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Block-Spin RG

Given initial spins , with “bare action” , define blocked spins by a local average

The lattice spacing (inverse cutoff) changes as 

The blocking transformation gives rise to an effective (or “blocked”) action             via

Iterate the blocking transformation: yields a sequence in the space of actions

Monte Carlo RG: effective observables can be computed from blocked observables of the bare theory
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RG Eigenvalues and Scaling Operators

Deviations from a fixed point action behave in a simple way under RG

The operators         are called scaling operators, and the       are scaling variables

The RG eigenvalues       determine the importance of        under RG iterations:

◦ is relevant: deformation grows with further iterations

◦ is marginal: constitutes an equivalent fixed point

◦ is irrelevant: deformation decays with iterations

Scaling operators are generally linear combinations of the familiar monomial operators we use to define 
our theory, e.g ,     ,     

Near an RG fixed point, correlators of scaling operators obey simple scaling laws (                  )
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Gradient Flow (GF)

In lattice theory, a tool called “gradient flow” was introduced in 2006/2009, as a smoothing transformation 
of the fields. The flow is defined by a diffusion-type equation,

where           is the “flow action,” e.g.,      for scalars, Yang-Mills for gauge fields, etc..

GF has had numerous applications in lattice theory, but we will focus on its smoothing property

The smoothing property of GF damps short-distance fluctuations of the field, much like the blocking 
transformations we saw earlier

Example: massless free flow is a heat equation,

4/15/2021 ANDREA CAROSSO 4



Gradient Flow Renormalization Group (GFRG)

Let us compare the GF solution to the block-spin definition:

vs.

We see that the quantity        plays the role of the blocking factor     by determining the mean-squared 
radius of the heat kernel

However, there is no analog of the field rescaling factor       , which is necessary for the transformation to 
have a fixed point, generally

So, we define the GFRG transformation by

GFRG observables are then related to bare observables by
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Ratio Formulas

Assuming that GFRG is a valid “blocking” transformation, we expect the correlator scaling laws to hold

Typical monomial operators are linear combinations of the scaling ops,

Ratios of correlations of such operators are then dominated at large distances by the leading scaling 
operator (in a given symmetry subspace, e.g., even or odd),

The LHS can be measured directly in a lattice simulation!

If we know the form of     , we can then extract scaling dimension differences

From any pair of such ratios, we obtain estimates for        ,         
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Application:        theory in 3 dimensions*

We performed a lattice simulation with bare action

using standard Markov Chain Monte Carlo methods

System must be tuned to reach the WFFP

At fixed    , the critical      values are well-known from separate 
studies (Hasenbusch, 1999). At                ,

We checked that the system was well-tuned by                                                                                    
analyzing the Binder Cumulant (see backups)

Adapted from Kopietz et al., Introduction to the Functional 
Renormalization Group (Springer 2010)

Exact scaling dimensions of the 2d Ising model, 
and the most precise lattice determinations of 
scaling dimensions in 3d phi4 theory, from 
Hasenbusch, 1999.
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*Preliminary results were presented in
Carosso, et al., 2018, Carosso, et al., 2019



Power Law Correlators

We measure mixed correlation functions among operators in 
the even and odd symmetry subspaces,

Critical correlators are expected to be power law-like

We detect clear power law signals

The correlations are dominated by the leading scaling 
dimensions in each subspace

We expect to be able to apply the ratio formula

in the odd and even subspaces separately, to extract
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Ratios

Plateaus in ratios at large distances are expected

We take                  in the rest of our analysis 

Right:            and            ratios

Below:               ratios
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Analysis of the Ratios

We fit the ratios to an ansatz for the GFRG scale factor

where                              is the relative scale factor, and we 
assume 

which is the simplest ansatz with the correct limiting behavior

The       obtained in this way exhibit a notable volume 
dependence. We extrapolate to infinite volume via
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Results for Leading Scaling Dimensions

Infinite volume extrapolations of the exponents according to a corrections-to-
scaling ansatz. Corresponding exponents from the precisely known lattice values 
are tabulated for comparison (Hasenbusch, 1999).

