Muon g-2 and EDM Experiments as Muonic Dark Matter Detectors

Ryan Janish

(Fermilab)

[RJ & Ramani, 2006.10069]

Muonic Dark Matter

DM may be muophillic.

We ultimately seek a full theory of DM and its interactions.

Muonic Dark Matter

Existing bounds on DM – muon interactions are from astrophysics, cosmology, or virtual effects.

Astrophysics and Cosmology

Long range forces on neutron stars [Dror et al, 1909.12845], [Poddar et al, 1908.09732]

Supernovae cooling BBN (N_{eff}) BH Superradiance [Bollig et al, 2005.07141], [Croon et al, 2006.13942] [Grifols and Masso, 9610205] [Arvanitaki et al, 821575], ...

Loop effects

Muon g - 2 Induced interactions

[Chen et al, 1701.07437] [Arvanitaki et al, 1405.2925], [Beznogov et al, 1806.07991], ...

Muonic Dark Matter

Existing bounds on DM – muon interactions are from astrophysics, cosmology, or virtual effects.

Astrophysics and Cosmology

Long range forces on neutron stars [Dror et al, 1909.12845], [Poddar et al, 1908.09732]

Supernovae cooling BBN (N_{eff}) BH Superradiance [Bollig et al, 2005.07141] , [Croon et al, 2006.13942]

[Grifols and Masso, 9610205]

```
[Arvanitaki et al, 821575], ...
```

Loop effects

Muon g - 2 Induced interactions [Chen et al, 1701.07437] [Arvanitaki et al, 1405.2925], [Beznogov et al, 1806.07991], ...

A direct terrestrial search is epistemically distinct and provides an opportunity for a surprising discovery.

Laboratory ceiling is higher (sensitivity will improve).

Direct Muonic Dark Matter Detection

Consider ultralight DM:

- May have a coherent interaction over many muons
- Large local DM number density can enhance detection
- DM background field may apply a force on muons or a torque on muon spins.

Direct Muonic Dark Matter Detection

Consider ultralight DM:

- May have a coherent interaction over many muons
- Large local DM number density can enhance detection
- DM background field may apply a force on muons or a torque on muon spins.

Muon spin precession is carefully measured in g-2 and electric dipole (EDM) experiments.

[Grange et al, 1501.06858]

PAUL SCHERRER INSTITUT

[Adelmann et al, 0606034]

[Bennett et al, 0602035]

[Abe et al, 1909.03047]

Conventional spin precession

- Measurements of the muon magnetic dipole moment (g-2)
- Measurements of the muon electric dipole moment (EDM)
- Muon spin precession with ultralight bosonic DM

Conventional spin precession

- Measurements of the muon magnetic dipole moment (g-2)
- Measurements of the muon electric dipole moment (EDM)
- Muon spin precession with ultralight bosonic DM
- Detection reach and DM solutions to the g-2 anomaly:
 - Scalar DM with muon Yukawa coupling
 - ALP DM with muon EDM coupling
 - ALP DM with muon wind coupling
 - Vector DM with muon gauge coupling

Conventional spin precession

Measurements of the muon magnetic dipole moment (g-2) Measurements of the muon electric dipole moment (EDM) Muon spin precession with ultralight bosonic DM Detection reach and DM solutions to the g-2 anomaly: Scalar DM with muon Yukawa coupling ALP DM with muon EDM coupling ALP DM with muon wind coupling Vector DM with muon gauge coupling

Lab Frame

 \vec{S} \vec{p} $\vec{B} \odot$

Lab Frame

Conventional spin precession

Measurements of the muon magnetic dipole moment (g-2) Measurements of the muon electric dipole moment (EDM) Muon spin precession with ultralight bosonic DM Detection reach and DM solutions to the g-2 anomaly: Scalar DM with muon Yukawa coupling ALP DM with muon EDM coupling ALP DM with muon wind coupling Vector DM with muon gauge coupling

Asymmetric Muon Decay

Positrons are preferentially emitted along the direction of the anti-muon spin.

