Precision Calculation of the *x*dependence of PDFs from Lattice QCD

Fermilab Theory Seminar

YONG ZHAO MAY 06, 2021

High-energy proton structure and the parton model

 The inner proton structure has been probed via processes such as deep inelastic (e.g., e-+p) scatterings.

Richard P. Feynman

Feynman's parton model (1969):

- Quarks and gluons are "frozen" in the transverse plane due to Lorentz contraction;
- During a hard collision, the struck quark/gluon (parton) appears to the probe that it does not interact with its surroundings.

Parton distribution functions (PDFs)

• Unpolarized PDF $f_i(x)$:

• Helicity PDF $\Delta f_i(x)$:

PDFs and precision tests for the Standard Model

 PDFs are the basic inputs for Standard Model predictions in high-energy scattering experiments.

Nonperturbative and not well known 🙂

Higgs production from gluon-gluon fusion at LHC:

 $\sigma = f_g(x_1) f_g(x_2) \hat{\sigma}_{gg \to H}$

Perturbative and well known 🙂

PDFs and precision tests for the Standard Model

 PDFs are the basic inputs for Standard Model predictions in high-energy scattering experiments.

Nonperturbative and not well known 🙁

Higgs production from gluon-gluon fusion at LHC:

 $\sigma = f_g(x_1) f_g(x_2) \hat{\sigma}_{gg \to H}$

In reverse, PDFs can be fitted from a global analysis of experimental data!

Perturbative and well known 🙂

• The PDFs have been measured extensively at the state-ofthe-art accelerator experiments since the late 1960s.

RHIC@BNL, US

• The next-generation machine: the Electron-Ion Collider (EIC)

\$1.6-2.6 Billion, to be completed in 2030.

EIC Yellow Report,

R. Abul Khalek et al., 2103.05419.

An approximate picture of the PDF

An approximate picture of the PDF

NNPDF Collaboration, EPJ C77 (2017)

NNPDFpol1.1, Particle Data Group (2019)

Ratios of sea quark distributions, d(x)/u(x)

SeaQuest Collaboration, Nature 590 (2021).

World data on the spin-dependent structure function $g_1(x,Q^2)$

First-principles calculation of (spin-dependent) PDFs can provide important complementary information to the global analysis!

Lattice QCD

• Lattice gauge theory (1974): a systematically improvable approach to solve non-perturbative QCD.

Imaginary time: $t \to i\tau$ $O(i\tau) \xrightarrow{?} O(t)$

Partonic observables are defined on the light-cone

Simulating real-time dynamics has been extremely difficult due to the issue of analytical continuation.

$$z + ct = 0, \quad z - ct \neq 0$$

$$\overline{\psi}$$

$$\overline{\psi}$$

$$\overline{\psi}$$

$$\psi$$

$$z$$

PDF f(x): Cannot be calculated on the lattice

$$f(x) = \int \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \langle P | \bar{\psi}(b^{-}) \\ \times \frac{\gamma^{+}}{2} W[b^{-}, 0] \psi(0) | P \rangle$$

 $t = 0, z \neq 0$ $\overline{\psi}$ $\overline{\psi}$

Directly calculable on the lattice $\tilde{f}(x, P^{z}) = \int \frac{dz}{2\pi} e^{ib^{z}(xP^{z})} \langle P | \bar{\psi}(b^{z}) \\ \times \frac{\gamma^{z}}{2} W[b^{z}, 0] \psi(0) | P \rangle$

 $t = 0, \ z \neq 0$

PDF f(x): Cannot be calculated on the lattice

$$f(x) = \int \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \langle P | \bar{\psi}(b^{-}) \\ \times \frac{\gamma^{+}}{2} W[b^{-}, 0] \psi(0) | P \rangle$$

Quasi-PDF $\tilde{f}(x, P^{z})$: Directly calculable on the lattice $\tilde{f}(x, P^{z}) = \int \frac{dz}{2\pi} e^{ib^{z}(xP^{z})} \langle P | \bar{\psi}(b^{z})$ $\times \frac{\gamma^{z}}{2} W[b^{z}, 0] \psi(0) | P \rangle$

