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Naturalness problems of
ﬁ the standard model

wo widely discussed ones are:

(i) Higgs mass near weak scale

(ii) Strong CP parameter tiny



* Strong CP problem

at is the strong CP problem ?
= Non-perturbative QCD effects>

Locp = LT%CD + GG

= Theory with flavor: = 6y + Arg Det M, Mg
= 0 violates P and CP ~> edm of neutron
s Current edm limits > 0 < 10— 19

= No anthropic reasons for it to be small; so why
iS it so small?



Axion Solution

popular solution is to use axion

0 _ ~ 1 ~ (Peccei-Quinn)
ﬁQCD = L QCD -+ QGG—I—?CLGG
= —> axion potentlal V(—+10)
= Ground Stateé +9 =0 : no strong CP violation
- Cosmology,SN% 10”? GeV < f, < 1012 GeV
= Predicts ultralight particle axion;m, ~ 10~ %eV

= Postulate an axial U(1)pq Symmetry and axion is
the Goldstone boson corresponding to it.



EFravity problem of U(1) axion

global symmetries are broken by non-
perturbative Planck scale effects e.g. Blackholes

= At the effective Lagrangian level non-
perturbative gravity effects induce PIanck
suppressed terms in e.g. Lc s = 30° /Mp; +hc

- _ ImBf? a
Via) = (fa + 0) o smfa

= They generate large 0 unless their coefficient is

5 < 10_52(Kamionkowski et al'92, Holman et al’92; Barr, Seckel’92; )



Rescuing the axion

= (I) String theory possibility: there are no global
symmetries in string theory but there are axion
like particles in the gravity multiplet, H which

couple universally to all gauge groupswittenss; kim,
Choi’86; Banks. Dine"96: Svrcek. Witten’06)

xda = H =dB — wy + wy,
Aa=x*dH =x(RANR—FAF).

= However, scale of axion is string scale, conflicts with
cosmology; requires additional inputs.

= Corrections to V(a) from string instanton effects ?




i Higher dimensional axion

Ive dim. gauge theories can have a Chern-
Simon term of the form (choi)

IJKMN
€ ArF i Fyn

= A: protected by 5D gauge transformation and
can be identified with axion and leads to

aGG term. Scale is no more constrained |

= However, there are also compactification
corrections here- not under control !



‘}\Iternative solutions to axion

= (ii) Discrete symmetry solutions: CP eison, sarrse)
CP is spontaneously broken; Not easy to get
large CKM phase for quarks ? (pine and braper1s)
-Also loop corrections can be large!!

= (iii) Parity solution: P: (seq, Ts2078; RuM, Senjanovic7s) v/
CKM built in right from the start:



Parity solution: Extend SM
* to Left-Right Model

basics: Gauge group: SU(2), ®SU(2), ®U(1),_,

= Fermions Uy g(”ze) vV, 5} Vo
d, iy €r €r

—_

_ Er7 u.1p 7
" g, =0r2 L =5[JLﬂ W/,LL +JRﬂ .WMR]

= Parity a spontaneously /V/ Wr > M Wi
broken symmetry (rnm, pati,74; senjanovic, RNM75; Marshak, RNM;79)




Parity constraints on
# Yukawa coupling matrices
« Under parity, V1 <> YR, ¢+ ¢
Ly = hijlrdr + h.c.

= P-invariance implies that h;-kj = h

= Hermitean Yukawa matrices;

= Quark mass matrices: M, = h < ¢° >
= < ¢ >real > M, hermitean;>

Arg Det M, =0



{arity solution to strong CP
- =0+ Arg Det M, M

= Two steps:
(i) in LR models parity implies that 9 = (
(i) Mg =M — Arg DetM, My =0

= If so, at tree level, no strong CP problem !



i Challenge for this solution

= Need to have < ¢ > real naturally !

= Loop corrections to M, 4 must maintain Its
hermiticity until at least two loops !



Minimal LR model for

* neutrinos
= LR bidoublet: ¢=(¢10 ¢2+)

& P

(1, \

« Triplet to break B-Land = |74  #
: e
generate seesaw: \ A A }

Ly = hLoR+ hLoR+ fRRAR + h.c.

