = 2.0 GeV �
2

dof = 0.0820578,
�m0 ! 0.192154,
⇤ ! �0.0246183,
� ! �0.00145695

�
2

dof = 0.225421,
�m0 ! 0.171378,
⇤ ! �0.0428862,
� ! �0.000288993

�
2

dof = 0.359858,
�m0 ! 0.159807,
⇤ ! �0.0521447,
� ! 0.00020983

a = 0.06 fm, µ = 2.0 GeV �
2

dof = 0.00298467,
�m0 ! 0.170215,
⇤ ! �0.0478955,
� ! �0.0000331282

�
2

dof = 0.0032011,
�m0 ! 0.15968,
⇤ ! �0.0555803,
� ! 0.000381338

�
2

dof = 0.0076984,
�m0 ! 0.153209,
⇤ ! �0.0598694,
� ! 0.000576705

Table 5: �m0 in unit of GeV, ⇤ in unit of GeV2, and � in unit of GeV4.
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• Space-like correlations have correlation length . In 
 space, the correlation length .


• As , , only the twist-2 contribution remains, and 
the correlation decreases algebraically as  (Regge-like).

ξz ∼ 1/ΛQCD
λ = zPz ξλ = Pzξz ∼ Pz/ΛQCD

Pz → ∞ ξλ → ∞
∼ 1/λd

Physical extrapolation beyond zL

25

�� � Pz /�QCD , 0 < Pz
1 < Pz

2 < Pz
3

h(�, Pz)

��

��

��

Pz
1

Pz
2

Pz
3

Pz = �

�0
Figure 2: Qualitative behavior of the quasi-LF correlation in � space at different P z

. For

finite P z
, at short � the correlation is approximated by the leading-twist contribution

and evolves slowly in P z
. At large �, the correlation starts to exhibit the exponential

decay behavior, and both the starting point and correlation length ⇠� increase with

respect to P z
. In the P z

! 1 limit, ⇠� approaches infinity and the quasi-LF correlation

only includes leading-twist contribution which decays algebraically.

which may obscure the result. Namely, one may fit to different values of the
correlation length ⇠� with different choices of the fitting range. Nevertheless,
the variation in ⇠� will mainly affect the region with very small x, which
are anyway less predictive due to power corrections. Therefore, it is not a
prerequisite to fit ⇠� precisely. Instead, one should utilize this property by
varying the fitting range, e.g., within zL�5a  z  zL, and test the stability
of the final result with different ⇠�.

Last but not the least, the Fourier transform of an exponentially decaying
correlation always leads to a finite quasi-PDF at x = 0, which is different
from the Regge behavior of PDFs at small x. Besides, since the PDF at large

20

Therefore, if 

 is not very large, e.g. 2–5 GeV for the 

proton:

•  or  must be large enough for us to 

see the exponential decay;

• We can use an exponential-based form to 

extrapolate to ∞;


 is very large:

• Correlation is dominated by the leading-

twist contribution;

• We can use an algebraic form to do the 

extrapolation. 

Pz

zL λL

Pz

= zPz
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Impact of extrapolation:


• Remove unphysical oscillation 
from Fourier transform;


• The small-x region  
becomes model dependent. 
After all, LaMET can only 
predict  where 
usually .

x < 1/λL

x ∈ [xmin, xmax]
xmin > 1/λL

Physical extrapolation beyond zL

26

x10

f̃(x, Pz)

λL1

λL2

λL3

λL = ∞

λL1 < λL2 < λL3 < ∞
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• Taking advantage of the fact that the NNLO OPE with leading 
IR renormalon contribution can fit to a wide range of z:

Implementation of the hybrid scheme

27

lim
a→0

h̃(z, a, Pz)
h̃(z, a, Pz = 0)

=
h̃(z, Pz, μ)

h̃(z, Pz = 0, μ)
=

h̃(z, Pz, μ)
C0(αs(μ), z2μ2) + Λz2

Rigorous ratio scheme in

• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD98 (2018);


as compared to the original ratio in

• A. Radyushkin, Phys.Lett.B 781 (2018).

lim
a→0

h̃(z, a, Pz)
h̃(z, a, Pz = 0)

C0(αs(μ), z2μ2)+Λz2

C0(αs(μ), z2μ2)
=

h̃(z, Pz, μ)
C0(αs(μ), z2μ2)
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• Extrapolation with models featuring an exponential decay:

Fourier transform with physical extrapolation

28

Preliminary

a = 0.04 fm, Pz = 1.45 GeV, zS = 6a, zL = 19a .