Energy is a proxy for direction

The most energetic positrons are those emitted along the muon's momentum:

Energy is a proxy for direction

The most energetic positrons are those emitted along the muon's momentum:

Energy is a proxy for direction

The most energetic positrons are those emitted along the muon's momentum:

Momentum Count

The number of decay positions in the highest energy bin tracks the momentum-component of the muon spins:

$$N_T \propto \left(1 + \epsilon \ \vec{S} \cdot \vec{p}\right)$$

The number of decay positions in the highest energy bin tracks the momentum-component of the muon spins:

$$N_T \propto \left(1 + \epsilon \ \vec{S} \cdot \vec{p}\right)$$

 N_T oscillates at the rest-frame precession frequency.

Momentum Count

Stack and Fit

Each bunch lasts $\approx 640 \ \mu s$ (about 10 muon lifetimes) and observes about 1000 decay positrons.

Stack and Fit

Bunch 2

Align and sum $\approx 10^7$ bunches, collected over years. (individual bunch data is retained)

Stacked

Stack and Fit

Each bunch lasts $\approx 640~\mu s~$ (about 10 muon lifetimes) and observes about 1000 decay positrons.

Align and sum $\approx 10^7$ bunches, collected over years. (individual bunch data is retained)

Stacked

Fit for frequency of stacked signal, this is ω_a .

g – 2 Precision

BNL results:

 $rac{\delta \omega_a}{\omega_a} pprox 0.5 \cdot 10^{-6}$ [Bennet et al, 0602035] 3.3σ deviation from SM prediction.

[Davier et al, 1908.00921]

Fermilab projections:

$$rac{\delta \omega_a}{\omega_a} pprox 10^{-7}$$
 [Grange et al, 1501.06858]

J-PARC projections:

$$\frac{\delta\omega_a}{\omega_a} pprox 10^{-7}$$
 [Abe et al, 1909.03047]

Conventional spin precession

Measurements of the muon magnetic dipole moment (g-2)

Measurements of the muon electric dipole moment (EDM)

Muon spin precession with ultralight bosonic DM

Detection reach and DM solutions to the g-2 anomaly:

Scalar DM with muon Yukawa coupling

ALP DM with muon EDM coupling

ALP DM with muon wind coupling

Vector DM with muon gauge coupling

A moving electric dipole will precess in a magnetic field. A muon EDM contributes to $\vec{\omega}_a$ as:

$$\vec{\omega}_{\rm EDM} = -2 \, d_e \left(\vec{v} \times \vec{B} \right)$$

A moving electric dipole will precess in a magnetic field. A muon EDM contributes to $\vec{\omega}_a$ as:

$$\vec{\omega}_{\rm EDM} = -2 \, d_e \left(\vec{v} \times \vec{B} \right)$$

A moving electric dipole will precess in a magnetic field. A muon EDM contributes to $\vec{\omega}_a$ as:

$$\vec{\omega}_{\rm EDM} = -2 \, d_e \left(\vec{v} \times \vec{B} \right)$$

A moving electric dipole will precess in a magnetic field. A muon EDM contributes to $\vec{\omega}_a$ as:

$$\vec{\omega}_{\rm EDM} = -2 \, d_e \left(\vec{v} \times \vec{B} \right)$$

Vertical Count

Detecting an EDM requires measuring upward vs downward moving positrons.

The momentum count is blind to this.

Measure the difference ΔN_B in the number of upward versus downward moving positrons:

$$\Delta N_B \propto \vec{S} \cdot \vec{B}$$
$$\vec{\omega}_{\rm EDM} = -2 \, d_e \left(\vec{v} \times \vec{B} \right)$$

The momentum and vertical components of spin are:

$$\vec{S} \cdot \hat{p} = S_0 \cos(\omega_a t)$$

$$\vec{S} \cdot \hat{B} = S_0 \frac{\omega_{\text{edm}}}{\omega_{\text{sm}}} \sin(\omega_a t)$$
Phase shift between momentum and vertical counts.
$$\vec{S} \cdot \hat{B} = S_0 \frac{\omega_{\text{edm}}}{\omega_{\text{sm}}} \sin(\omega_a t)$$
Net increase in momentum count frequency – mimics anomaly.

