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Motivation

Why are scattering amplitudes interesting?
Discoveries
Need both exact measurements and predictions
LHC delivers more precise measurements
→ more precise theoretical predictions are needed
→ one important ingredient: scattering amplitudes

Hidden properties
Lay in the heart of Quantum Field theories (QFT)

-Their study improves our understanding of QFTs
-Capture properties which are hidden in other objects (e.g. Lagrangian)

Combine several fields of Mathematics
-Algebraic geometry
-Grassmanians
-Number theory
-Theory of differential equations
and many more
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Introduction

How can we compute a scattering amplitude?
For multi-loop processes with a higher number of legs a direct Feynman
Diagram calculation becomes impossible
Reasons:

Unmangeable number of complicated Feynman integrals
⇒ Integration-by-parts identities (IBP-Ids) Chetyrkin,Tkachov; Laporta
⇒ Differential equations Kotikov; Remiddi; Gehrmann, Remiddi; Smirnov;

Argeri, Mastrolia; von Manteuffel; Henn; Melnikov; Papadopoulos;
Anastasiou, Duhr; Tancredi, Remiddi

Unphysical gauge freedom which cancels for gauge invariant objects
⇒ Easier to reconstruct amplitudes from their pole structure which is

governed by Analyticity and Unitarity
⇒ Generalized Unitarity Bern, Dixon, Dunbar, Kosower
⇒ On-shell techniques Britto, Cachazo, Feng, Witten
⇒ OPP Integrand-Reduction Ossola, Papadopoulos, Pittau
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Introduction

Furthermore through input from algebraic geometry we improved our
understanding of QFT

Integrand-Reduction Mastrolia, Ossola; Zhang;
Mastrolia, Mirabella, Ossola, Peraro

On-shell formulation of N=4 sYM
Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka

Moreover it revealed hidden properties of QFT
Color-Kinematic and Gauge/Gravity duality

Bern, Carrasco, Johansson

Grassmanians Arkani-Hamed, Cachazo, Cheung, Kaplan; Mason, Skinner

Dual conformal symmetry Drummond, Henn, Smirnov, Sokatchev
Bern, Czakon, Dixon, Kosower, Smirnov
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Introduction

These developments inspired advancements also on the pheno side
e.g. new concepts like uniform transcendental functions
⇒ Canonical form for differential equations Henn

Multipurpose tools for one-loop amplitudes
BlackHat

Bern, Dixon, Febres-Cordero, Forde, Hoecke, Ita, Kosower, Maitre, Ozeren

FeynArts/FormCalc/LoopTools Hahn et al.

MadLoop Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau

HelacNLO Bevilacqua, Czakon, van Hameren, Papadopoulos, Pittau, Worek

Njets Badger, Biederman, Uwer, Yundin

OpenLoops Cascioli, Maierhoefer, Pozorini

Recola Actis, Denner, Hofer, Scharf, Uccirati

Rocket Ellis, Giele, Kunszt, Melnikov, Zanderighi

GoSam Cullen, Greiner, Heinrich,Mastrolia, Ossola, Reiter, Tramontano
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Introduction

These developments inspired advancements also on the pheno side
e.g. new concepts like uniform transcendental functions
⇒ Canonical form for differential equations Henn

Multipurpose tools for one-loop amplitudes
BlackHat :: on-shell recurrence + Generalised Unitartiy
FeynArts/FormCalc/LoopTools :: Feynman Diag.

+ Tensor Red./Integrand Red.
MadLoop :: tree-level recurrence + Integrand Red.
HelacNLO :: tree-level recurrence + Integrand Red.
Njets :: on-shell recurrence + Generalised Unitartiy
OpenLoops :: recursive tensors + Tensor Red./Integrand Red.
Recola :: recursive tensors + Tensor Red.
Rocket :: tree-level recurrence + Generalised Unitartiy
GoSam :: Feynman Diag. + Tensor Red/Integrand Red.
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At two-loops the situation is still less explored

one-loop two-loop

graphs only planar planar and non-planar

integral basis known determined case by case

?
integrals known only for certain cases

IR poles cancellation between cancellation between two-
one-loop and tree level and one-loop and tree level

appearing functions logs and dilogs logs, polylogarithms,
generalized polylogs, elliptic

functions and more?
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Basic Idea Bern, Carrasco, Johansson

Split tree-level amplitudes into a kinematical and a color factor

Atree
n =

∑
i

nici

Dj

Let the kinematical numerators satisfy the Jacobi identity of the color factors

− + = 0

Proven to be possible for massless gauge theories at tree-level

Bjerrum-Bohr, Damgaard, Vanhove,
Stieberger,

Feng, Huang, Jia,
Cachazo
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Connection to Feynman Diagrams Mastrolia, Primo, Torres Bobadilla, U.S.