 $t = 0, \ z \neq 0$

PDF f(x): Cannot be calculated on the lattice

$$f(x) = \int \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \langle P | \bar{\psi}(b^{-}) \\ \times \frac{\gamma^{+}}{2} W[b^{-}, 0] \psi(0) | P \rangle$$

 $\lim_{P^z \to \infty} \tilde{f}(x, P^z) \stackrel{?}{=} f(x)$ $\tilde{f}(x, f(x, P^z)) \stackrel{f(x, P^z)}{=} f(x)$

Quasi-PDF $\tilde{f}(x, P^{z})$: Directly calculable on the lattice $\tilde{f}(x, P^{z}) = \int \frac{dz}{2\pi} e^{ib^{z}(xP^{z})} \langle P | \bar{\psi}(b^{z})$ $\times \frac{\gamma^{z}}{2} W[b^{z}, 0] \psi(0) | P \rangle$

 $t = 0, \ z \neq 0$

PDF f(x): Cannot be calculated on the lattice

$$f(x) = \int \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \langle P | \bar{\psi}(b^{-}) \\ \times \frac{\gamma^{+}}{2} W[b^{-}, 0] \psi(0) | P$$

 $\lim_{P^z \to \infty} \tilde{f}(x, P^z) \stackrel{?}{=} f(x)$

Quasi-PDF $\tilde{f}(x, P^z)$: Directly calculable on the lattice $\tilde{f}(x, P^z) = \int \frac{dz}{2\pi} e^{ib^z(xP^z)} \langle P | \bar{\psi}(b^z)$ $\times \frac{\gamma^z}{2} W[b^z, 0] \psi(0) | P \rangle$

- Quasi-PDF: $P^z \ll \Lambda$; Λ : the ultraviolet lattice cutoff, $\sim 1/a$
- PDF: $P^z = \infty$, including $P^z \gg \Lambda$.
 - The limits $P^z \ll \Lambda$ and $P^z \gg \Lambda$ are not exchangeable;
 - \bullet For $P^z \gg \Lambda_{\rm QCD}$, their infrared (nonperturbative) physics are the same.

$$\tilde{f}(x, P^z) = \underbrace{C\left(x, \frac{P^z}{\mu}\right) \otimes f(x, \mu) + O\left(\frac{\Lambda_{\text{QCD}}^2}{P_z^2}\right)}_{P_z^2}$$

Perturbative matching

Power corrections

- It is the large-momentum state, instead of the operator, that filters out collinear modes in the field operators;
- Contribution from the collinear modes is identical to the PDF.

- X. Ji, PRL 110 (2013); SCPMA57 (2014).
- X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);
- X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, arXiv: 2004.03543.

• Factorization formula:

$$\tilde{f}(y,P^z) = \int_{-1}^{1} \frac{dx}{|x|} C\left(\frac{y}{x},\frac{\mu}{xP^z}\right) f(x,\mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{(yP^z)^2},\frac{\Lambda_{\text{QCD}}^2}{((1-y)P^z)^2}\right)$$

- X. Ji, PRL 110 (2013); SCPMA57 (2014);
- X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);
- Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018);
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD98 (2018).
- X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, arXiv: 2004.03543.
- The formula can be inverted order by order in α_s :

$$f(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C^{-1}\left(\frac{x}{y},\frac{\mu}{yP^{z}}\right) \tilde{f}(y,P^{z}) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP^{z})^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P^{z})^{2}}\right)$$

Controlled power expansion for $x \in [x_{\min}, x_{\max}]$ at finite P^z

• Large-momentum expansion:

$$f(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{yP^{z}}\right) \tilde{f}(y,P^{z},\mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP^{z})^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P^{z})^{2}}\right)$$

State-of-the-art: next-to-next-to-leading order (NNLO) matching for the non-singlet quark quasi-PDF.

L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);
Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021).