Extrapolation barely affects the moderate x region, as expected.

DFT

2 4 6 8

0.2

0.4

0.6

0.8

1.0 DFT

-2 -1 1 2

0.5

1.0

1.5

2.0

λ = zPz

Caveat: we are still in the process of finishing the hybrid-scheme analysis. In this talk we 
choose zs=zL<=0.72 fm for now. But strictly speaking, the factorization is in doubt at large z.
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• Perturbative correction shows good convergence.

Perturbative matching at NNLO

29

LO
NLO
NNLO

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 a=0.04 fm, Pz=1.45 GeV, μ=2.0 GeV LO
NLO
NNLO

LO
NLO
NNLO

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6
a=0.04 fm, Pz=1.45 GeV, μ=2.0 GeV

Error band only includes statistical uncertainty.

Preliminary
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Dependence on Pz and a

30

a=0.04 fm, Pz=1.93 GeV
a=0.06 fm, Pz=1.72 GeV
a=0.076 fm, Pz=1.78 GeV

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6
μ=2.0 GeV

Pz=1.45 GeV
Pz=1.93 GeV
Pz=2.42 GeV

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

a=0.04 fm, μ=2.0 GeV

Preliminary
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Comparison with previous analysis and phenomenology

31

OPE
x-space
JAM
ASV
xFitter
FNAL

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0 a=0.04 fm, Pz=2.42 GeV, μ=3.2 GeV

Better agreement with experimental fits for 0.1 < x < 0.45 
compared to our previous analysis using OPE in coordinate space.

Preliminary
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Outlook: 3D Tomography of the proton

32

Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
very hard, such as generalized form factors.
Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
of quarks and gluons at small x, for which
collider measurements are our only source of
information.

y

xp

x
z

bΤ

Figure 2.1: Schematic view of a parton with
longitudinal momentum fraction x and trans-
verse position bT in the proton.

Both impact parameter distributions
f(x, bT ) and transverse-momentum distri-
butions f(x,kT ) describe proton structure
in three dimensions, or more accurately in
2+ 1 dimensions (two transverse dimensions
in either configuration or momentum space,
along with one longitudinal dimension in mo-

mentum space). Note that in a fast-moving
proton, the transverse variables play very dif-
ferent roles than the longitudinal momen-
tum.

It is important to realize that f(x, bT )
and f(x,kT ) are not related to each other by
a Fourier transform (nevertheless it is com-
mon to denote both functions by the same
symbol f). Instead, f(x, bT ) and f(x,kT )
give complementary information about par-
tons, and both types of quantities can be
thought of as descendants of Wigner distri-
butions W (x, bT ,kT ) [8], which are used ex-
tensively in other branches of physics [9].
Although there is no known way to mea-
sure Wigner distributions for quarks and
gluons, they provide a unifying theoretical
framework for the di↵erent aspects of hadron
structure we have discussed. Figure 2.2
shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
scale which specifies the resolution at which
partons are resolved, and which in a given
scattering process is provided by a large mo-
mentum transfer. For many processes in
e+p collisions, the relevant hard scale is Q

2

(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
thus opening the way for studying correla-
tions between spin and kT or bT . Informa-
tion about transverse degrees of freedom is
essential to access orbital angular momen-

17

kT

Transverse momentum 
dependent (TMD) PDFs

Generalized Parton 
Distributions (GPDs)

∫ d2bT ∫ d2kT

Wigner distributions 
(or GTMDs):

f(x, ⃗b T)f(x, ⃗k T)

W(x, ⃗k T, ⃗b T)

Momentum space: 
confined motion

Coordinate space: 
spatial distribution
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• Pion valence GPD:


• Proton isovector GPD:

Lattice calculations of GPDs with LaMET

33

-1 -0.5 0 0.5 1

0

1

2

3

C. Alexandrou et al. (ETM), PRL 125 (2020) 26, 
262001. Unpolarized and Helicity cases.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

1

2

3

4

x
H
v�

t=0

t=-2

t=-5

J.W. Chen et al., NPB 952 
(2020) 114940.