Atree
n =

N∑
i=1

ci n̂i

Di

Feynman numerators do not satisfy Jacobi-Identity

ci + cj + ck = 0 ⇒ n̂i + n̂j + n̂k = Φ[i,j,k] 6= 0

But: generalized gauge freedom

n̂i → ni = n̂i −∆i with A− Â =

N∑
i=1

ci ∆i

Di
= 0

⇒ Build system of equations
∆i + ∆j + ∆k = Φ[i,j,k] M-times

N∑
j=1

αi,j ∆j

Dj
= 0 N-M times

Not all equations are independent
⇒ Additional relations between anomalies Φ[i,j,k]

⇒ only (n − 3)! independent color-ordered amplitudes
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Loop-Level Bern, Carrasco, Johansson

Loop-amplitudes can be written as

A =
∑
perms

∫ ( l∏
m

dDqm

(2π)D

)∑
graphs

nici∏
j Dj

Conjecture: Numerators satisfy BCJ equations
e.g. at one-loop we have
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Double Copy Procedure
Amplitudes in SUperGRAvity can be obtained by replacing the color factor with
a copy of the kinematical factor

AsYM =

∫ ( l∏
m

d4qm

(2π)4

)∑
graphs

nici∏
j Dj

⇒ ASUGRA =

∫ ( l∏
m

dDqm

(2π)D

)∑
graphs

ni ñi∏
j Dj

Is known to work for several theories
Gauge numerator n Gauge numerator ñ Gravity

N=4 sYM N=4 sYM N=8 SUGRA
N=4 sYM N=0 sYM N=4 SUGRA

YM YM Einstein Gravity + dilaton

Calculation of N=8 SUGRA loop amplitudes becomes feasible
⇒ Investigate UV behavior of N=8 SUGRA through direct computation

Ulrich Schubert New Developments for Scattering Amplitudes 13 / 62



Introduction
Integrand Reduction and Color-Kinematic Duality

Differential Equations
Open Problems and Conclusion

Color-Kinematic Duality
MultiLoop Integrand Reduction
Five-Point Amplitude in N = 4 SYM

Table of Contents

1 Introduction

2 Integrand Reduction and Color-Kinematic Duality
Color-Kinematic Duality
MultiLoop Integrand Reduction
Five-Point Amplitude in N = 4 SYM

3 Differential Equations

4 Open Problems and Conclusion

Ulrich Schubert New Developments for Scattering Amplitudes 14 / 62



Introduction
Integrand Reduction and Color-Kinematic Duality

Differential Equations
Open Problems and Conclusion

Color-Kinematic Duality
MultiLoop Integrand Reduction
Five-Point Amplitude in N = 4 SYM

MultiLoop Integrand Reduction

A general multi-loop amplitude can be
written as

A =

∫ l∏
i

dDqi

(2π)D
N(q1, .., ql )

D1D2..Dn

Mastrolia, Ossola
Zhang

Mastrolia, Mirabella, Ossola, Peraro

The propagators define a ring of multiples called Ideal

〈D1, ..,Dn〉 =

{∑
k

pkDk : pk ∈ P[q]

}
The Buchbinder algorithm constructs a Gröbner basis from an ideal

〈D1, ..,Dn〉 = 〈g1, .., gm〉

Perform a multivariate polynomial division of the integrand by an ideal

N(q1, .., ql ) =
∑

k

N1..k−1k+1..nDk + ∆1..n
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Recursion Relation
This gives us an recursion relation

Integrand Recursion Relation
N(q1, .., ql ) =

∑
k N1..k−1k+1..nDk + ∆1..n

Used to arrive at

N(q1, .., ql ) = ∆12..n

+∆23..nD1 + ..+ ∆12..n−1Dn + ...