• Matching coefficient:

$$C^{(1)}\left(\xi,\frac{\mu}{yP^{z}}\right) = -\frac{\alpha_{s}C_{F}}{2\pi}\delta(1-\xi)\left[\frac{3}{2}\ln\frac{\mu^{2}}{4x^{2}P_{z}^{2}} + \frac{5}{2}\right]$$

$$\xi = \frac{x}{y}$$

$$-\frac{\alpha_{s}C_{F}}{2\pi}\begin{cases}\left(\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{\xi-1}+1\right)_{+} & \xi > 1\\ \left(\frac{1+\xi^{2}}{1-\xi}\left[-\ln\frac{\mu^{2}}{y^{2}P_{z}^{2}} + \ln\left(4\xi(1-\xi)\right) - 1\right] + 1\right)_{+} & 0 < \xi < 1\\ \left(-\frac{1+\xi^{2}}{1-\xi}\ln\frac{-\xi}{1-\xi} - 1\right)_{+} & \xi < 0\end{cases}$$

YONG ZHAO, 05/06/2021

Large-momentum expansion:

$$f(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{yP^{z}}\right) \tilde{f}(y,P^{z},\mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP^{z})^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P^{z})^{2}}\right)$$

State-of-the-art: next-to-next-to-leading order (NNLO) matching for the non-singlet guark guasi-PDF.

• L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021); • Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021).

Matching coefficient:

$$C^{(1)}\left(\xi,\frac{\mu}{yP^{z}}\right) = -\frac{\alpha_{s}C_{F}}{2\pi}\delta(1-\xi) \begin{bmatrix} \frac{3}{2}\ln\frac{\mu^{2}}{4x^{2}P_{z}^{2}} + \frac{5}{2} \end{bmatrix} \xrightarrow{\text{Similar to DGLAP evolution}} \frac{dC(\xi,\mu/(x))}{d\ln(xP)} \\ \xi = \frac{x}{y} \\ -\frac{\alpha_{s}C_{F}}{2\pi} \begin{cases} \left(\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{\xi-1} + 1\right)_{+} & \text{X. Ji, Y.-S. Liu, Y.} \\ \left(\frac{1+\xi^{2}}{1-\xi}\left[-\ln\frac{\mu^{2}}{y^{2}P_{z}^{2}} + \ln\left(4\xi(1-\xi)\right) - 1\right] + 1\right)_{+} & 0 < \xi < 1 \\ \left(-\frac{1+\xi^{2}}{1-\xi}\ln\frac{-\xi}{1-\xi} - 1\right)_{+} & \xi < 0 \end{cases}$$

$$\ln \frac{\mu^2}{y^2 P_z^2} = \ln \frac{\mu^2}{x^2 P_z^2} + \ln \frac{x^2}{y^2}$$

P evolution:

$$\frac{dC(\xi, \mu/(xP^z))}{d\ln(xP^z)} = \frac{\alpha_s C_F}{\pi} \left[P_{qq}^{(0)}(\xi) - \frac{3}{2}\delta(1-\xi) \right]$$

u, Y. Liu, J.-H. Zhang and YZ, arXiv: 2004.03543.

YONG ZHAO, 05/06/2021

• Large-momentum expansion:

$$f(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{yP^{z}}\right) \tilde{f}(y,P^{z},\mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP^{z})^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P^{z})^{2}}\right)$$

State-of-the-art: next-to-next-to-leading order (NNLO) matching for the non-singlet quark quasi-PDF.

L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);
Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021).

• Matching coefficient:

$$C^{(1)}\left(\xi,\frac{\mu}{yP^{z}}\right) = -\frac{\alpha_{s}C_{F}}{2\pi}\delta(1-\xi)\left[\frac{3}{2}\ln\frac{\mu^{2}}{4x^{2}P_{z}^{2}} + \frac{5}{2}\right]$$

$$\xi = \frac{x}{y}$$

$$-\frac{\alpha_{s}C_{F}}{2\pi}\begin{cases}\left(\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{\xi-1}+1\right)_{+} & \xi > 1\\ \left(\frac{1+\xi^{2}}{1-\xi}\left[-\ln\frac{\mu^{2}}{y^{2}P_{z}^{2}} + \ln\left(4\xi(1-\xi)\right) - 1\right] + 1\right)_{+} & 0 < \xi < 1\\ \left(-\frac{1+\xi^{2}}{1-\xi}\ln\frac{-\xi}{1-\xi} - 1\right)_{+} & \xi < 0\end{cases}$$