4

FIG. 2: E(pf , q
2
, z) matrix elements at selected Q

2 2 {0.19, 0.48, 0.97} GeV2.

Q2 � 0.48 GeV2

quasi-GPD
matched GPD

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

0

0.5

1.0

1.5

x

H

Q2 � 0.48 GeV2

quasi-GPD
matched GPD

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

x

E

FIG. 3: H and E quasi-GPDs and matched GPDs at momentum transfer Q2 = 0.48 GeV2.

the continuum limit H(pf , Q2 = 0, z = 0), the vector charge, goes to 1. The nonperturbatively renormalized matrix
elements are then Fourier transformed into quasi-GPDs and matched-to the physical GPDs. Examples of the GPDs
at momentum transfer Q2 ⇡ 0.5 GeV2 are shown in Fig. 3. Figure 3 compares the H and E GPDs at Q2 ⇡ 0.5 GeV2

with the quasi-distribution and matched distribution using Pz ⇡ 2.1 GeV. The matching lowers the positive mid-x to
large-x distribution, as expected; as one approaches lightcone limit, the probability of a parton to carrying a larger
fraction of its parent nucleon’s momentum should become smaller. However, due to the limited zPz reach of this
calculation, we found that the small-x region is unreliable, due to lack of precision lattice data to constrain it. As
a result, the antiquark (negative-x) distribution can also be sensitive to the usage of Pz to conserve charge. It has
been found in past works [18, 24, 27, 29] that higher boosted momenta are needed to improve the antiquark region.
Therefore, for the rest of the work, we will focus on the x > 0.05 region. The full three-dimensional shape of H
and E as functions of x and Q2 can be found in Fig. 4. Our GPDs at zero transfer momentum, H(Q2 = 0, x), are
consistently within errors of the earlier study in 2018 using the same ensemble. In the ⇠ = 0 limit, the H and E GPD
decrease near monotonically as x (Q2) increases.

The Fourier transform of the non–spin-flip GPDH(x, ⇠ = 0, Q2) gives the impact-parameter–dependent distribution
q(x, b) [127]

q(x, b) =

Z
dq

(2⇡)2
H(x, ⇠ = 0, t = �q2)eiq ·b, (5)

where b is the transverse distance from the center of momentum. Figure 5 shows the first results of impact-parameter–
dependent distribution from lattice QCD: a three-dimensional distribution as function of x and b, and two-dimensional
distributions at x = 0.3, 0.5 and 0.7. The impact-parameter–dependent distribution describes the probability density

H. W. Lin, 2008.12474.
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TMD soft function from lattice QCD

34

Calculate the TMD Soft Function on lattice

F(b⊥, Pz) = ⟨π(−Pz) |(q̄1Γq1)(b⊥)(q̄2Γq2)(0) |π(Pz)⟩

1. Define a large-momentum form factor of a non-

singlet light pseudo-scalar meson:

13

First lattice calculation:

• Ji, Liu and Liu, Nucl.Phys.B 955 (2020),  Phys.Lett.B 811 (2020);

• Q.-A. Zhang, et al. (LP Collaboration), Phys.Rev.Lett. 125 (2020).

4

TMDWF,

C2(b?, P
z; pz, `, t) =

1

L3
p
ZE(2`, b?)