+∆1D2D3..Dn + ..+ ∆nD1D2..Dn−1

Divide-and-Conquer approach
Generate the integrand
Perform divison algorithm directly

Fit-on-the-cut appraoch
Obtain parametric form of the residue via the division of a generic
integrand
Determine the coefficients by sampling
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Combine integrand reduction and the color-kinematic duality by following this
general algorithm
Algorithm

Find all non-equivalent graphs with cubic vertices
Perform a parametric integrand reduction on each graph
Determine residues from unitarity cuts
Fix leftover freedom (If any) by demanding the color-kinematic duality

Note that:

Integrand reduction is usually performed on sets of denomintors not graphs
Therefore some graphs are not independent in the sense of integrand
reduction
That’s why there is room for leftover freedom which can be used by the
color-kinematic duality

⇒ Integrand reduction is a well suited tool to investigate the loop conjecture
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Basic Setup at One-Loop

For a one-loop five-point amplitude in N = 4 SYM we find two basic graphs:
Carrasco, Johansson
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The Quadruple-Cut and Color-Kinematic Duality

The quadruple-cut gets contributions from the fivefold-cut and the fourfold-cut
residue
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Basic Setup at Two-Loops

At two-loops we find six graphs
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The Duality between different Graphs

BCJ equations connect different graphs

−

− =0

=0

=−

=0−

Focus on integrand reduction of the pentabox and of the doublebox
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Integrand Reduction and Eightfold-Cut
Integrand reduction of the pentabox and the doublebox
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The Sevenfold-Cuts and Color-Kinematic Duality
Sevenfold-cut gets contributions from the eightfold-cut and the sevenfold-cut
residues
e.g. leaving D7 uncut

1

2 3

4

5

1

2

3

4

5

1

2 3

4

5

1

2 3

4

5

= + +

Disentangle with the BCJ equations

− =

− = 0

1

2

3

4

5

1

2

3

5

4

1

2 3

4

5

1

2

3

4

5

1

2

3

4

5

Ulrich Schubert New Developments for Scattering Amplitudes 24 / 62



Introduction
Integrand Reduction and Color-Kinematic Duality

Differential Equations
Open Problems and Conclusion

Color-Kinematic Duality
MultiLoop Integrand Reduction
Five-Point Amplitude in N = 4 SYM

The UV poles of the One-Loop Amplitude

The full one-loop amplitude is

A1-loop = ig5
∑

all perm

1
10β12345cP IntP +

1
4
γ12

s12
cB IntB

IntP =

∫
dDq

(2π)D
1

D1D2D3D4D5

IntB =

∫
dDq

(2π)D
1

D2D3D4D5

The leading UV divergence comes from the box integral since it has one less
propagator
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Small-Momentum-Injection
Reduce the graph to a two-point function by keeping a small momentum to
flow through the diagram

1

2

3 4

5
p p

q

This integral can be solved with the well known formula∫
dDq

(2π)D
1

D2
1D2

2
= i (p2)D/2−4

(4π)D/2 G(2, 2)

= i (p2)D/2−4

(4π)D/2
Γ(−D/2 + 4)Γ(D/2− 2)Γ(D/2− 2)

Γ(D − 4)

which diverges at D=8.

In D = 8− 2ε we find∫
dDq

(2π)D
1

D2
1D2

2

D=8−2ε→ i
6ε(4π)4
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The UV Pole of the Two-Loop Amplitude
The full two-loop amplitude is

A2−loop = −g7
∑

all perm

(1
2 cBP IntBP +

1
4 cCBP IntCBP +

1
4 cDP IntDP

+
1
2 cDB IntDB +

1
4 cLCDB IntLCDB +

1
4 cRCDB IntRCDB

)
At two-loops the doubleboxes diverge first

IntDB =

∫
dDk

(2π)D
dDq

(2π)D
NDB

s45D1D2D3D4D5D7D8

IntLCDB =

∫
dDk

(2π)D
dDq

(2π)D
NLCDB

s45D1D2D3D4D5D7D8

IntRCDB =

∫
dDk

(2π)D
dDq

(2π)D
NRCDB

s45D1D2D3D4D5D7D8
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Small Momentum Injection

Use small momentum injection to compute the integral

,

D=7−2ε→ − π

30π7ε

D=7−2ε→ − π

20π7ε

Used small-momentum-injection formula recursively
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Short Summary
Color-Kinematic duality

Connection between Feynman diagrams and color-dual numerators at tree
level
Combined for the first time MultiLoop Integrand Reduction, Unitarity and
Color-Kinematic Duality
Presented a systematical way to obtain an amplitude in the color-dual form
Extracted the leading UV pole of these amplitudes