YONG ZHAO, 05/06/2021

• Large-momentum expansion:

$$f(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C\left(\frac{x}{y}, \frac{\mu}{yP^{z}}\right) \tilde{f}(y, P^{z}, \mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP^{z})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P^{z})^{2}}\right)$$

State-of-the-art: next-to-next-to-leading order (NNLO) matching for the non-singlet quark quasi-PDF.

L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);
Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021).

• Matching coefficient:

$$C^{(1)}\left(\xi,\frac{\mu}{yP^{z}}\right) = -\frac{\alpha_{s}C_{F}}{2\pi}\delta(1-\xi)\left[\frac{3}{2}\ln\frac{\mu^{2}}{4x^{2}P_{z}^{2}} + \frac{5}{2}\right]$$

$$\xi = \frac{x}{y}$$

$$\int \left(\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{\xi-1} + 1\right)_{+}$$

$$-\frac{\alpha_{s}C_{F}}{2\pi}\left\{\begin{pmatrix}\left(\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{\xi-1} + 1\right)_{+}\right)_{+}\\\left(\frac{1+\xi^{2}}{1-\xi}\left[-\ln\frac{\mu^{2}}{y^{2}P_{z}^{2}} + \ln\left(4\xi(1-\xi)\right) - 1\right] + 1\right)_{+}\\\left(\frac{1+\xi^{2}}{1-\xi}\ln\frac{-\xi}{1-\xi} + \ln\left(\frac{1+\xi^{2}}{1-\xi} + \ln\left(\frac{1+\xi^{2}$$

Systematic procedure in lattice calculation

Encouraging results have been obtained so far:

For example, the isovector (u-d) PDFs of the proton, with RI/ MOM lattice renormalization and NLO matching:

Helicity PDF

Transversity PDF

H.W. Lin, YZ, et al. (LP3 Collaboration), Phys.Rev.Lett. 121 (2018)

C. Alexandrou, et al. (ETM), Phys.Rev.D 98 (2018).

Encouraging results have been obtained so far:

For example, the isovector (u-d) PDFs of the proton, with RI/ MOM lattice renormalization and NLO matching:

H.W. Lin, YZ, et al. (LP3 Collaboration), Phys.Rev.Lett. 121 (2018)

C. Alexandrou, et al. (ETM), Phys.Rev.D 98 (2018).

Hybrid scheme (controlling the power corrections)

$$O_B^{\Gamma}(z,a) = \bar{\psi}_0(z) \Gamma W_0(z,0) = e^{\delta m|z|} Z_{j_1}(a) Z_{j_2}(a) O_R^{\Gamma}(z)$$

See X. Ji, YZ, et al., NPB 964 (2021) and references therein.

$$\tilde{h}(z, P^z) = \langle P \,|\, O(z, \mu) \,|\, P \rangle$$

Ratio-type schemes:

• RIMOM

 $Z_X = \langle q \, | \, O^{\Gamma}(z) \, | \, q \rangle$

- Hadron matrix elements $Z_X = \langle P_0^z = 0 | O^{\Gamma}(z) | P_0^z = 0 \rangle$
- Vacuum expectation value

$$Z_X = \langle \Omega \,|\, O^{\Gamma}(z) \,|\, \Omega \rangle$$

A "minimal" subtraction:

• Wilson-line mass subtraction δm ;

 $O_R^{\Gamma}(z,\mu_R) = Z_{\text{hybrid}}(a,\mu_R)e^{-\delta m|z|}O_B^{\Gamma}(z,a)$

• Overall renormalization Z_j 's.