Vertical Count, Bunch 1

Vertical Count, Bunch 2

Sum all bunches

Vertical Count, Bunch 1

Vertical Count, Bunch 2

Sum all bunches

Vertical Count, Stacked

Momentum Count, Stacked

 ω_a, ϕ_a

Fit stacked vertical count to: $A \sin (\omega_a t + \phi_a)$

BNL stacked momentum and vertical counts:

A dedicated EDM search would do best by minimizing ω_{sm} . Choose laboratory EM fields to set $\,\omega_{sm}=0$.

[Adelmann et al, 0606034]

Frozen Spin

A dedicated EDM search would do best by minimizing ω_{sm} . Choose laboratory EM fields to set $\,\omega_{sm}=0$.

[Adelmann et al, 0606034]

(Rotated Rest Frame)

Frozen Spin

A dedicated EDM search would do best by minimizing ω_{sm} . Choose laboratory EM fields to set $\,\omega_{sm}=0$.

[Adelmann et al, 0606034]

Frozen Spin

A dedicated EDM search would do best by minimizing ω_{sm} . Choose laboratory EM fields to set $\,\omega_{sm}=0$.

[Adelmann et al, 0606034]

Vertical Count: $\vec{S} \cdot \hat{B} = S_0 \cos \left(\omega_{\rm edm} t \right) \approx S_0 \, \omega_{\rm edm} t$

BNL:
$$\frac{\omega_{\perp}}{\omega_a} \gtrsim 5 \cdot 10^{-4}$$

BNL null result limits the muon EDM to a value slightly too small (4σ) to explain the total precession anomaly: $|d_e| < 1.9 \cdot 10^{-19} e \text{ cm}$

[Bennett et al, 0811.1207]

Fermilab and J-PARC projection:

$$\frac{\omega_{\perp}}{\omega_a} \gtrsim 5 \cdot 10^{-6}$$

[Grange et al, 1501.06858] [Abe et al, 1909.03047]

Frozen spin projection:

$$\frac{\omega_{\perp}}{\omega_{\rm a}} \gtrsim 10^{-9}$$

[Adelmann et al, 0606034]

DM in Muon g-2 and EDM Experiments

Conventional spin precession

Measurements of the muon magnetic dipole moment (g-2)

Measurements of the muon electric dipole moment (EDM)

Muon spin precession with ultralight bosonic DM

Detection reach and DM solutions to the g-2 anomaly:

Scalar DM with muon Yukawa coupling

ALP DM with muon EDM coupling

ALP DM with muon wind coupling

Vector DM with muon gauge coupling

DM-perturbed Spin Precession

٠

In a muon rest frame, the spin evolves according to:

$$\vec{S} = \vec{\omega}_a(t) \times \vec{S}$$

SM precession:

$$\vec{\omega}_a(t) = -\frac{e}{m_\mu} a_\mu \vec{B} \equiv \vec{\omega}_{sm}, \quad a_\mu = \frac{1}{2} \left(g_\mu - 2 \right)$$

DM-perturbed Spin Precession

In a muon rest frame, the spin evolves according to:

$$\vec{S} = \vec{\omega}_a(t) \times \vec{S}$$

SM precession:

$$\vec{\omega}_a(t) = -\frac{e}{m_\mu} a_\mu \vec{B} \equiv \vec{\omega}_{sm}, \quad a_\mu = \frac{1}{2} \left(g_\mu - 2 \right)$$

Effect of DM background:

$$\vec{\omega}_a(t) = \vec{\omega}_{\rm sm} + \vec{\omega}_{\rm dm}(t)$$

Momentum count measures $|\vec{\omega}_a(t)|$ Vertical count measures $\vec{\omega}_{dm}(t) \perp \vec{\omega}_{sm}$

DM is manifest locally as a AC classical background field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

Amplitude is set by the local DM energy density (and DM mass for scalars)

Oscillation frequency is the DM mass

 $\mathbf{\mathcal{N}}$

DM is manifest locally as a AC classical background field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

Amplitude is set by the local DM energy density (and DM mass for scalars)

Oscillation frequency is the DM mass

Expect $\vec{\omega}_{dm}(t)$ to be time-dependent.