1-loop diverges at D=8
2-loop diverges at D=7

Through the double copy procedure amplitudes in YM theory are
connected to gravity amplitudes
Can be used to study UV behavior of gravity

Concerning the Integrand Reduction:
Symmetries can constrain the form of the residues
Each scalar product stands for a potential master integral
→ Symmetry reduces number of potential master integrals
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Matrix Approach
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Feynman integrals are functions of
Mandelstam variables
Internal and external masses
Spacetime dimensions

Facts
Not all Feynman integrals are independent
IBP-ids connect different Feynman
integrals
We can find an integral basis called master
integrals

Exploit this by
Taking derivatives of the master integrals in respect to the kinematic
invariants
Reduce result back to master integrals
Solve the obtained first order differential equation analytically
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First order differential equation

∂x~f (x , ε) = A(x , ε)~f (x , ε)

where ε is the dimensional regularization parameter D = 4− 2ε.

Properties of A(x , ε)
Block triangular
Rational in x and ε
Satisfies integrability condition (for at least two invariants x and y)

∂y A(x , ε)− ∂x A(y , ε) + [A(x , ε),A(y , ε)] = 0

Bottom-up Approach
Solve each line in A(x , ε) bottom
up
Previously solved integrals will
appear as inhomogenous parts of
the next DEQ

Matrix Approach Henn

Conjecture: We can find a basis
such that

∂x~g(x , ε) = εÃ(x)~g(x , ε)

Makes integration simple
But finding the basis is difficult
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Change of Basis

~g(x , ε) = B(x , ε)~f (x , ε)
Â(x , ε) = B−1(x , ε)A(x , ε)B(x , ε)− B−1(x , ε)∂x B(x , ε)

Reformulate the Problem
Find a change of basis which brings us to the canonical form
⇒ Solving a DEQ for B(x , ε)

∂x B(x , ε) = A(x , ε)B(x , ε)− εB(x , ε)Â(x)

Can be as hard as initial problem

Assumption Ageri, Di Vita, Mastrolia, Mirabella, Schlenk, Tancredi, U.S.

Linear DEQ
A(x , ε) = A0(x) + εA1(x)

We have to solve
∂x B(x) = A0(x)B(x)

Can be done with Magnus Theorem
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Magnus theorem
Starting from a first order differential equation

∂x~f (x) = A(x)~f (x)

The solution is given by the Magnus exponential

~f (x) = eΩ[A](x,x0)~f (x0) ≡ eΩ[A](x)~f (x0) Ω[A](x) =

∞∑
n=1

Ωn[A](x)

Ω1[A](x) =

∫ x

x0

dτ1A(τ1)

Ω2[A](x) =
1
2

∫ x

x0

dτ1

∫ τ1

x0

dτ2[A(τ1),A(τ2)] , ...

Connected to the Dyson Series

~f (x) =

(
1 +

∞∑
n=1

Pn(x)

)
~f (x0) , Pn(x) =

∫ x

x0

dτ1...

∫ τn−1

x0

dτn A(τ1)A(τ2)...A(τn)

P1(x) = Ω1(x)

P2(x) = Ω2(x) +
1
2 Ω2

1(x) , ....
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Finding the canonical form with Magnus
From a linear DEQ

A(x , ε) = A0(x) + εA1(x)

Magnus Theorem provides a basis change to the canonical form
B(x) = eΩ[A0](x) ~g(x , ε) = B(x)~f (x , ε)

Reducing DEQ Lee

DEQ is rational in x
Mosers algorithm reduces all poles to simple poles (if possible)

A(x , ε) =

k∑
n=1

Sn(ε)

x − xn
with xn being constant

Referred to as Fuchsian form

If Eigenvalues of Sn are linear in ε with integer coefficients
We can shift them to multiples of ε

A similarity transformation εS̃ = T−1(ε)S(ε)T (ε) gives us the canonical form
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Solving DEQ in the matrix approach

The canonical form

∂x g(x , ε) = εÃ(x)g(x , ε)

implies

~g(x , ε) =

(
1 +

∞∑
n=1

εnPn(x)

)
~g(x0, ε) Pn(x) =

∫ x

x0

dτ1...

