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Singular Potentials
Singular potentials sometimes parameterize 
small-distance physics  

e.g. the delta-function potential can capture finite-size 
effects of a charge distribution 
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Singular Potentials
Delta function potentials modify boundary 
condition near the source
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Singular Potentials
Subtlety: boundary condition makes wave 
function singular at r=0, so how to make 
sense of the boundary condition at r=0?
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Singular Potentials
Regulate by evaluating at nonzero but small 
radius r = e   

Renormalize g: give g = g(e) an implicit e 
dependence to cancel explicit e dependence 
in physical quantities (ie from C2/C1)
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Singular Potentials
Physical quantities depend only on RG 
invariant combinations, like e*
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Singular Potentials

Similar issues arise for other singular 
potentials, like V(r) = -h/r2
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Singular Potentials
Which solution should be kept? (ie what 
boundary condition should be used at r=0?) 
How to deal with divergence at r=0?
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Singular Potentials
Which solution should be kept? (ie what 
boundary condition should be used at r=0?) 
How to deal with divergence at r=0?
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Singular Potentials
Which solution should be kept? (ie what 
boundary condition should be used at r=0?) 
How to deal with divergence at r=0?

12

Claim: Both questions answered by a 
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Singular Potentials
Must again renormalize g: but now g=0 is no 
longer a fixed point, so delta function 
cannot vanish for all scales!
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Singular Potentials
g=0 is no longer a fixed point, so delta 
function cannot vanish for all scales!
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Singular Potentials
Presence of delta function clarifies many 
physical properties 

eg: ambiguities in boundary conditions are 
associated with choice for localised action 

need not be self-adjoint 

eg: bound state sometimes exists even for 
repulsive potentials:     V=+h/r2 

bound state supported by delta-function
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Formalism
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Formalism
Can systematise the delta-function reasoning to 
more general point-source action: 

Relate near-source boundary condition to 
effective point-particle action describing low-
energy interactions of the source and its 
environment. 

Resembles relation between branes and 
environment (Goldberger & Wise, Goldberger 
& Rothstein)
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Formalism
Simple statements require hierarchy of scales:
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Near-far matching
Eg: electrostatic multipole expansion 

Wish to describe physics at scale a using 
minimal input from microscopic scale e
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Near-far matching
Eg: electrostatic multipole expansion 

Fix integration constants in far-field 
solution by matching to near-field solution
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Near-far matching
Eg: electrostatic multipole expansion 

Fix integration constants in far-field 
solution by matching to near-field solution
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Point-source action
Alternative formulation: Describe higher 
multipoles using a point-source action
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Point-source action
Get boundary condition by integrating field 
equations over gaussian pillbox of radius 
intermediate between e and a 

Get higher multipoles by integrating 
weighted by powers of x
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Point-source action
Boundary condition relates normal derivatives 
(for bosonic fields) to coeffs of PP action 

Get higher multipoles by integrating 
weighted by powers of x
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Point-source action
Boundary condition relates normal derivatives 
(for bosonic fields) to coeffs of PP action 

Get higher multipoles by integrating 
weighted by powers of x
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Boundary action
Can regard boundary condition as resulting 
from variation of fields on boundary, 
weighted by an appropriate boundary action
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Formalism
All of this generalises to case where Lp is a 
more complicated function of fields 

eg for Schrodinger field lowest-dimension 
interaction corresponds to a delta-function 
potential
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Atoms
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NR Atoms
Natural language for describing finite-source 
size effects for atoms 

Work in limit of infinite nuclear mass but 
finite nuclear size 

Track (for simplicity) only spherically 
symmetric effective interactions
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NR Atoms
Maxwell’s equations imply scalar potential: 

30

V (r) =
Z↵

r

+
2⇡

3
Z↵ r

2
p �

3(x) r2p = hr2iN

Schrodinger equation has effective potential: 

ge↵ = g +
2⇡

3
Z↵r2p

U = � Z↵

r

+ ge↵ �

3(x)



NR Atoms
Naive energy shift: 
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NR Atoms
Naive energy shift: 
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NR Atoms
Naive because: nonzero g requires y must 
diverge at r=0, so |y(0)|2 ill-defined for small 
enough e  

RG can resum all orders in the dimensionless 
ratio:  mg/e to give  
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NR Atoms
This is overkill for ordinary atoms, since           
g ~ Za e2 implies mg/e ~ me Za ~ e/aB is small so 
naive answer usually dominates. 

An exception is pionic atoms, for which g is large 
since it captures local effects of the short-ranged 
nucleus-pion strong interaction
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KG Atoms
The Schrodinger treatment also fails if matching 
to point source occurs at  r < (Z a)2 aB   since then 
relativistic effects cannot be ignored. 

eg for spinless particles Klein-Gordon 
equation:  

Radial eq dominated by 1/r2 potential at small r: 
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KG Atoms
If e < (Z a)2 aB  then running of g cannot be 
ignored since (Za)2/r2 term drives g away 
from zero 
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KG Atoms
If e < (Z a)2 aB  then running of g cannot be 
ignored since (Za)2/r2 term drives g away 
from zero 
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KG Atoms
If e < (Z a)2 aB  then running of g cannot be 
ignored since (Za)2/r2 term drives g away 
from zero 
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Dirac Atoms
For spinning (Dirac) electrons: 

Solutions again vary like rs with s = (Za)2/2 

relativistic effects also cannot be ignored 
when e < (Z a)2 aB  

Corrections differ when me < Za 

…but not in a way that is measurable (yet) 
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Dirac Atoms
Restrict to parity preserving case 

two contact interactions rather than one 

source physics only enters through boundary 
condition for f/g at r = e
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Dirac Atoms
Boundary condition relates f/g to cs and c
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Dirac Atoms
Leading deviations to parity-odd states arise 
at NLO in momentum expansion. For charge 
distribution of radius R
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Other applications

43

Non-hermitian 
extensions 

Hawking 
radiation 

Catalysis



Other applications
Linking ambiguities to 
an action keeps 
choices physical 

sometimes self-adjointness 
is not really the extension 
you seek  

eg: trapped polarizable 
atoms attracted to a 
charged wire
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Other applications
Near-horizon radial 
equation in black-hole 
spacetime same as 
Schrodinger eq with 
potential 

 Veff ~ 1/(r-rs)2 

Implied delta function 
related to Wilczek-
Robinson anomaly term
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Other applications
Scattering from small 
objects (eg monopoles) 
can be much larger than 
their geometric size 
(monopole catalysis) 

  

related to RG scale e* 
being very different 
from geometrical size
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Summary
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Singular potentials underline the need to think 
carefully about boundary condition near the 
source 

Near source bc given by source PPEFT 

Linking ambiguities to source properties makes 
choices physical 

Parameterize finite source size effects in atoms 

potential surprises for small r (but none 
measurable yet)