Hybrid scheme (controlling the power corrections)

$O_B^{\Gamma}(z,a) = \bar{\psi}_0(z) \Gamma W_0[z,0]$

See X. Ji, YZ, et al., NPB 964 (2021) and references therein.

$$\tilde{h}(z, P^z) = \langle P \,|\, O(z, \mu) \,|\, P \rangle$$

Ratio-type schemes:

• RIMOM

 $Z_X = \langle q \, | \, O^{\Gamma}(z) \, | \, q \rangle$

Hadron matrix elements

 $Z_X = \langle P_0^z = 0 \mid O^{\Gamma}(z) \mid P_0^z = 0 \rangle$

 Vacuum expectation value

$$Z_X = \langle \Omega \,|\, O^{\Gamma}(z) \,|\, \Omega \rangle$$

Coordinate-Space Factorization (or OPE):

$$\tilde{h}(\lambda = zP^{z}, z^{2}\mu^{2}) = \int_{0}^{\infty} d\alpha \ \mathscr{C}(\alpha, z^{2}\mu^{2}) \ h(\alpha\lambda, \mu) + \mathcal{O}(z^{2}\Lambda_{\text{QCD}}^{2})$$
$$\tilde{h}(\lambda = zP^{z}, z^{2}\mu^{2}) = \sum_{n=0}^{\infty} \frac{(-i\lambda)^{n}}{n!} C_{n} \left(z^{2}\mu^{2}\right) a_{n}(\mu) + \mathcal{O}(z^{2}\Lambda_{\text{QCD}}^{2})$$

Suitable for calculating moments or model fitting of the PDFs.

"**Ioffe-time distribution**", Radyushkin, Phys.Rev.D 96 (2017); **Current-current correlator**, Braun and Mueller, EPJC 55 (2008); Ma and Qiu, PRL120 (2018).

Lattice data

• Wilson-clover fermion on 2+1 flavor HISQ configurations.

n_z	P_z (GeV)		ζ
	a = 0.06 fm	a = 0.04 fm	
0	0	0	0
1	0.43	0.48	0
2	0.86	0.97	1
3	1.29	1.45	2/3
4	1.72	1.93	3/4
5	2.15	2.42	3/5

a = 0.076 fm

$$P_z = 0 \text{ GeV}$$
 1.27 GeV

0.25 GeV 1.53 GeV

0.51 GeV	1.78 GeV
0.76 GeV	2.04 GeV

1.02 GeV 2.29 GeV

 $64^3 \times 64$

 $m_{\pi} = 300 \,\,{\rm MeV}$

 $48^3 \times 64$ $64^3 \times 64$

 $m_{\pi} = 140 \text{ MeV}$

- X. Gao, YZ, et al., PRD102 (2020).
- X. Gao, YZ, et al., 2102.01101.

Polyakov loop

 $\langle \Omega | \qquad \stackrel{\uparrow}{\underset{\leftarrow}{}} | \Omega \rangle \propto \exp[-V(R)T]$ $\leftarrow T \rightarrow \infty \quad \rightarrow$

Renormalization condition:

$$V^{\text{lat}}(r,a) \bigg|_{r=r_0} + 2\delta m(a) = 0.95/r_0$$
$$\delta m(a) = \frac{1}{a} \sum_n c_n \alpha_s^n (1/a) + \delta m_0^{\text{lat}}$$
$$\delta m_0^{\text{lat}} \sim \Lambda_{\text{QCD}}$$

C. Bauer, G. Bali and A. Pineda, PRL108 (2012).

 $a\delta m(a = 0.04 \text{ fm}) = 0.1508(12)$ $a\delta m(a = 0.06 \text{ fm}) = 0.1586(8)$ $a\delta m(a = 0.076 \text{ fm}) = 0.1597(16)$ A. Bazavov et al., TUMQCD, PRD98 (2018).

