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QM & singular
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o Delta functions
. bouv\darj
conditions
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Stihgular Potentials

o Singular potentials sometimes parameterize
small-distance physics

e.q. the delta-function potential can capture finibe-size
effects of a charqe distribution
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Stihgular Potentials

o Delka function potentials madiva baumdarv
condition near the source
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Stihgular Potentials

o Subﬂeﬁv: ba-undarv condition makes wave
function singular at r=0, so how to make
sense of the boundary condition at r=o?
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Stihgular Potentials

o Requlate bj evaluating ot nownzero but small
radius r = ¢€

o Renormalize q: give q9 = g(e) an implicit e
depemdevw:e to cancel explicit ¢ depev\demte
in physical quantities (ie from Ca/Ci)




Sthqular Potentials
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Stihgular Potentials

o Similar issues arise for other singular
potentials, Like V(r) = -h/r?
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Stihgular Potentials

o Which solution should be H‘QF&;? (ie what
boundary condition should be used at r=o?)
How to deal with divergence abt r=0?
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Stihgular Potentials

o Which solution should be H‘QF&;? (ie what
boundary condition should be used at r=o?)
How to deal with divergence abt r=0?
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2 '
soluktions are
Ry(r) = C17° + Oor e sinqular at r=o0

Needint be useful to bhink Per&urba&&vebj A s~ h,
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Stihgular Potentials

o Which solution should be H‘QF&;? (ie what
boundary condition should be used at r=o?)
How to deal with divergence abt r=0?
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Claim: Both qu@;sﬁoms answered bv a
compulsory delba-function potential.
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Stihgular Potentials

o Must again renormalize q: but now =0 is no
longer a fixed point, so delta function
cannol vanish for all scales
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Sthqular Potentials

o 9=0 is no longer a fixed point, so delka
function cannot vanish for all scales!
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Stihgular Potentials

o Presence of delta function clarifies many
physical properties

o eg: ambiguities in boundary conditions are
associated with choice for Llocalised action

o need not be self-adjoint

o eq: bound state sometimes exists even for
repulsive potentials: =+h/r?

o bound state supported bv delba-function
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Formwalism

o Near/far
matching

3 Baumd&rj @
acktion

Forma|ism

o PP EFT
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Formalism

o Con systematise the delta-function reasoning to
more general point-source action:

o Relate near-source boundary condition to
effective point-particle action deseribing Llow-
energy interactions of the source and its
environmemntk,

o Resembles relation between branes and
environment (Goldberqger & Wise, Goldberqger
% Rothstein)
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Formalism

o Simple statements require hierarchy of scales:

e a

so coan choose
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Near—far makching

o £g: electrostatic multipole expansion

o Wish to describe physics ot scale a using
mininmal input from microscopic scale ¢

SR
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Near—far matching

o £g: electrostatic multipole expansion

o Fix inteqration constants in far-field
solution bj makching to near-field solubion
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Near—far matching

o £g: electrostatic multipole expansion

o Fix inteqration constants in far-field
solution bj makching to near-field solubion
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Pounbk-scurce action

o Alkernative formulation: Describe higher
multipoles using a point-source action

‘bulle’ ackion
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Pounbk-scurce action

o Greb boumdarj condition b3 inkeqrating field
equ&%ioms over gaussian F?i;i.i.bovx of radius
intermediate between ¢ and a

o Gret higher multipoles by integrating
weighted by powers of x
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Pounbk-scurce action

o Baumdar'j condition relates normal derivakives
(for bosonic fields) to coeffs of PP action

o Gel higher multipoles b:j integrating
weighted by powers of x

-TQaTW o KV_ — Qg
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Pounbk-scurce action

o Baumd&wj condition relates normal derivakives
(for bosonic fields) to coeffs of PP action

o et higher mutﬁépot@.s bv integrating
weighted by powers of x

20V, — V| = Q

@ Noteworthy: 1y x rt czlrops out of b.c. and

Qe(€) keeps position of surface irrelevant
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Baumd&rv ackion

o Can regard boundary condition as resulting
from variakion of fields on boum&arj,
weighted by an appropriate boundary action

7 = j[dm Liay (V2)

RG is statement that position of bom»\ci&rv
Ls ok umiqu&
Boumdarv acktion need nob be Local

but is ffor S=IAVE Lp = Ames Lbdy
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Formalism

o ALl of this generalises to case where Ly is a
more CQMPLEC&E@A function of fields

o eq for Schrodinger field lowest-dimension
interaction tOT’T‘E.SF’OMdS to a delta-function
potential

L,=—g () 5 (x) expi.ams mkj
) Robin conditions
dme {8T¢} b =2mg vy SO coMmmon
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o Schrodinger %5 o