DC signals do arise from observables which depend on ϕ^2 .

DM is manifest locally as a AC classical background field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

DM is manifest locally as a AC classical background field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

DM field is effectively static.

DM is manifest locally as a AC classical background field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

DM field is static over each bunch, but oscillates many times over the lifetime of the experiment.

DM is manifest locally as a AC classical background field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

DM field oscillates within each bunch.

DM is manifest locally as a AC classical background field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

DM field oscillates faster than the SM precession. Signal is suppressed here and mimics known systematics.

DM is manifest locally as a AC classical background field

$$\phi(t) = \phi_0 \cos(m_{\rm dm} t)$$

DM in Muon g-2 and EDM Experiments

Conventional spin precession

Measurements of the muon magnetic dipole moment (g-2)

Measurements of the muon electric dipole moment (EDM)

Muon spin precession with ultralight bosonic DM

Detection reach and DM solutions to the g-2 anomaly:

Scalar DM with muon Yukawa coupling

ALP DM with muon EDM coupling

ALP DM with muon wind coupling

Vector DM with muon gauge coupling

A Scalar DM Precession Signal

Scalar DM ϕ of mass m_{ϕ} with a muon Yukawa coupling:

$$\mathcal{L} \supset y \, \phi \bar{\mu} \mu$$

A Scalar DM Precession Signal

Scalar DM ϕ of mass m_{ϕ} with a muon Yukawa coupling:

$$\mathcal{L} \supset y \, \phi \bar{\mu} \mu$$

DM background field is:

$$\phi(t) = \sqrt{\frac{2\rho_{\rm dm}}{m_{\phi}}} \cos\left(m_{\phi}t\right)$$

DM field generates a time-varying muon mass and MDM: $m(t) = m_u + u\phi(t)$

$$m(t) = m_{\mu} + y\phi(t)$$

 $\vec{\mu} = rac{e g_{\mu}}{2 m(t)} \vec{S}$

A Scalar DM Precession Signal

Rest frame precession frequency:

$$\vec{\omega}_a(t) = -\frac{e}{m(t)} a_\mu \vec{B}$$
$$\approx \vec{\omega}_{\rm sm} \left[1 - \frac{y}{m_\mu} \sqrt{\frac{2\rho_{\rm dm}}{m_\phi}} \cos\left(m_\phi t\right) \right]$$

Solve the precession equation:

Spin precesses about \hat{B} with an instantaneous angular frequency $|\vec{\omega}_a(t)|$.

Frequency Modulation

Vertical count vanishes as in SM.

Momentum count exhibits has frequency modulation:

$$\vec{S} \cdot \vec{p} = S_0 \cos\left[\omega_{\rm sm}t + \frac{\omega_{\rm dm}}{m_{\phi}}\sin\left(m_{\phi}t\right)\right]$$

precession frequency

Stacking of the FM DM Signal

Could FM precession be hiding in the g-2 data?

Stacking of the FM DM Signal

Could FM precession be hiding in the g-2 data? Yes - stacking averages away the modulation.

The stacked data is a sum of cosines at different frequencies:

Can we detect FM precession?

Yes – use archived data to measure the precession frequency as a function of time.

Can we detect FM precession?

Yes – use archived data to measure the precession frequency as a function of time.

Fourier transform of $\omega_a(t)$:

Fourier transform of $\omega_a(t)$:

Fourier transform of $\omega_a(t)$:

Detection Reach for DM-Muon Yukawa

Detection Reach for DM-Muon Yukawa

DM in Muon g-2 and EDM Experiments

Conventional spin precession

Measurements of the muon magnetic dipole moment (g-2)

Measurements of the muon electric dipole moment (EDM)

Muon spin precession with ultralight bosonic DM

Detection reach and DM solutions to the g-2 anomaly:

Scalar DM with muon Yukawa coupling

ALP DM with muon EDM coupling

ALP DM with muon wind coupling

Vector DM with muon gauge coupling
Pseudoscalar DM of mass m_a with an EDM interaction:

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F^{\alpha\beta}$$

DM field generates an time-varying EDM for the muon. The precession frequency is:

$$\vec{\omega}_a = \omega_{sm}\hat{B} + \omega_{dm}\cos\left(m_a t\right)\left(\hat{p}\times\hat{B}\right)$$
$$\omega_{dm} = 2g\frac{\sqrt{2\rho_{dm}}}{m_a}v_\mu B$$

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F^{\alpha\beta}_{,} \qquad \omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F^{\alpha\beta}_{,} \qquad \omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F^{\alpha\beta}_{,} \qquad \omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F^{\alpha\beta}_{,} \qquad \omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F^{\alpha\beta}_{,} \qquad \omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

Vertical count has amplitude modulation

$$\vec{S} \cdot \hat{B} = S_0 \frac{\omega_{\rm dm}}{\omega_{\rm sm}} \cos\left(m_{\rm dm}t\right) \sin\left(\omega_a t\right)$$

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F^{\alpha\beta}_{,} \qquad \omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

Momentum count has frequency modulation and a shift. Spin precesses with an instantaneous angular frequency $|\vec{\omega}_a(t)|$:

$$\left|\vec{\omega}_{a}(t)\right| = \sqrt{\omega_{\rm sm}^{2} + \omega_{\rm dm}^{2}(t)} \approx \omega_{\rm sm} + \frac{1}{2} \frac{\left|\omega_{\rm dm}\right|^{2}}{\omega_{\rm sm}} \cos^{2}\left(m_{\rm dm}t\right)$$

$$\mathcal{L} \supset -\frac{i}{2}g \, a \, \bar{\mu} \, \sigma_{\alpha\beta} \, \gamma_5 \, \mu \, F^{\alpha\beta}_{,} \qquad \omega_{dm} = 2g \frac{\sqrt{2\rho_{dm}}}{m_a} v_{\mu} B$$

Momentum count has frequency modulation and a shift. Spin precesses with an instantaneous angular frequency $|\vec{\omega}_a(t)|$:

$$\begin{aligned} |\vec{\omega}_{a}(t)| &= \sqrt{\omega_{\rm sm}^{2} + \omega_{\rm dm}^{2}(t)} \approx \omega_{\rm sm} + \frac{1}{2} \frac{|\omega_{\rm dm}|^{2}}{\omega_{\rm sm}} \cos^{2}(m_{\rm dm}t) \\ &= \left(\omega_{\rm sm} + \frac{1}{4} \frac{|\omega_{\rm dm}|^{2}}{\omega_{\rm sm}}\right) + \frac{1}{4} \frac{|\omega_{\rm dm}|^{2}}{\omega_{\rm sm}} \cos\left(2m_{\rm dm}t\right) \\ & \swarrow \end{aligned}$$
Positive frequency shift
- explains g-2 anomaly
Frequency modulation

Time-Resolved Amplitude Tracking

Can we reveal AM in the vertical counts, analogous to the FM precession in the momentum counts?

Time-Resolved Amplitude Tracking

Can we reveal AM in the vertical counts, analogous to the FM precession in the momentum counts?

Time-Resolved Amplitude Tracking

Fourier transform of vertical amplitude:

Detection Reach for Muon EDM Coupling

DM in Muon g-2 and EDM Experiments

Conventional spin precession

Measurements of the muon magnetic dipole moment (g-2)

Measurements of the muon electric dipole moment (EDM)

Muon spin precession with ultralight bosonic DM

Detection reach and DM solutions to the g-2 anomaly:

Scalar DM with muon Yukawa coupling

ALP DM with muon EDM coupling

ALP DM with muon wind coupling

Vector DM with muon gauge coupling

$$\mathcal{L} \supset g \,\partial_{\nu} a \,\bar{\mu} \,\gamma^{\nu} \gamma_5 \,\mu$$

In the rest frame of the muon: $H \supset g \, ec \nabla a \cdot ec S$

Muon spin precesses about the relative velocity of DM, which is essentially the muon velocity.