∫ τn−1

x0

dτn Ã(τ1)Ã(τ2)...Ã(τn)

Ã(x) determines the types of functions which will appear
If Ã(x) is Fuchsian

Ã(x) =

k∑
n=1

Sn

x − xn
with xn being constant

then g(x , ε) can be written in terms of Goncharov Polylogarithms
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Goncharov Polylogarithm Goncharov

Basic definition

G(a1; x) =

∫ x

0

dt
t − a1

G(a1, ..., an; x) =

∫ x

0

dt
t − a1

G(a2, ..., an ; t)

G(~0n; x) =
1
n!

logn(x)

n is the weight of the Polylog

Connections to other functions:
Logarithm: G(a1, ..., a1; x) = 1

n!
logn(1− x

a1
)

classical Polylog G(~0n, 1; x) = −Lin(x)

Harmonic Polylogs (HPLs) Remiddi, Vermaseren
G(~a; x) = (−1)pH(~a, x) with ai ∈ {−1, 0, 1}
Two-dimensional harmonic polylogarithms Gehrmann, Remiddi
G(~a; x) = (−1)pH(~a, x) with ai ∈ {0, 1,−y , 1− y}
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Properties

Invariant under rescaling
for k ∈ C

G(k~a; k x) = G(~a; x)

Shuffle relations

G(~a; x)G(~b; x) =
∑
~c∈~a�~b

G(~c; x)

where ~a� ~b means taking every permutation of the elements in ~a and ~b such
that the individual ordering of ~a and ~b is kept

e.g. G(a1; x)G(b1, b2; x) = G(a1, b1, b2; x) + G(b1, a1, b2; x) + G(b1, b2, a1; x)

Many more known/unknown relations
⇒ Led to development of Symbol and Coproduct

Goncharov, Spradlin, Vergu, Volovich; Duhr
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Recap: Solution of the canonical DEQ

~g(x , ε) =

(
1 +

∞∑
n=1

εnPn(x)

)
~g(x0, ε)

We can obtain ~g(x0, ε) by

Known limits
Taking the limit x → x0 to
a known function
Fix the boundary constant
by matching the solution
to the known function

lim
s→0

p

p

s

1

2

=

p

p

1

2

Pseudo-thresholds
Solution has physical and unphysical
divergences
Physical divergences correspond to particle
thresholds
Unphysical divergences are absent in the final
result
Demanding their absence gives relations
between the boundary constants of the master
integrals
Leftover constants must be provided (usually
elementary integrals)
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massive QED vertex at two-loop Bonciani, Mastrolia, Remiddi(1) Two-loop QED vertices [Bonciani, Mastrolia and Remiddi 03]

17 MI’s for all relevant

topologies

p1

p2

p1 − k1

−p2 − k2

� s
m2 =

(1�x)2

x

T1

p12

T2(s)

p12

T3(s)

p1

T4

p12

T5(s)

p12

T6(s)

p2

T7

p1

p2

T8(s)

p1

p2

T9(s)

p1

p2

T10(s)
p1

p2

T11(s)

p1

p2

T12(s)

p1

p2

T13(s)

p1

p2

T14(s)

p1

p2

T15(s)

[(k1 + k2)2]
p1

p2

T16(s)

p1

p2

T17(s

The f ’s obey an ✏-linear DE [ADVMMSST ’14]

f1 = ✏2T1 f2 = ✏2T2 f3 = ✏2T3 f4 = ✏2T4 f5 = ✏2T5

f6 = ✏2T6 f7 = ✏2T7 f8 = ✏3T8 f9 = ✏3T9 f10 = ✏2T10

f11 = ✏3T11 f12 = ✏3T12 f13 = ✏2T13 f14 = ✏3T14 f15 = ✏4T15

f16 = ✏4T16 f17 = ✏4T17

After getting rid of A0, the g’s obey a canonical DE

@x g(✏, x) = ✏ Â1(x) g(✏, x) Â1(x) =
M1

x
+

M2

1 + x
+

M3

1 � x

M1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�1 0 0 0 5 �6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 �2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�1 0 0 �4 0 �2 0 �2 0 0 0 0 0 0 0 0 0
0 0 0 �2 0 0 0 0 2 0 0 0 0 0 0 0 0
�1

2 0 0 0 1 �2 �3 0 0 3 3 0 0 0 0 0 0
0 0 0 0 1 �1 2 0 0 �2 �2 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 �1 �1 0 0 0 0
0 �1 0 0 0 0 �3 0 0 0 0 3 3 0 0 0 0
0 �1 0 0 1 �1