X

x

Trei
~P ·~x

⇥ hS
†
w(~x+~b, t, 0;�~p)W(~b, `)�5��Sw(~x, t, 0;P

z
� ~p)i

=
Aw(pz)Ap

2E
e
�Et

�`(0, b?, P
z
, `)(1 + c0e

��Et), (15)

where again we parameterize the mixing with one excited
state. Ap is the matrix element of the point sink pion in-
terpolation field. It will be removed when we normalize
�`(0, b?, P z

, `) with �`(0, 0, P z
, 0). We choose �� = �

t
�5

to define the wave function amplitude in Eq. (4). Based
on the quasi-TMDPDF study in Ref. [25, 27] with a sim-
ilar staple-shaped gauge link operator, the mixing e↵ect
could be sizable when summing various contributions. In
the supplemental material, we report a similar simulation
but using the A654 ensemble. We find that the mixing
e↵ects can reach order 5% for the transverse separation
b? ⇠ 0.6fm. These e↵ects will be included in the fol-
lowing analysis as one of the systematic uncertainties,
while a comprehensive study on the mixing e↵ects will
be conducted in the future.

FIG. 2. Results for the ` dependence of the quasi-TMDWF
with z = 0, and also the square root of the Wilson loop
which is used for the subtraction, taking the {P z, b?, t} =
{6⇡/L, 3a, 6a} case as a example. All the results are normal-
ized with their values at ` = 0.

The dispersion relation of the pion state, statistical
checks for the measurement histogram, and information
on the autocorrelation between configurations can be
found in the supplemental materials [28].

Numerical Results. Fig. 2 shows the dependence of
the norm of quasi TMDWFs on the length ` of the
Wilson-line. As one can see from this figure, with
{P

z
, b?, t} = {6⇡/L, 3a, 6a}, both the quasi-TMDWF

�`(0, b?, P z
, `) and the square root of the Wilson loop

ZE decay exponentially with length `, but the subtracted
quasi-TMDWF is length independent when ` � 0.4 fm.
Some other cases with larger P z, b?, and t can be found
in the supplemental materials [28]. Based on this ob-
servation, we will use ` = 7a = 0.686 fm as asymptotic

results for all cases in the following calculation.

FIG. 3. The ratios C3(b?, P
z, tsep, t)/C2(0, P

z, 0, tsep) (data
points) which converge to the ground state contribution at
t, tsep ! 1 (gray band) as function of tsep and t, with
{P z, b?} = {6⇡/L, 3a}. As in this figure, our data in gen-
eral agree with the predicted fit function (colored bands).

We performed a joint fit of the form factor and
quasi-TMDWF with the same P

z and b? with the
parameterization in Eqs. (14) and (15). The ra-
tios C3(b?, P z

, tsep, t)/C2(0, P z
, 0, tsep) with di↵erent tsep

and t for the {P
z
, b?} = {6⇡/L, 3a} case are shown in

Fig. 3, with ground state contribution (gray band) and
the fitted results at finite t2 and t (colored bands). In this
calculation, the excited state contribution is properly de-
scribed by the fit with �

2
/d.o.f. = 0.6. The details of the

joint fit, and also more fit quality checks are shown in the
supplemental materials [28], with similar fitting quality.

FIG. 4. The intrinsic soft factor as a function of b? with
b?,0 = a as in Eq. (9). With di↵erent pion momentum P z,
the results are consistent with each other. The dashed curve
shows the result of the 1-loop calculation, see Eq. (7), with the
strong coupling constant ↵s(1/b?). The shaded band corre-
sponds to the scale uncertainty of ↵s: µ 2 [1/

p
2,
p
2]⇥1/b?.

The systematic uncertainty from the operator mixing has
been taken into account.

The resulting soft factor as function of b? is plotted in
Fig. 4, at �= 2.17, 3.06 and 3.98, which corresponds to
P

z = {4, 6, 8}⇡/L = {1.05, 1.58, 2.11} GeV respectively.

F(bT, Pz)

Sr
q(bT, μ)

× f TMD
ns (x, ⃗b T, μ, ζ) + 𝒪 ( bT

L
,

1
bTPz

,
1

PzL )

f̃ TMD
ns (x, ⃗b T, μ, Pz)

Sq
r (bT, μ)

= CTMD
ns (μ, xPz) exp[ 1

2
γq
ζ (μ, bT)ln

(2xPz)2

ζ ]
• Ji, Sun, Xiong and Yuan, PRD91 (2015);

• Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);

• M. Ebert, I. Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037.

