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Naturalness problems of 
the standard model 

n  Two widely discussed ones are: 
   
       (i) Higgs mass near weak scale 
 
       (ii) Strong CP parameter tiny 
         : 
         : 



     Strong CP problem 
n  What is the strong CP problem ? 
n  Non-perturbative QCD effectsà  

n   Theory with flavor:        
n        violates P and CP à edm of neutron 
n    Current edm limits à  
n  No anthropic reasons for it to be small; so why 

is it so small? 
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Axion   Solution 
n  A popular solution is to use axion  
                                                                                    (Peccei-Quinn) 

n  à axion potential 
n  Ground stateà              ; no strong CP violation 

n  Cosmology,SNà  
n  Predicts ultralight particle axion;  
n  Postulate an axial U(1)PQ symmetry and axion is 

the Goldstone boson corresponding to it.  
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Gravity problem of U(1) axion 
n  All global symmetries are broken by non-

perturbative Planck scale effects e.g. Blackholes 
n  At the effective Lagrangian level non-

perturbative gravity effects induce Planck 
suppressed terms in e.g.         =                +hc 

 à  

n  They generate large    unless their coefficient is       
       < 10-52(Kamionkowski et al’92, Holman et al’92; Barr, Seckel’92; ) 
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     Rescuing the axion 
n   (i) String theory possibility: there are no global 

symmetries in string theory but there are axion 
like particles in the gravity multiplet, H which 
couple universally to all gauge groups(Witten’84; Kim, 
Choi’86; Banks, Dine’96; Svrcek, Witten’06) 

 

n  However, scale of axion is string scale, conflicts with 
cosmology; requires additional inputs.  

n  Corrections to V(a) from string instanton effects ? 



Higher dimensional axion 
n  Five dim. gauge theories can have a Chern-

Simon term of the form  (Choi) 

n  A5 protected by 5D gauge transformation and 
can be identified with axion and leads to  

              term. Scale is no more constrained ! 
n  However, there are also compactification 

corrections here- not under control ! 
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Alternative solutions to axion 
 

n  (ii) Discrete symmetry solutions:  CP (Nelson, Barr’86)  
        CP is spontaneously broken; Not easy to get   
         large CKM phase for quarks ?  (Dine and Draper’15) 

              -Also loop corrections can be large!! 

n  (iii) Parity solution: P: (Beg, Tsao’78; RNM, Senjanovic’78) ✓   
         CKM built in right from the start:                 



       
 
 Parity solution: Extend SM  
     to Left-Right Model  

n  LR basics: Gauge group: 

n  Fermions 

n  gL=gRà 

n  Parity a spontaneously  
   broken symmetry (RNM, Pati,74; Senjanovic, RNM’75; Marshak, RNM;79) 
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     Parity constraints on 
Yukawa coupling matrices 

n  Under parity,                       , 

 
n  P-invariance implies that 
n  Hermitean Yukawa matrices; 
n  Quark mass matrices:   
n             real à       hermitean;à 
                              

 L $  R
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Parity solution to strong CP 
n          

n  Two steps:  
    (i) in LR models parity implies that   
    (ii) 
 
n  If so, at  tree level, no strong CP problem !  
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Challenge for this solution 

n  Need to have              real naturally ! 

n  Loop corrections to Mu,d  must maintain its 
hermiticity until at least two loops !! 

< �0 >



Minimal LR model for   
       neutrinos 

n  LR bidoublet: 

n  Triplet to break B-L and  
   generate seesaw: 
 
 
n  Potential has one CPV termsà              complex. 
 e.g.  
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Implementing the parity 
solution 

n  Two ways around: 
 

(i) Minimal left-right+ susyà             real 
                               (RNM, Rasin’96;Kuchimanchi’96)  
 
(ii) Quark seesaw with new vectorlike fermions 
                                  (Babu, RNM’90) 

 

< �0 >



 
    Quark Seesaw model 

n  Add singlet fermions 
n  Higgs structure minimal: Doublets: 
   + a P-even singlet        (no bi-doublet) 
n  Yukawa couplings:   

n  Vevs vL,R, vS  are naturally real 
    

UL,R, DL,R, EL,R
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Quark seesaw 
n  Fermion masses in seesaw form  

Pà                                                

n  Note now naturally                  
   since Arg. Det Mu Md =0 
n  Solves strong CP without axion. (Babu, RNM’90) 
n  Check loop corrections: 
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Estimating θfrom loops 

n  1-loop  
n  As is 2-loop                                  e.g.                                         
n  (Babu, RNM’89) 

n  3-loop small 
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     (vL /vR ) suppression 
n  vR à∞, implies vs à  ∞ and model goes to SM; 

n  In SM, we know,    arises at 7-loop level  
                                                (Ellis, Gaillard)  
n  Hence the result. 