Scaling dimensions obtained from pairs of the exponent estimates above.

4/15/2021 ANDREA CAROSSO 11



Subleading Scaling Dimensions: Diagonalization

If the subleading operator is significant, or if you want to extract the subleading dimensions, a different 
approach is needed. Recall that scaling operators satisfy

Writing the rescaled fields in terms of flowed fields, we obtain a ratio formula

How can we measure these ratios? Conformal invariance at the F.P. implies

We can construct estimates of the scaling operator ratios as follows:

◦ Measure the mixed operator correlations

◦ Multiply by appropriate powers of

◦ Diagonalize the matrix of correlations numerically

◦ Form the ratios of the diagonalized correlators
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Subleading Dimensions

For the subleading scaling operators, only relatively short 
distances can be used, where the signal was sufficient and 
plateaus were observed

(Right) Infinite volume extrapolations for       and        from 
ratios at distances 

◦ The       value is consistent with the prediction that 
(Rychkov, 2016)

To compare with Hasenbusch values:

For      , the data was insufficient to perform an infinite 
volume extrapolation, but we report the average across all 
volumes, for                       : 
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Other Theories

Gauge theory in 4d: We also applied the method to 12-flavor SU(3) gauge theory in 4 dimensions, a theory 
related to QCD (Carosso, et al., 2018). The 12-flavor theory differs from QCD in that it’s expected to have an 
IRFP with nontrivial scaling dimensions

Phi4 in 2d: We have computed the , reported in the table below

Deviations may be due to strong subleading scaling operators, suggesting a full diagonalization analysis will 
be necessary for the leading exponents
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• We measured the fermion mass anomalous dimension in the system, finding consistency 
with other methods

• We also measured the baryon anomalous dimension in this system, constituting a first
determination from the lattice
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GFRG Effective Action

We avoided defining an effective action            under GFRG by appealing to MCRG, but the question 
remains:

How can we properly define the GFRG effective action?

The analogy with the blocking transformation suggests

where      is the heat kernel

But this is not sufficient; the integral can be performed exactly, yielding

The flowing couplings in this action do not behave as expected; there are no loop contributions

We need a formalism for defining effective actions under continuous RG transformations…



Functional RG (FRG)

FRG: Define and track the evolution of low-mode actions under continuous RG transformations in 
continuum (or lattice) field theory (Wilson-Kogut 1973, Wegner-Houghton 1973)

Recall sharp high-mode elimination: (               )

Wilson & Kogut: Define the low-mode Boltzmann                                                                                              
factor by

where the constraint functional is given by

The constraint functional satisfies an “exact RG equation”

… looks like a Fokker-Planck equation!

Adapted from Wilson & Kogut (1973)
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Stochastic RG*

Fokker-Planck equations are generated by Langevin equations (LE). Which one generates the FRG equation 
above? Consider:

where the random noise      distributed according to

The LE generates a probability distribution of fields      at time t

One can compute the distribution explicitly

Where the kernel is given by

The distribution has the same form as Wilson and Kogut’s constraint functional!

*Carosso, 2020



4/15/2021 ANDREA CAROSSO 18

Effective Action and IRFP

The effective action can be written exactly in terms of the bare theory’s generator of connected Green 
functions as

This form allows one to compute terms in the flowing action. The vertices correctly implement high-mode 
loops!

For Schwinger regularization,                                  , one can explicitly compute the scale factor of the RG 
transformation

For       in 3d, we have checked that there is a Gaussian F.P. and a WFFP of the effective action when written 
in terms of the rescaled fields

But how does this relate to the GFRG transformation we described earlier?
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Stochastic MCRG and Gradient Flow

Observables of the effective theory can be written as double averages

This constitutes MCRG because they may be computed without knowledge of the effective action

Numerically implementable: generate an ensemble of bare fields with usual lattice Monte Carlo, and 
integrate the Langevin equation on every configuration

Since we know the solution of the Langevin equation, we can compute, for example

The function  is exponentially suppressed for large separations 

Composite operator correlations satisfy similar relations:

Thus: GF correlations are the asymptotic limits of stochastic RG correlations!