= Potential has one CPV terms—> < qbo > complex.
e.g. BTr(¢'9)ATAL +57(L — R)



Implementing the parity
ﬁ solution
= [WO ways around:
(i) Minimal left-right+ SUSY>< ¢° > real

(RNM, Rasin’96;Kuchimanchi’96)

(ii) Quark seesaw with new vectorlike fermions

(Babu, RNM'90)



é Quark Seesaw model

d singlet fermions Uy, r, D r, ErL R
= Higgs structure minimal: Doublets: XL, XR
+ a P-even singlet S (no bi-doublet)
= Yukawa couplings:
Ly = hijQiLxtUr + hijQi RXRUL + D, E — terms
+f4SPP+ D,E....
= Vevs v, Vg are naturally real



i Quark seesaw

= Fermion masses in seesaw form

0 h"UL
M, ;i = .
P-> q,%) ( (hT)iij fUS )

= Note now naturally g?"¢¢ =

since Arg. Det M, M, =0
= Solves strong CP without axion. (sabu, Rnmoo)
= Check loop corrections:




ﬁ Estimating 8 from loops

00 = Im Ir [ _15mu + m, lémd]

O 1-|OO|3 00 =0 ‘,”?{,7{-_5%{?\
= As is 2-loop -

T
(Babu, RNM89) TN 3o
VOOV W " Y -
AR WPk Y A Y
o, P P Py U

= 3-loop small

— 1 s Uy, :
< (i) ()i




(v, /vg ) suppression
» Vp; 200, implies v, 2 o0 and model goes to SM;

= In SM, we know, {§ arises at 7-loop level
(Ellis, Gaillard)

= Hence the result.

TR NI




Planck scale corrections and
Limit on WR scale

| s :
= Planck scale corrections: @LXZXr@R

VLUR Mpy
M py 0 m,,
MQ%” = m M
qrY Yy

= Arg Det M not zero and § < 10-10>

50 — —LUR < 10=10 o vp < 100 TeV
muMPl -

= Low scale W — of interest for colliders



Other consequences of
i quark seesaw

ermion masses are given by sereznianiss; pavidson, waiis...

h2vaR
Mq

mq:

= Fundamental Yukawas don’t have to be as
small as in SM- e.qg. for electrons, h > 102>

rather than 10> as in SM.

= Since hh' is an arbitrary hermitean matrix, it
easily leads to CKM mixing



Neutrino masses

- do neutrino masses arise?
= Dirac mass comes from two loop diagram.
Ug e U
We w "
dR dL

VR (g lr, 145

-9
s MD; ™~ 10 me; ~ eV (Upyns =1, solar mass wrong)

= Add singlet heavy fermions Nri R (makes
model Q-L symmetric)



i Dirac Neutrino Possibility

Implest possibility is: no Majorana masses for

NL.r

[loop h
_ _ m VL
= r M, A=
Dirac mass matrix N ( hiog M s )

hhivr o
m, ~ R _mloop

M nr

s Choose h~h_~107-



U r contribution to N_ for

i Dirac case
= For few TeV Wy VR decouples above Ty ~.2

GeV;

AN, ~ 0.3

s Current limits: N ~3-3.5 Planck (1sigma)

= Tension between Planck and direct
measurement of H,

= Euclid has more sensitivity can test the model




Alternative possibility:
(a) Pseudo-Dirac

= Needed if we want to do leptogenesis

= Add small Majorana mass dmys, for N,

» Induces pseudo-Dirac mass dm, to v; — vp

= Constrained by solar data and cosmology to be
om, < 1077 eV (de Gouvea, Huang, Jenkins'10)

= Implies dmy;, < 107° GeV

= Consistent with BBN

= Observation of 880.decay will rule out these
narameter domains of model!



i (b) Majorana

uppose: OMpr., 0Mpr, > My > hyvr R

= Active V1, and sterile Vr Neutrinos Majorana

2
my, vL
My, <UR>
= Predicts Sterile neutrinos with mass ~10 eV, 1

eV and

= Mixings ~ 0.01 - 0.001-> Conflicts with BBN — most
likely disfavored (under investigation)




Distinguishing collider
signal for neutrinos

= Conventional TeV LR seesaw: collider signal:

a ;
pp — tbyj ., Q
TV VYV N
(Keung, Senjanovic'83) . ] W

! 2l -J
i q . )
= This model: Wi SO
— £ '
pp E ) V}

= No diboson signal since WL-WR mixing is 2-loop effect- tiny
(Adding bi-doublet destroys strong CP solution)



+

Other Phenomenology:

(i) New scalars:

(iil) New fermions:



# New Scalars

odel has only three neutral Higgs:
= SM Higgs: h = Re %}

= All properties same as SM Higgs to high accuracy

= Second Higgs: or = Re X% ' M~ TeV

FO'R—>WW:FO'R—>hh:FO'R—>ZZ:2 : 17 ]'



Third scalar S: coupled to

#vectorlike fermions

= Can be identified with the 750 GeV diphoton
“resonance” at CMS and ATLAS (pev, zhang, RNM'15,1HEP)

= How? Data: 2-photon signal cross sections:

(6 -

- S)fb(CMS), (10 .