✓̄



Planck scale corrections and 
Limit on WR scale 

n   Planck scale corrections: 
    

  
n  Arg Det M not zero and     < 10-10 à 

                                           

n  Low scale WR – of interest for colliders 
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Other consequences of 
quark seesaw 

n  Fermion masses are given by(Berezhiani’84; Davidson,Wali’87…) 

n  Fundamental Yukawas don’t have to be as 
small as in SM- e.g. for electrons, h > 10-2.5 

   rather than 10-5.5 as in SM. 
n  Since         is an arbitrary hermitean matrix, it 

easily leads to CKM mixing 

mq ' h2vLvR
MQ

hh†



Neutrino masses 
n  How do neutrino masses arise? 
n  Dirac mass comes from two loop diagram. 
 

n                             ~ eV (UPMNS =1; solar mass wrong) 

n  Add singlet heavy fermions             (makes 
model Q-L symmetric) 

⌫L⌫R `R `L

mDi ⇠ 10�9m`i
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Dirac Neutrino Possibility 
n  Simplest possibility is: no Majorana masses for 

n  Dirac mass matrix: 

n  Choose h~he~10-5.5 
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       contribution to Neff for 
Dirac case 

n  For few TeV WR,      decouples above TQCD ~.2 
GeV;  

n  Current limits:  Neff ~3-3.5  Planck (1sigma) 

n  Tension between Planck and direct 
measurement of H0  

n  Euclid has more sensitivity can test the model 

⌫R

�Neff ⇠ 0.3
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Alternative possibility: 
    (a) Pseudo-Dirac  

n  Needed if we want to do leptogenesis 
n  Add small Majorana mass            for  
n  Induces pseudo-Dirac mass         to 
n  Constrained by solar data and cosmology to be 
                                          (de Gouvea, Huang, Jenkins’10) 

n  Implies 
n  Consistent with BBN  
n  Observation of        decay will rule out these 

parameter domains of model! 

NL�mNL
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          (b) Majorana 
n  Suppose: 

n  Active      and sterile      Neutrinos Majorana 
  

n  Predicts Sterile neutrinos with mass ~10 eV, 1 
eV and 

n  Mixings ~ 0.01 - 0.001à Conflicts with BBN – most 
likely disfavored (under investigation) 

�MNL , �MNR � MN � h⌫vL,R
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Distinguishing collider 
signal for neutrinos 

n  Conventional TeV LR seesaw: collider signal: 

      (Keung, Senjanovic’83) 

n  This model: 
 
    
n  No diboson signal since WL-WR mixing is 2-loop effect- tiny 
  (Adding bi-doublet destroys strong CP solution) 

pp ! ``jj

pp ! `E
`�

⌫R



Other Phenomenology: 
 
(i)  New scalars:  
 
(ii)  New fermions: 



       New Scalars 
n  Model has only three neutral Higgs: 
n  SM Higgs:  

n  All properties same as SM Higgs to high accuracy 

 
n  Second Higgs:                      ; M ~ TeV 

h = Re �0
L

�R = Re �0
R

��R!WW : ��R!hh : ��R!ZZ = 2 : 1 ; 1



Third scalar S: coupled to 
vectorlike fermions  

n  Can be identified with the 750 GeV diphoton 
“resonance” at CMS and ATLAS (Dev, Zhang, RNM’15,JHEP) 

n  How? Data: 2-photon signal cross sections: 

n  Width unknown. CMS prefers ~GeV;ATLAS ~45 GeV 

n  Puts limits on the scales 

(6± 3)fb(CMS); (10± 3)fb (ATLAS)



Production and decay in 
this model 

 

Blue lines: heavy 
Vectorlike quarks 

Cgg = parton integral: 174 at 8 TeV to 2137 at 13 TeV 



Parameter domain where 
it works: 

n  gg-fusion production rate adequateà fF >0.5  
n  750 GeV fit works for vS < 1.2 TeV since ggàS 
   rate goes like vs

-2 
n  mt à vR ~vS: gives an upper limit on vR   
n  Property: t-T mixing ~0.1 
n  Allows Sàtt-bar decay 



Correlating on vR and vS 
n  . 



Production and decay of S 
n  . 



Predictions of this theory for S 
n  Narrow width (~ GeV) 

n  Generic prediction for SM singlet scalar coupled to 
vector-like singlet fermions: 

�WW = 0



Vector-like quarks in colliders 
n  Dominant decay modes: 

n  Current limits: T: 900 GeV (ATLAS13) (àqW) 
                        B: 730 GeV; Q: 788 GeV  

pp ! T T̄ ,QQ̄

T ! bW, th, tZ

Q ! dW, uh, uZ



An interesting mode for T-
vectorlike quarks 

n  Collider tests: 
n                      à 
                                              3b 
 
n  Signal: ppà 6 b+ 2l+missing E. 