$$\vec{\omega_a} = \omega_{sm}\hat{B} + \omega_{dm}\cos\left(m_a t\right)\hat{v}$$
$$\omega_{dm} = g\sqrt{2\rho_{dm}}$$

$$\mathcal{L} \supset g \, \partial_{\nu} a \, \bar{\mu} \, \gamma^{\nu} \gamma_5 \, \mu$$

In the rest frame of the muon: $\, H \supset g \, ec \nabla a \cdot ec S \,$

Muon spin precesses about the relative velocity of DM, which is essentially the muon velocity.

$$\vec{\omega_a} = \omega_{sm}\hat{B} + \omega_{dm}\cos\left(m_a t\right)\hat{v}$$
$$\omega_{dm} = g\sqrt{2\rho_{dm}}$$

This is an oscillating perpendicular perturbation – the precession dynamics and detection limits are qualitatively the same as the EDM coupling.

The two counts are now in-phase, which may introduce additional systematic errors. [Bennett et al, 0811.1207]

Detection Reach for ALP-Muon Wind

DM in Muon g-2 and EDM Experiments

Conventional spin precession

Measurements of the muon magnetic dipole moment (g-2)

Measurements of the muon electric dipole moment (EDM)

Muon spin precession with ultralight bosonic DM

Detection reach and DM solutions to the g-2 anomaly:

Scalar DM with muon Yukawa coupling

ALP DM with muon EDM coupling

ALP DM with muon wind coupling

Vector DM with muon gauge coupling

Muonic Vector DM

Ultralight vector DM manifests as a local dark electric and magnetic field:

$$E_{\rm dm} = \sqrt{2\rho_{\rm dm}} \cos\left(m_{\rm dm}t\right)$$
$$B_{\rm dm} = v_{\rm dm}E_{\rm dm}$$

Ultralight vector DM manifests as a local dark electric and magnetic field:

$$E_{\rm dm} = \sqrt{2\rho_{\rm dm}} \cos\left(m_{\rm dm}t\right)$$

$$B_{\rm dm} = v_{\rm dm} E_{\rm dm}$$

Four distinct contributions to precession – the dominant one is the component of \vec{E}_{dm} transverse to the orbital plane:

$$\vec{\omega}_{\rm dm} = \frac{g_{\rm dm}}{m_\mu \gamma^2} \ \vec{v} \times \vec{E}_{\rm dm}$$

Ultralight vector DM manifests as a local dark electric and magnetic field:

$$E_{\rm dm} = \sqrt{2\rho_{\rm dm}} \cos\left(m_{\rm dm}t\right)$$

$$B_{\rm dm} = v_{\rm dm} E_{\rm dm}$$

Four distinct contributions to precession – the dominant one is the component of \vec{E}_{dm} transverse to the orbital plane:

$$\vec{\omega}_{\rm dm} = \frac{g_{\rm dm}}{m_\mu \gamma^2} \ \vec{v} \times \vec{E}_{\rm dm}$$

Not observable at BNL or Fermilab, as vertical trapping EM fields will screen \vec{E}_{dm} ! [Bennett et al, 0602035] [Grange et al, 1501.06858]

Observed at J-PARC or future frozen spin searches.

[Abe et al, 1909.03047] [Adelmann et al, 0606034]

Muonic Vector DM

Muon g-2 and EDM Experiments as DM Detectors

A new search for ultralight DM using muon spin targets.

A new search for ultralight DM using muon spin targets.

Direct, terrestrial limits on muophillic DM.

Detection reach for (albeit tuned) DM-muon interactions, pending reanalysis of previous and upcoming g-2 data.

DM may explain the muon g-2 anomaly via coherent interaction with DM background field (not via loops).

Approach improves with ongoing development of g-2 and EDM measurement techniques (e.g., frozen spin experiments).

Muon g-2 and EDM Experiments as DM Detectors

Extra Slides

Constraints from Stacking the FM DM Signal

The envelope is detectable as a failure to fit the momentum count as a pure oscillation.