One can also derive ratio formulas like those of GFRG



4/15/2021 ANDREA CAROSSO 20

Summary

In this work we have presented a few new approaches to 
continuous RG transformations:

Gradient Flow RG

GF can be supplemented by a field rescaling to define an RG 
transformation

Ratio formulas allow for measurement of scaling dimensions 
of the fundamental field and composite operators on the 
lattice

Generally applicable, with lattice results in
◦ in 2d, 3d
◦ 12-flavor SU(3) gauge theory in 4d

Stochastic RG

Use Langevin equations to define RG transformations

SRG implies GFRG for long-distance observables

SRG can be implemented on the lattice, constituting a new 
(continuous) approach to MCRG

…Thanks for listening!
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Generalization to Gauge-Fermion Systems

Define the RG transformations of the gauge and (staggered) fermion fields with the simplest diffusion 
equations that preserve their symmetry:

- Gauge fields evolve according to Wilson flow (Lüscher, 2009)

- Fermions evolve with a gauge-covariant heat equation

At long distances, flowed-correlators should exhibit RG scaling of the fixed point if the system is tuned 
towards criticality

Nf=12, SU(3) gauge theory is expected to be conformal or near-conformal, so the ratio formula should be 
applicable

The mass and pseudoscalar anomalous dimensions are related: 

Can also try measuring the baryon anomalous dimension,  
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Super Ratios

An issue with the ratio formula is that it includes the (usually unknown) anomalous dimension of the 
fundamental field, e.g.

And we cannot measure        directly from the ratio 

Note: if an operator A has no anomalous dimension, then its ratio formula is

This could be used to measure       , or to cancel it’s effect in another ratio. Thus we may form the super-
ratio

We choose the axial vector       as our conserved operator
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Pseudoscalar Ratios

The ratios of P-P correlators exhibit the expected plateaus at large distance

Short-distance smearing effects oscillate due to averaging nearby staggered fermions

Carosso, et al., Phys. Rev. Lett. 121, 201601
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Anomalous Dimensions

Infinite volume, infinite time extrapolation 
yields

Consistent with several previous studies, both 
lattice and perturbative

Extrapolation of the nucleon anomalous 
dimension

First non-perturbative prediction of       for this 
system!

Carosso, et al., Phys. Rev. Lett. 121, 201601



Tuning
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Binder Cumulant

extrapolates to a universal value as

Hasenbusch found that              was smallest at 

He estimated the critical value (in 3d)

and at                 ,

Right: Binder Cumulant in 2d

My extrapolations:
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More Power Law Fits



MCMC Simulation Details

4/15/2021 ANDREA CAROSSO 27

1 MC sweep = 50 Wolff cluster updates + 5 Metropolis radial 
updates. 10M MC sweeps per volume (largest two vols: 1.5M)

We conservatively took 10k sweeps as thermalization cut

Binning analysis to estimate true errors. Autocorrelations 
estimated with

Autocorrelations in the range 4 – 6 sweeps

Measurements performed every 5 sweeps

Measurements binned by 10

About 200k indep. samples per volume

Volumes: L = 24, 36, 48, 56, 64, 72

GF integrated with 4th order Runge-Kutta

Similar story in 2d, but 1/5 the statistics (so far)
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Log-Log Plots

Correlators at large distances are noisy, but GF smooths out much of the noise; noise is much larger 
in the even operator subspace

Log-Log plots indicate clear power law behavior, with modifications at large distance due to finite 
volume and subleading operators
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Diagonalization Coefficients

• Coefficients of monomial 
operators in scaling operators
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Binder Extrapolation in 3d



Ratios

Ratios of the leading two scaling operator correlators in the odd subspace

4/15/2021 ANDREA CAROSSO 31



Leading Dimensions

We measured mixed correlations in the odd and even bases

Infinite volume extrapolations were performed as before

The precisely-known values to compare against:

(Right) Extrapolation for leading dimensions in each 
subspace, using all ratio distances past z = 10

The       exponent deviates from the input by several standard 
deviations

is consistent with the Hasenbusch value
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