                                       
                             

bb̄
b`⌫

pp ! T T̄

T ! th
(T ! th,Wb, Zt)



Origin of S and higher 
unification 

n  If U, D and E are vector-like why do we need a scalar 
to give mass to them ? 

n  We are taking our model as an effective theory. 
   In the true UV complete theory, they might be chiral  
    instead of vectorlike and cannot form a mass term:  
    e.g. uL uR in effective theory below the weak scale can   
    exist but once weak interactions are included,  
    they cannot without the Higgs. 
 



                                             
                                                                                  (Davidson,Wali’87;Cho’93;RNM’96) 

   
 
                                                                                         (Cao,Chen,Gu’2015) 
                                                                                      

                                                                                      

Example of a higher scale 
theory: GUT embeddings 

SU(2)L ⇥ U(1)Y

SU(2)L ⇥ SU(2)R ⇥ U(1)B�L

SU(2)L ⇥ SU(2)R ⇥ U(1)B�L,L ⇥ U(1)B�L,R

Chirally split B� L

SU(5)L ⇥ SU(5)R



Fermions fit right in 

   P=U; 
   N=D 

Strong CP solution works (in progress). 



        Summary 
n  Quark seesaw with multi-TeV scale WR could be an 

alternative solution to strong CP problem without need 
for an axion and no gravity issues. 

n  Tests: (i) Vectorlike quarks an essential part of this 
solution; (ii) Collider signal different from conventional 
LR seesaw; (iii) Preference for neutrinos being Dirac 
or Pseudo-Dirac; (iv) No WR mediated dibosons  

 
n  à New neutral scalars, one of which could possibly be 

responsible for the 750 GeV excess at LHC13. 
 
 



Thank you for your attention !



Spinoff: New scalars and   
      Vacuum stability  

n  SM  

n  Vacuum instability 

� ⇠ 1

8
!
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LR Quark seesaw cure 
n  For weak coupling of S to other Higgs, 

n  Higgs masses 

n  So               can be larger. �1(vR)



Resolves the vacuum 
stability issue of SM Higgs 

n  . None of the couplings go negative till GUT 
scale (for fS << 1) !! (RNM, Yongchao Zhang’14) 



Decays as a function of vS 
n  . 

Narrow width a prediction 
for 750 GeV scalar 



Properties of RH neutrinos 
n  Distinguishing property from usual low scale 

seesaw models: 
n  SM and LR seesaw: 

n  Quark seesaw LR:                        for MN~ GeV 
n  GeV MN allowed by most data 
n  N decays via WR exchange 

|UeN |2 ⇠ m⌫

MN
⇠ 10�10
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Constraints RH Neutrino MN  
  in the lower mass range 

 

                               
                                                                                            
 
 
 
                                                                             (Atre, Han, Pascoli, Zhang) 

                                                                             Dev, Francischini, RNM’12 ;   
                                                                                                     Gago,Hernandez,Perez,Losada,Briceno’15 
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Figure 3: Bounds on |Ve4|2 versus m4 in the mass range 10 MeV–100 GeV. The areas with solid
(black) contour labeled π → eν and double dash dotted (purple) contour labeled K → eν are
excluded by peak searches [83, 85]. Limits at 90% C.L. from beam-dump experiments are taken
from Ref. [86] (PS191), Ref. [87] (NA3) and Ref. [88] (CHARM). The limits from contours labeled
DELPHI and L3 are at 95% C.L. and are taken from Refs. [89] and [90] respectively. The excluded
region with dotted (maroon) contour is derived from a reanalysis of neutrinoless double beta decay
experimental data [84].

DELPHI [89], L3 [90] and CHARM [96].

2.2.3 Mixing with ντ

Heavy neutrinos mixed with τ neutrinos can be produced either via CC interactions if a τ
is produced or in NC interactions. The only limits come from searches of N4 decays and
are reported in Fig. 5. The bounds at 90% C.L. from CHARM [97] and NOMAD [98]
assume production via D and τ decays. The DELPHI bound at 95% C.L. [89] assumes
N4 production in Z0 decays and with respect to the bound on |Ve4|2 and |Vµ4|2 there is τ -
production kinematical suppression for low masses which weakens the constraint for masses
in the range m4 ∼ 2–3 GeV.

2.2.4 Electroweak Precision Tests

The presence of heavy neutral fermions affects processes below their mass threshold due
to their mixing with standard neutrinos [70] and significant bounds can be set by precision
electroweak data. The effective µ-decay constant Gµ, measured in muon decays, is modified
with respect to the SM value and can be related to the fundamental coupling GF as:

Gµ = GF

√

(1 − |Ve4|2)(1 − |Vµ4|2) . (2.10)

– 10 –



Prediction for neutron edm 
n  Edm of neutron  <-- edm of up and down 

quarks; same diagram as for    but only  
   (Mu,d )11.   
n  One loop 

n    (Mu,d )11 real and no N edm at one loop level. 

n   Two loop contribution non-zero dn~10-27 -10-28  
     ecm. 
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