• Check of continuum limit:

 $O_B^{\Gamma}(z,a) = e^{\delta m|z|} Z_{j_1}(a) Z_{j_2}(a) O_R^{\Gamma}(z)$

$$\lim_{a \to 0} e^{-\delta m(z-z_0)} \frac{\tilde{h}(z, a, P^z = 0)}{\tilde{h}(z_0, a, P^z = 0)} = \frac{\tilde{h}(z, P^z = 0, \mu)}{\tilde{h}(z_0, P^z = 0, \mu)} \qquad z, z_0 \gg a$$

• Matching to the MSbar scheme:

$$e^{\delta m_0^{\overline{\text{MS}}}(z-z_0)} \lim_{a \to 0} e^{-\delta m(z-z_0)} \frac{\tilde{h}(z,a,P^z=0)}{\tilde{h}(z_0,a,P^z=0)} = \frac{\tilde{h}(z,P^z=0,\mu)}{\tilde{h}(z_0,P^z=0,\mu)} \quad z, z_0 \gg a$$

Renormalon in the Wilson-line mass correction.

C. Bauer, G. Bali and A. Pineda, PRL108 (2012); C. Alexandrou et al. (ETMC), 2011.00964.

$$\tilde{h}^{\overline{\text{MS}}}(z, P^z = 0, \mu) = C_0(\alpha_s(\mu), z^2 \mu^2) + \mathcal{O}(z^2 \Lambda_{\text{QCD}}^2)$$

Perturbative:

- Known to NNLO
 - L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);
 - Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021).
- 3-loop anomalous

dimension available.

• V. Braun and K. G. Chetyrkin, JHEP 07 (2020).

Non-perturbative:

• Leading infrared renormalon contribution is quadratic

$$x z^2 \Lambda_{\rm QCD}^2$$

 $z \ll \Lambda_{\rm OCL}^{-1}$

• V. Braun, A. Vladimirov and J.-H. Zhang, PRD99 (2019).

• Matching to the MSbar scheme:

$$e^{-\delta m(z-z_0)} \frac{\tilde{h}(z,a,P^z=0)}{\tilde{h}(z_0,a,P^z=0)} = e^{-\delta m_0^{\overline{\text{MS}}}(z-z_0)} \frac{C_0(\alpha_s(\mu),z^2\mu^2) + \Lambda z^2}{C_0(\alpha_s(\mu),z_0^2\mu^2) + \Lambda z_0^2} \qquad z_0 \gg a$$

- Use both fixed-order and renormalization-group improved (RGI) NNLO OPE formulae;
 X. Gao, YZ et al., 2102.01101.
- Two parameter fit to a wide range of z.

- Matching to the MSbar scheme:
 - Fixed-order OPE leads to excellent fits, while RGI OPE does not;
 - The a-dependences of the parameters are negligible.

	-	-	
	$z_{\rm max} = 0.48 \text{ fm}$	$z_{\rm max} = 0.60 \ {\rm fm}$	$z_{\rm max} \neq 0.72 ~{\rm fm}$
a = 0.04 fm,	$\chi^2_{dof} = 0.33,$	$\chi^2_{dof} = 0.26,$	$\chi^2_{dof} = 0.45,$
$\mu = 2.0 \text{ GeV}$	$\delta m_0 \rightarrow 0.166,$	$\delta m_0 \rightarrow 0.164,$	$\delta m_0 \rightarrow 0.167,$
	$\Lambda \to -0.0475$	$\Lambda \to -0.0485$	$\Lambda \to -0.0472$
a = 0.06 fm,	$\chi^2_{dof} = 0.0015,$	$\chi^2_{dof} = 0.024,$	$\chi^2_{dof} = 0.24,$
$\mu = 2.0 \text{ GeV}$	$\delta m_0 \rightarrow 0.169,$	$\delta m_0 \rightarrow 0.173,$	$\delta m_0 \to 0.179,$
	$\Lambda \to -0.0485$	$\Lambda \rightarrow -0.0468$	$\Lambda \rightarrow -0.044$
	$z_{\rm max} = 0.532 \mathrm{fm}$	$z_{\rm max} = 0.608 \text{ fm}$	$z_{\rm max} = 0.684 ~{\rm fm}$
a = 0.076 fm,	$\chi^2_{dof} = 0.011,$	$\chi^2_{dof} = 0.11,$	$\chi^2_{dof} = 0.38,$
$\mu = 2.0 \text{ GeV}$	$\delta m_0 \rightarrow 0.171,$	$\delta m_0 \rightarrow 0.174,$	$\delta m_0 \rightarrow 0.178,$
	$\Lambda \rightarrow -0.0449$	$\Lambda \rightarrow -0.0436$	$\Lambda \rightarrow -0.0421$

Table 4: δm_0 in unit of GeV, Λ in unit of GeV², and λ in unit of GeV⁴.