- 3)fb (ATLAS)

= Width unknown. CMS prefers ~GeV:ATLAS ~45 GeV

s Puts limits on the scales



Production and decay In

$ this model
¢ 4 Blue lines: heavy
S Vectorlike quarks
------ Q
7(pp = 17) = ~2T,,Br
MSS gg Y

C,q = parton integral: 174 at 8 TeV to 2137 at 13 TeV



Parameter domain where
it works:

= gg-fusion production rate adequate—> f >0.5

s /50 GeV fit works for v¢ < 1.2 TeV since gg—->5S
rate goes like v,

= M, 2 Vi ~Ve. gives an upper limit on v,

= Property: t-T mixing ~0.1

= Allows S—>tt-bar decay




i Correlating on v, and vg

151
g |
~ |
~ 10| =
> 3
(o} : 5 vy favored
I 3}
51 2
5 -~
L Iy 3 ~~~-L-::::._—._
- TeV - ’.h\, - -]
O ................



* Production and decay of S

vp = 3 TeVijvg = 5 TeV
fr (input) 1 1
s [GeV] (input) 800 1000
o(gg — S) [pb] 1.61 0.95
Tiotal(S) [GeV] | 0.21 0.071

signal cross section [fb]

tt 423 122

gg 1173 825

vy 5.3 3.7 é-
vz 3.2 2.3

Z7Z 0.48 0.34




é Predictions of this theory for S

rrow width (~ GeV)

= Generic prediction for SM singlet scalar coupled to
vector-like singlet fermions:

Ffw . F27 . FZZ = 1 : 2tan29w . tan49w



&ctor-like quarks in colliders
m DO

minant decay modes:

pp — TT,QQ
T — bW, th,tZ

Q — dW,uh,u”

= Current limits: T: 900 GeV (ATLAS13) (=qW)
B: 730 GeV; Q: 788 GeV



An interesting mode for T-
ﬁ vectorlike quarks

ollider tests: pp — TT (T — th, Wb, Zt)

= Signal: pp—~> 6 b+ 2l+missing E.



Origin of S and higher
;h unification

, D and E are vector-like why do we need a scalar
to give mass to them ?

= We are taking our model as an effective theory.

In the true UV complete theory, they might be chiral
instead of vectorlike and cannot form a mass term:
e.g. U, Uy in effective theory below the weak scale can

exist but once weak interactions are included,
they cannot without the Higgs.




Example of a higher scale
theory: GUT embeddings
SUB)L x SU(5) g

(Davidson,Wali'87;Cho’93;RNM"96)

SU(Q)L X SU(Q)R X U(l)B—L,L X U(l)B—L,R
Chirally split B — L T (Cao,Chen, Gu'2015)

SU(Q)L X SU(Q)R X U(l)B_L

?

SU(Q)L X U(l)y
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Summary

= Quark seesaw with multi-TeV scale W, could be an
alternative solution to strong CP problem without need
for an axion and no gravity issues.

m [ests: (i) Vectorlike quarks an essential part of this
solution; (ii) Collider signal different from conventional
LR seesaw; (iii) Preference for neutrinos being Dirac
or Pseudo-Dirac; (iv) No WR mediated dibosons

= 2 New neutral scalars, one of which could possibly be
responsible for the 750 GeV excess at LHC13.



+

Thank you for your attention !




Spinoff: New scalars and
Vacuum stability

O mpy — 125 GeV

1
A~ — =
8

= Vacuum instability

Higgs quartic coupling A
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i LR Quark seesaw cure

or weak coupling of S to other Higgs,
V = —puixixr — X kXr,
+\ [(XTLXLV + (xExR)Z} + X (x5 xr) (Xkxr)

. A2
= Higgs masses M7 =2\ (1 — 4—j%> VL

MI%I = 2/\1?}]2% .

=« So A (vr) can be larger.



Resolves the vacuum
* stability issue of SM Higgs

. None of the couplings go negative till GUT
Scale (fOI‘ fS << 1) ” (RNM, Yongchao Zhang'14)

vr=3 TeV vR=5 TeV




4L Decays as a function of v
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Narrow width a prediction
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#' Properties of RH neutrinos
|

stinguishing property from usual low scale
seesaw models:

= SM and LR seesaw:

m, 10 GeV
Uon|? ~ i ~ 10~ 10( ~ )
N N

= Quark seesaw LR: |Ucn|? ~ 107"° for My~ GeV
= GeV M, allowed by most data
= N decays via W, exchange



Constraints RH Neutrino M,
In the lower mass range
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? Prediction for neutron edm

m of neutron <-- edm of up and down
quarks; same diagram as for 6 but only

(Mu,d )11.
= One loop OM, 4 = 5M,i p

= (Myq)i;real and no N edm at one loop level.

= Two loop contribution non-zero d ~10%/ -10-%8
ecm.