2 0 2 2 0 0 0 0 2 2 0 0
0 0 0 0 0 1

2 0 �1
2 0 0 0 0 0 �1 �1 0 0

�1
2 0 0 �2 �1 0 �2 1 0 2 0 �2 0 0 �2 �2 2

0 0 0 0 �1 1
2 0 3 �2 0 �6 �2 0 0 �4 �4 4

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

M2 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 �2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 �4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 �6 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 �4 0 0 0 0 0 0 0 0
0 0 0 0 �1 1

2 0 0 0 �4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 �6 0 0 0 0 0 �2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 �4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �4

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

M3 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 �2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 �2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 �2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 �6 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 �2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 �12 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 �1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 �4 0 0 �4 �2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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=

(
a

µ2
0

)−2ϵ 0∑

i=−2

ϵiMi + O (ϵ) , (124)

(p2 · k1) = µ
2(4−D)
0

∫
{dDk1}{dDk2}

p2 · k1

D6D7D14D15

(125)

=

(
a

µ2
0

)−2ϵ 0∑

i=−2

ϵiNi + O (ϵ) , (126)

where:

M−2 =
1

2
, (127)

M−1 =
5

2
−

[
1 − 2

(1 − x)

]
H(0, x) , (128)

M0 =
19

2
+ ζ(2) +

[
1 − 2

(1 − x)

]
[ζ(2) − 5H(0, x) + 2H(−1, 0, x)]

+
2

(1 − x)
H(0, 0, x) +

[
1

(1 − x)
− 1

(1 + x)

]
[ζ(2)H(0, x)

+H(0, 0, 0, x)] . (129)

N−2

a
=

1

8
+

1

16

[
x +

1

x

]
, (130)

N−1

a
=

9

32

[
2 + x +

1

x

]
− 1

8

[
4 + x − 1

x

]
H(0, x) +

1

(1 − x)
H(0, x) , (131)

N0

a
=

63

32
+

ζ(2)

2
+

63

64

[(
1 +

16

63
ζ(2)

)
x +

1

x

]
− ζ(2)

(1 − x)
− 1

16

[
32 + 9x

−9

x

]
H(0, x) +

(16 + ζ(2))

4(1 − x)
H(0, x) − ζ(2)

4(1 + x)
H(0, x) − 1

4

[
2− 1

x

− 4

(1 − x)

]
H(0, 0, x) +

1

4

[
4+x− 1

x
− 8

(1 − x)

]
H(−1,0, x)

+
1

4

[
1

(1 − x)
− 1

(1 + x)

]
H(0, 0, 0, x) . (132)

5.3 Topologies with t = 5

= µ
2(4−D)
0

∫
{dDk1}{dDk2}

1

D1D2D9D14D15
(133)

=

(
a

µ2
0

)−2ϵ

P0 + O (ϵ) , (134)

= µ
2(4−D)
0

∫
{dDk1}{dDk2}

1

D1D2D9D14D2
15

(135)

32

where:

J−2(x) =
1

2
, (110)

J−1(x) =
5

2
, (111)

J0(x) =
19

2
+ 2

[ 1

(1 − x)
− 1

(1 + x)

]{
ζ(2)H(0, x) + H(0, 0, 0, x)

}

−H(0, 0, x). (112)

= µ
2(4−D)
0

∫
{dDk1}{dDk2}

1

D2D6D11D16
(113)

=

(
a

µ2
0
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ϵiKi + O (ϵ) , (114)

= µ
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0
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{dDk1}{dDk2}

1

D2D6D2
11D16

(115)

=

(
a

µ2
0

)−2ϵ 0∑
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ϵiLi + O (ϵ) , (116)

where:

K−2 =
1

2
, (117)

K−1 =
5

2
, (118)

K0 =
19

2
− 2ζ(2) + 2

[
1

(1 − x)
− 1

(1 + x)

]
[ζ(2)H(0, x) + H(0, 0, 0, x)]

−H(0, 0, x) . (119)

aL−2 = −1

2
, (120)

aL−1 = −1 +
1

2

[
1 − 2

(1 − x)

]
H(0, x) , (121)

aL0 = −2 +
1

2

[
1− 2

(1 − x)

]{
ζ(2) + 2H(0, x) + 4H(0, 0, x) + 2H(1, 0, x)

−6H(−1, 0, x)