 $z_0 = 4a$

Physical extrapolation beyond *z*_{*L*}

- Space-like correlations have correlation length $\xi_z \sim 1/\Lambda_{\rm QCD}$. In $\lambda = zP^z$ space, the correlation length $\xi_\lambda = P^z \xi_z \sim P^z / \Lambda_{\rm QCD}$.
- As $P^z \to \infty$, $\xi_{\lambda} \to \infty$, only the twist-2 contribution remains, and the correlation decreases algebraically as $\sim 1/\lambda^d$ (Regge-like).

Therefore, if

 P^z is not very large, e.g. 2–5 GeV for the proton:

- z_L or λ_L must be large enough for us to see the exponential decay;
- We can use an exponential-based form to extrapolate to ∞;

P^z is very large:

- Correlation is dominated by the leadingtwist contribution;
- We can use an algebraic form to do the extrapolation.

Physical extrapolation beyond *z*_{*L*}

Impact of extrapolation:

- Remove unphysical oscillation from Fourier transform;
- The small-x region $x < 1/\lambda_L$ becomes model dependent. After all, LaMET can only predict $x \in [x_{\min}, x_{\max}]$ where usually $x_{\min} > 1/\lambda_L$.

Implementation of the hybrid scheme

 Taking advantage of the fact that the NNLO OPE with leading IR renormalon contribution can fit to a wide range of z:

$$\lim_{a \to 0} \frac{\tilde{h}(z, a, P^{z})}{\tilde{h}(z, a, P^{z} = 0)} = \frac{\tilde{h}(z, P^{z}, \mu)}{\tilde{h}(z, P^{z} = 0, \mu)} = \frac{\tilde{h}(z, P^{z}, \mu)}{C_{0}(\alpha_{s}(\mu), z^{2}\mu^{2}) + \Lambda z^{2}}$$

$$\lim_{a \to 0} \frac{\tilde{h}(z, a, P^{z})}{\tilde{h}(z, a, P^{z} = 0)} \frac{C_{0}(\alpha_{s}(\mu), z^{2}\mu^{2}) + \Lambda z^{2}}{C_{0}(\alpha_{s}(\mu), z^{2}\mu^{2})} = \frac{\tilde{h}(z, P^{z}, \mu)}{C_{0}(\alpha_{s}(\mu), z^{2}\mu^{2})}$$

Rigorous ratio scheme in

• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD98 (2018);

as compared to the original ratio in

• A. Radyushkin, Phys.Lett.B 781 (2018).

Fourier transform with physical extrapolation

• Extrapolation with models featuring an exponential decay:

Extrapolation barely affects the moderate x region, as expected.

Caveat: we are still in the process of finishing the hybrid-scheme analysis. In this talk we choose $z_s=z_L<=0.72$ fm for now. But strictly speaking, the factorization is in doubt at large z.

Perturbative matching at NNLO

• Perturbative correction shows good convergence.

Error band only includes statistical uncertainty.

Dependence on *P_z* and *a*

Comparison with previous analysis and phenomenology

Better agreement with experimental fits for 0.1 < x < 0.45 compared to our previous analysis using OPE in coordinate space.

Outlook: 3D Tomography of the proton

Lattice calculations of GPDs with LaMET

TMD soft function from lattice QCD

 $\frac{\tilde{f}_{ns}^{\text{TMD}}(x,\vec{b}_{T},\mu,P^{z})}{\sqrt{S_{r}^{q}(b_{T},\mu)}} = C_{ns}^{\text{TMD}}(\mu,xP^{z}) \exp\left[\frac{1}{2}\gamma_{\zeta}^{q}(\mu,b_{T})\ln\frac{(2xP^{z})^{2}}{\zeta}\right] \times f_{ns}^{\text{TMD}}(x,\vec{b}_{T},\mu,\zeta) + \mathcal{O}\left(\frac{b_{T}}{L},\frac{1}{b_{T}P^{z}},\frac{1}{P^{z}L}\right)$ Quasi TMDPDF **Reduced soft function** • Ji, Sun, Xiong and Yuan, PRD91 (2015);

- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- M. Ebert, I. Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037.
- Ji, Liu and Liu, Nucl.Phys.B 955 (2020), Phys.Lett.B 811 (2020).