A decaying envelope is already present due to muon losses, modeled and empirically fit to be an $\approx 10\%$ decay

Allowed:
$$(\omega_{dm}T_{\mathrm{bunch}})^2 < 10\%$$
 [Bennet et al, 0602035]

If the envelop is ignorable, it follows that the stacked frequency is the discrete mean of the individual bunch frequencies

$$\omega_{\text{stack}} = \omega_{sm} + \omega_{dm} \left(\frac{1}{N_{\text{bunches}}} \Sigma_{t_i} \cos\left(m_{\phi} t_i\right) \right)$$
$$\Rightarrow \quad \left| \omega_{\text{stack}} - \omega_{sm} \right| \sim \frac{\omega_{dm}}{mT_{\text{run}}} \qquad \left[\text{if } m \lesssim \frac{N_{\text{bunches}}}{T_{\text{run}}} \right]$$

Deviation must be less than (or equal!) the observed frequency.

Yukawa Coupling: Static Limit

For sufficiently small m_{ϕ} , the DM background provides a static contribution to m_{μ} which will be included in the computation of ω_{sm} – no anomaly is observed.

We then constrain the linear drift of m_{μ} between (g-2) experiments and the previous determination of m_{μ} .

In practice, use the magnetic moment ratio $\mu_\mu/\mu_p\,$ determined from the hyperfine splitting of muonium instead of $m_\mu\,$ [Liu et al, 1999]

$$\begin{split} |\omega_{stack} - \omega_{sm}| &\sim \Delta T_{m_{\mu}} \, \partial_t \omega_{dm} & \left[\text{if } m_{\phi} \lesssim \frac{1}{T_{\text{total}}} \right] \\ & \swarrow & \checkmark & \\ \text{Time between (g-2) and} & \text{Total span of (g-2)} \\ & \text{muonium experiments} & \text{experiment} \end{split}$$

Yukawa: Loop Effects

 $\mathcal{L} \supset y \, \phi \bar{\mu} \mu$

A few of the more egregious examples:

Generates couplings to electrons, nucleons and photons which are highly constrained by atomic clocks and EP tests. [Arvanitaki et al, 1405.2925]

Induced $\phi^2 \bar{n}n$ produces a matter-dependent potential for the DM, may screen it from terrestrial experiments.

DM Yukawa coupling

Detection Reach for DM-Muon Yukawa

A DM EDM Signal

Precession trajectory (quasi-static limit):

$$\begin{split} S_p &= S_0 \cos \left[\left(\omega_{sm} + \frac{\omega_{dm}^2}{4\omega_{sm}} \right) t + \frac{\omega_{dm}^2}{8\omega_{sm}} \sin \left(2m_a t \right) \right] \\ S_B &= S_0 \frac{\omega_{dm}}{\omega_{sm}} \cos \left(m_a t \right) \frac{\sin}{\sin} \left[\left(\omega_{sm} + \frac{\omega_{dm}^2}{4\omega_{sm}} \right) t + \frac{\omega_{dm}^2}{8\omega_{sm}} \sin \left(2m_a t \right) \right] \\ \swarrow \end{split}$$
AC Amplitude Modulation

Immediate constraints (or explanation):

Static FM is a ρ_{dm} -dependent apparent contribution to a_{μ} .

AM of vertical count will average away in the stacked EDM measurement – we may place constraint from the residual of that averaging.

Limits on ALP DM-Muon EDM Coupling

Vector DM generates a dark electric and magnetic field,

$$E_{\rm dm} = \sqrt{2\rho_{\rm dm}} \cos\left(m_{\rm dm}t + \alpha\right)$$
$$B_{\rm dm} = v_{\rm dm}\sqrt{2\rho_{\rm dm}} \sin\left(m_{\rm dm}t + \alpha\right)$$

B_{dm} is too small to be observed in existing experiments

$$\frac{\omega_{\rm dm}}{\omega_{\rm sm}} = \frac{g_{\rm dm}}{e} \frac{B_{\rm dm}}{B_0} \approx 10^{-6} g_{\rm dm} \left(\frac{3\,\rm T}{B_0}\right)$$

E_{dm} may be observed in experiments that do not use the "magic momentum" to cancel electric field precession (e.g., J-PARC, frozen spin)

* disfavored by NS-NS inspiral and solar neutrino oscillations ($L_{\mu} - L_{\tau}$)