}
+

3

2
H(0, 0, x) . (122)

= µ
2(4−D)
0
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{dDk1}{dDk2}

1

D6D7D14D15
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g
(2)
11 = 0 , (B.11c)

g
(3)
11 = − 2H(0, 0, 0;x) − 2 ζ2 H(0;x) , (B.11d)

g
(4)
11 = − 4H(−1, 0, 0, 0;x) + 4H(0,−1, 0, 0;x) + 12H(0, 0,−1, 0;x)
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]
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H(0, x) − 1
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1

4
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5.3 Topologies with t = 5

= µ
2(4−D)
0
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=
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µ2
0
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0

∫
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D1D2D9D14D2
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Dimensionless variables
x =

s
m2

h
y =

t
m2

h

ε-linear basis
∂x~f (x , y , ε) = (A1,0(x , y) + εA1,1(x , y))~f (x , y , ε)
∂y~f (x , y , ε) = (A2,0(x , y) + εA2,1(x , y))~f (x , y , ε)

Canonical form with Magnus
∂x~g(x , y , ε) = εÂ1(x , y)~g(x , y , ε)
∂y~g(x , y , ε) = εÂ2(x , y)~g(x , y , ε)

Log-form
Â(x , y) = M1log(x) + M2log(1− x) + M3log(y) + M4log(1− y)

+M5log(
x + y

x ) + M6log(
1− x − y

1− x )

∂x Â(x , y) = Â1(x , y) ∂y Â(x , y) = Â2(x , y)

Alphabet
{x , 1− x , y , 1− y , x + y , 1− x − y}
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Matrix Approach
Solution
Boundary Conditions
Examples

Higgs+Jet at three-loop Di Vita, Mastrolia, Yundin, U.S.

(3) Higgs + 1Jet 3-loop ladder [Mastrolia, Schubert, Yundin, DV. . . work in progress!]

taken from Pierpaolo’s slides at Amplitudes 2014

S. Di Vita (MPI Munich) Magnus and Dyson Series for MI’s LoopFest XIII (NYC) 14 / 17
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Basics
Matrix Approach
Solution
Boundary Conditions
Examples

Higgs+Jet at three-loop Di Vita, Mastrolia, Yundin, U.S.

ε-linear basis
∂x~f (x , y , ε) = (A1,0(x , y) + εA1,1(x , y))~f (x , y , ε)
∂y~f (x , y , ε) = (A2,0(x , y) + εA2,1(x , y))~f (x , y , ε)

Canonical form with Magnus
∂x~g(x , y , ε) = εÂ1(x , y)~g(x , y , ε)
∂y~g(x , y , ε) = εÂ2(x , y)~g(x , y , ε)

Log-form
Â(x , y) = M1log(x) + M2log(1− x) + M3log(y) + M4log(1− y)

+M5log(
x + y

x ) + M6log(
1− x − y

1− x )

∂x Â(x , y) = Â1(x , y) ∂y Â(x , y) = Â2(x , y)

Alphabet
{x , 1− x , y , 1− y , x + y , 1− x − y}

same as in the two-loop case!
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Matrix Approach
Solution
Boundary Conditions
Examples

Two-loop Correction to Drell-Yan Bonciani, Di Vita, Mastrolia, U.S.

_ _

Three different classes of processes with zero,one and two equal massive
internal legs
Master integrals for the latter two are still unknown

Dimensionless variables

x =
s

m2 y =
t

m2

ε-linear basis
∂x~f (x , y , ε) = (A1,0(x , y) + εA1,1(x , y))~f (x , y , ε)
∂y~f (x , y , ε) = (A2,0(x , y) + εA2,1(x , y))~f (x , y , ε)

Canonical form with Magnus
∂x~g(x , y , ε) = εÂ1(x , y)~g(x , y , ε)
∂y~g(x , y , ε) = εÂ2(x , y)~g(x , y , ε)
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Two-loop equal-mass sunrise

p

m

m

m

DEQ is known to evaluate to elliptic functions Laporta, Remiddi (2004)

Easy to find a DEQ ∂s~f = A(s, ε)~f which is Fuchsian and linear in ε = (D−4)
2

A(s, ε) =
1
s


0 0 0 0
−ε −1 + ε 0 0
0 0 0 0
0 0 − 1

2 − ε −1 + ε

+
1

s −m2


0 0 0 0
ε −2ε 0 0
0 0 0 0
0 − ε2

3
4 + 3

2 ε −1 + 2ε

+
1

s − 9m2


0 0 0 0
0 0 0 0
0 2ε −1− 2ε 4
0 ε

2
1
4 + 1

2 ε 1



But: Magnus Series does not converge
Eigenvalues are linear but transformation is not possible