Ji, Liu and Liu, Nucl.Phys.B 955 (2020), Phys.Lett.B 811 (2020);

• Q.-A. Zhang, et al. (LP Collaboration), Phys.Rev.Lett. 125 (2020).

Collins-Soper kernel from lattice QCD

First exploratory calculation on a quenched lattice ensemble

Shanahan, MW, Zhao, PRD 102 (2020)

Preliminary results with dynamical fermions

Conclusion

- LaMET allows for model-independent lattice calculation of the x-dependence of the PDFs with controlled systematics;
- The Wilson-line mass renormalization in the hybrid scheme can be well determined from lattice;
- NNLO matching shows good perturbative convergence. We are entering the stage of high-precision calculation of the PDFs;
- LaMET can also be used to calculate GPDs and TMDs, with encouraging progress being made.

Nonperturbative renormalization schemes

$$O_B^{\Gamma}(z,a) = \bar{\psi}_0(z) \Gamma W_0[z,0] \psi_0(0) = e^{\delta m |z|} Z_{j_1}(a) Z_{j_2}(a) O_R^{\Gamma}(z)$$

[Ji, Zhang and YZ, 1706.08962; Ishikawa, Ma, Qiu and Yoshida, 1707.03107, Green, Jansen and Steffens, 1707.07152.]

Mass subtraction:
$$Z_X = e^{\delta m |z|} Z_{j_1} Z_{j_2}$$

[Musch et al., 1011.1213; Ishikawa, Ma, Qiu and Yoshida, 1609.02018; Chen, Ji and Zhang, 1609.08102; Green, Jansen and Steffens, 1707.07152.]

RI/MOM:

$$Z_X = \langle q \, | \, O^{\Gamma}(z) \, | \, q$$

[Constantinou and Panagopoulos, 1705.11193; I. Stewart and YZ, 1709.04933; C. Alexandrou et al., 1706.00265; Chen et al., 1706.01295.]

Ratio schemes:

•
$$\delta m$$
: includes linear divergence, can be determined from e.g. static $q\bar{q}$ potential, etc.;

- Z_j: Renormalization of the "heavy-to-light" current, independent of z;
- Corresponds to the MSbar scheme.

• Perturbative window:
$$\Lambda^2_{\rm QCD} \ll -q^2 \ll 1/a^2$$

• Still introduces nonperturabtive z-dependence as $z\gtrsim\Lambda_{\rm QCD}^{-1}$

es: $Z_X = \langle P_0^z = 0 | O^{\Gamma}(z) | P_0^z = 0 \rangle$ [A. Radyushkin, 1705.01488; K. Orginos, et al., 1706.05373]

$$Z_X = \langle \Omega \,|\, O^{\Gamma}(z) \,|\, \Omega \rangle$$

[Braun, Vladimirov and Zhang, 1810.00048; Li, Ma and Qiu, 2006.12370.]

YONG ZHAO, 05/06/2021

• Introduces higher-twist effects as $z \gtrsim \Lambda_{\text{OCD}}^{-1}$.

Nonperturbative renormalization schemes

Scheme	Small z	Large z	
Mass subtraction	Not the expected $\ln z^2$ behavior due to discretization effects when $z \sim a$, e.g., the function $\ln[(z^2+a^2)/a^2]$	Well defined except for $\mathcal{O}(\Lambda_{\rm QCD})$ ambiguity in the Wilson line mass correction.	
RIMOM	$\ln z^2$ dependence cancelled out,	Uncontrolled nonperturbative z- dependence	
Ratios	cancelled to a large degree	Uncontrolled higher-twist effects	

A cancellation of higher-twist effects in the ratio? Cannot be quantified.