• Ji, Liu and Liu, Nucl.Phys.B 955 (2020),  Phys.Lett.B 811 (2020).

Quasi TMDPDF

Reduced soft function

(Nonperturbative) Collins-Soper evolution kernel



YONG ZHAO, 05/06/2021

Collins-Soper kernel from lattice QCD

First exploratory calculation on a 
quenched lattice ensemble

• M. Ebert, I. Stewart, YZ, PRD99 (2019);

• Shanahan, Wagman, YZ, Phys.Rev.D 101 (2020);

• Shanahan, Wagman, YZ, Phys.Rev.D 102 (2020).
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Nonperturbative QCD input is required to determine the Collins-Soper 
kernel governing TMDPDF evolution and improve precision of 
SIDIS and Drell-Yan predictions / TMDPDF extractions

First exploratory calculation in             LQCD shows proof-of-principle, 
importance of controlling systematics

Nf = 0

Results in                     LQCD with better systematic control coming soon!Nf = 2 + 1 + 1

Shanahan, MW, Zhao, PRD 102 (2020)

Preliminary results with dynamical 
fermions
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• LaMET allows for model-independent lattice calculation of the 
x-dependence of the PDFs with controlled systematics;


• The Wilson-line mass renormalization in the hybrid scheme 
can be well determined from lattice;


• NNLO matching shows good perturbative convergence. We are 
entering the stage of high-precision calculation of the PDFs;


• LaMET can also be used to calculate GPDs and TMDs, with 
encouraging progress being made. 

Conclusion

36
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Nonperturbative renormalization schemes
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Mass subtraction:

RI/MOM:

Ratio schemes:

ZX = eδm|z|Zj1Zj2

ZX = ⟨q |OΓ(z) |q⟩

ZX = ⟨Pz
0 = 0 |OΓ(z) |Pz

0 = 0⟩

ZX = ⟨Ω |OΓ(z) |Ω⟩

• : includes linear divergence, can be determined 
from e.g. static  potential, etc.;


• : Renormalization of the “heavy-to-light” current, 

independent of ;

• Corresponds to the MSbar scheme.

δm
qq̄

Zj

z

• Perturbative window: 


• Still introduces nonperturabtive z-dependence as 

Λ2
QCD ≪ − q2 ≪ 1/a2

z ≳ Λ−1
QCD

• Introduces higher-twist effects as .z ≳ Λ−1
QCD

[Ji, Zhang and YZ, 1706.08962; Ishikawa, Ma, Qiu and Yoshida, 1707.03107, Green, Jansen and Steffens, 1707.07152.]

[Musch et al., 1011.1213;

Ishikawa, Ma, Qiu and Yoshida, 1609.02018;

Chen, Ji and Zhang, 1609.08102;

Green, Jansen and Steffens, 1707.07152.]

[Constantinou and Panagopoulos, 1705.11193;

I. Stewart and YZ, 1709.04933;

C. Alexandrou et al., 1706.00265;

Chen et al., 1706.01295.]

[A. Radyushkin, 1705.01488; K. Orginos, et al., 1706.05373]

[Braun, Vladimirov and Zhang, 1810.00048; Li, Ma 
and Qiu, 2006.12370.]

OΓ
B(z, a) = ψ̄0(z)ΓW0[z,0]ψ0(0) = eδm|z| Zj1(a)Zj2(a)OΓ

R(z)

 considered by [X. Gao, et al. (BNL/SBU/THU), 2007.06590].Pz
0 ≠ 0
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Nonperturbative renormalization schemes
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Scheme Small z Large z

Mass 
subtraction

Not the expected ln z2 behavior due to 
discretization effects when z~a, e.g., 
the function ln[(z2+a2)/a2]

Well defined except for         
ambiguity in the Wilson line mass 
correction. 

RIMOM
ln z2 dependence cancelled out, 

therefore the discretization error is 
cancelled to a large degree

Uncontrolled nonperturbative z-
dependence

Ratios Uncontrolled higher-twist effects

𝒪(ΛQCD)

A cancellation of higher-twist effects in 
the ratio? Cannot be quantified.