¢ Kl ouan

Hydrogen line spectrum: Balmer series

absorption
@ Dirac
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N Atonas

o Natural lanquage for describing finite-source
size effects for atoms

o Work i Limik of infinite nuclear mass buk
finite nuclear size

o Track (Jor simplicity) only spherically
symmetric effective interactions
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N Atonas

o Moxwell’s equ&%ioms E,m[pbj scalar Pm&em&iat:

/ 2
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o Schrodinger equation has effective potential:
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N Atonas

o Naive energy shift:
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g parameterizes how different charge
diskribuktions do not conkribute pretisei.j
prapar%iomat to their rms charge radius

31



N Atonas

o Naive energy shift:

2 Jeft Zam i
0E, = gert|¥(0)]” =
s n
2
Zoars = -l Ae" rgﬂ:
&

27

geft. = g

Higher derivative bilinear terms
capture how v'/y varies as a (w*VQw)éi% (z)
function of source size kR
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o Naive because: nonzero g requires y must
diverqge at r=0, so |y(0)]? ill-defined for small
enough ¢

o RCx can resum all orders in the dimensionless
rakio: mg/e to give

s ATE, <Zam>3
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N Atonas

o This is overkill for ordinary atoms, since
q ~ Zog* Lm[vues mq/e ~ wme Zo ~ efas is small so
naive answer usuai.i.v dominakes,

o An exception is pionic atoms, for which g is large
since it captures local effects of the short-ranged
nucleus-pion strong interaction
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KGr Aboms

o The Schrodinger treabtment also fails f makching
to point source occurs at r < (Z o) ag since then
relativistic effects cannot be ignored.

o eq for spinless particles Klein-Gordon
equation:

— (O + Zoz/fr)2¢ + Vi —mdp =0
Radial eq dominated bfj 1/v? potential at small r:
282 Yie
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KGr Aboms

o If ¢ < (Z 0)? az then running of g cannot be
ignored since (Za)*/r? term drives g away
from zero

N ITTE, (Zozm)g
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KGr Aboms

@ I+ c < (Z ) ag then ruiniing 0{ 9 cannot be

For K& field shd Ferm crivel S away
expect g linear in ¢

L = (0¢)* + g ¢’ (x)
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KGr Aboms

o If € < (Z 0)* as then running odf q canhnot be

For KG field shd
expect g linear in e

L = (0¢)* + g ¢’ (x)

Difficult to see by
perturbing in Zo
around Schrodinger
Limik

Ferm drives g away
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Dirac Akonms

o For spinning (Dirac) electrowns:
o Solutions again vary like r* with s = (Za)2/2

o relativistic effects also cannct be ignored
when ¢ < (Z o0)? as

o Corrections differ when me < Zo

o ...buk not in a way that is measurable (fj@.&)
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Dirac Akonms

o Restrict to parity preserving case
o two contact nteractions rather than one

L _@(7 -0+ m)yp — @(CS e CUVO)@D(;B(QZ)

@ source pkjsms mr\i.v enters through bouvxd&rj
condition for £/q9 ok r = ¢
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Dirac Akonms

o Boundary condition relates /9 to ¢ and ¢
L (@ 0 m)p = @(cs + cwo)w 6° ()

%dQQ £ (1 - ¥)e = (C5 + CUVO)we




Dirac Atoms

o Leading deviations to parity-odd states arise
ab NLO in momentum expansion. For charge
distribution o«f radius R
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Other QFFLL{?&&QMS

o Nown-hermitian
exbensions

o Hawlking
radiation

o C&&&Lvsis
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Other &PF«'LEC&ELOMS

o Linking ambiguiﬁies to . »—
an acktion keeps ‘
choices physical ;‘Q

sometimes self-ad jointness . V
is not really the extension o N

e -
you seek \ ' g

eq: trapped polarizable
atoms attracted to a

charged wire V = (g +in) 6°(r)
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QPFLE,{:&% Lons

& Near-horizon radial
equation in black-hole
space&ime same as
Schrodinger eq with
po&em&&at

Vesf ~ 1/(r-ro 2

Implied delta function
related ko Wilczele-
Robinsown amamatv Eerm
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QPFLE,{:&% Lons

o Scattering from small
objects (eq mamopotes)
can be much larger than
their geometric size
(monopole catalysis)

related bo RG scale &«
being very different

from qeomebrical size
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Sum MATY

o Singular potentials underline the need to think
careﬂfui.i.j about bounciar:j condition near the
source

@ Near source bc given by source PPEFT

o Linking ambiquities to source Properﬁes malee s
choices phvswa{

o Parameterize finite source size effects in aktoms

o potential surprises for small r (but none
measurable yeb)
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