⇒ ε0-part is related to elliptic functions
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Conclusion

Combined Integrand-Reduction, Unitarity method and Color-Kinematic
duality
Symmetries constrain the number scalar products appearing in the residue
⇒ Reduces the number of possible master integrals

Extracted the leading ultra-violet divergence for the amplitude
Connected to leading UV divergence of N = 8 SUGRA

Provided an alternative derivation of the BCJ conform numerators which
only depends on geometric constraints of the amplitude (see thesis)

Magnus Series finds a canonical basis for a DEQ which is linear in ε
Has been applied to a variety of known and unknown processes
-QED Vertex at two-loop
-2→ 2 non-planar massless box
-Higgs+jet at two-loop
-Ladder topology for Higgs+jet at three-loop
-Mixed NNLO corrections to Drell-Yan
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Back up slides
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The one-loop massless bubble

Construct differential operator

Apply derivative

Reduce back to master integrals with IBP-ids

Gives us the differential equation
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Example: massive QED Sunrise

Three master integrals

Dimensionless variable

− s
m2 =

(1− x)2

x
Linear and Fuchsian DEQ

∂x~f (x) = A(x , ε)~f (x)

A(x , ε) =

 0 0 0
− ε

2(1−x)
− ε

2(1+x)
− 1+6ε

1+x + 1+3ε
x + 1

1−x − 1−2ε
2(1−x)

− ε
x −

1−6ε
2(1+x)

0 2ε
x + 4ε

1−x
1
x + 2

1−x


Let’s apply Magnus and Lees algorithm
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QED Sunrise with Magnus

Split ε0-part into diagonal and off-diagonal part and transform with diagonal
part first

A0(x) = D0(x) + N0(x), B1 = e
∫

dx D0(x)
=

 1 0 0
0 x

1−x2 0
0 0 x

(1−x)2


Transformed DEQ

Â(x) = B−1
1 A(x)B1 − B−1

1 ∂x B1 =

 0 0 0
− ε

x
3ε
x −

6ε
1+x − 1−2ε

(x−1)2 − ε
x

0 2ε
x 0


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QED Sunrise with Magnus
Transform with off-diagonal part

Â0(x) = N̂0(x), B2 = e
∫

dx N̂0(x)
=

 1 0 0
0 1 − 1

1−x

0 0 1


Transformed DEQ II

Ã(x) = B−1
2 Â(x)B2 − B−1

2 ∂x B2

Ã(x) =

 0 0 0
− ε

x
2ε

1−x + 5ε
x −

6ε
1+x − 2ε

1−x −
6ε
x + 3ε

1+x

0 2ε
x − 2ε

1−x −
2ε
x


Masters for canonical basis are given by

~g = B−1
2 B−1

1
~f =

 1 0 0
0 (1−x)(x+1)

x
1−x

x

0 0 (x−1)2

x

~f
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QED Sunrise with Lee

Focus only on 2x2 system of the Sunrise, since the rest of the system is already
ε-factorized
System is Fuchsian
⇒ Shift all Eigenvalues to multiples of ε

x → 1 : {−1− 2ε,−2 + 2ε} x → 0 : {1 + ε, 1 + 2ε}
x → −1 : {0,−1− 6ε} x →∞ : {1 + ε, 1 + 2ε}

A balance transformation will shift one eigenvalue by +1 the other one by −1

B(P, x1, x2|x) = P̄ + c x − x2

x − x1
P, P = u(λ1)v†(λ2), P̄ = 1− P

After four transformation we brought all Eigenvalues in the right form

x → 1 : {−2ε, 2ε} x → 0 : {ε, 2ε}
x → −1 : {0,−6ε} x →∞ : {ε, 2ε}
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QED Sunrise with Lee

The last step is to find a similarity transformation which brings us to the
canonical form
For each pole matrix we solve

A(x , ε)
ε

T (ε, µ) = T (ε, µ)
A(x , µ)

µ

Finally we arrive at

∂x~g = ε

(
5
x −

6
1+x + 2

1−x
6
x −

3
1+x + 2

1−x

− 2
x − 2

1−x −
2
x

)
~g

Combining all transformation we find for our masters

~g =

(
(1−x)(1+x)

x
1−x

x

0 − (x−1)2

x

)
~f Reminder: BMagnus =

 1 0 0
0 (1−x)(x+1)

x
1−x

x

0 0 (x−1)2

x


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