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RG Flow from UV to IR; Types of IR Behavior and Role
of IR Fixed Point

First, consider an asymptotically free, vectorial gauge theory with gauge group G and
Nf massless fermions in representation R of G.

Asymptotic freedom ⇒ theory is weakly coupled, properties are perturbatively
calculable for large Euclidean momentum scale µ in deep ultraviolet (UV).

The question of how this theory flows from large µ in the UV to small µ in the infrared
(IR) is of fundamental field-theoretic interest.

For some fermion contents, the (perturbatively calculated) beta function of the theory
may have an exact or approximate IR fixed point (zero of β).

Denote running gauge coupling at scale µ as g = g(µ), and let
α(µ) = g(µ)2/(4π) and a(µ) = g(µ)2/(16π2) = α(µ)/(4π).



The dependence of α(µ) on µ is described by the renormalization group β function

βα ≡
dα

dt
= −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓα
ℓ

where dt = d lnµ, ℓ = loop order of the coeff. bℓ, and b̄ℓ = bℓ/(4π)
ℓ.

Coefficients b1 and b2 in β are independent of regularization/renormalization scheme,
while bℓ for ℓ ≥ 3 are scheme-dependent.

Asymptotic freedom means b1 > 0, so β < 0 for small α(µ), in neighborhood of UV
fixed point (UVFP) at α = 0.

As the scale µ decreases from large values, α(µ) increases. Denote αcr as minimum
value for formation of bilinear fermion condensates and resultant spontaneous chiral
symmetry breaking (SχSB).



Two generic possibilities for β and resultant UV to IR flow:

• β has no IR zero, so as µ decreases, α(µ) increases, eventually beyond the
perturbatively calculable region. This is the case for QCD.

• β has a IR zero, αIR, so as µ decreases, α → αIR. In this class of theories, there
are two further generic possibilities: αIR < αcr or αIR > αcr.

If αIR < αcr, the zero of β at αIR is an exact IR fixed point (IRFP) of the renorm.
group (RG) as µ → 0 and α → αIR, β → β(αIR) = 0, and the theory becomes
exactly scale-invariant with nontrivial anomalous dimensions (Caswell, Banks-Zaks).

If β has no IR zero, or an IR zero at αIR > αcr, then as µ decreases through a scale
Λ, α(µ) exceeds αcr and SχSB occurs, so fermions gain dynamical masses ∼ Λ.

If SχSB occurs, then in low-energy effective field theory applicable for µ < Λ, one
integrates these fermions out, and β fn. becomes that of a pure gauge theory, with no
IR zero. Hence, if β has a zero at αIR > αcr, this is only an approx. IRFP of RG.



If αIR is only slightly greater than αcr, then, as α(µ) approaches αIR, since
β = dα/dt → 0, α(µ) varies very slowly as a function of the scale µ, i.e., there is
approximately scale-invariant (= dilatation-invariant, walking) behavior.

SχSB at Λ also breaks the approx. dilatation symmetry, leads to a resultant approx.
NGB, the dilaton (Yamawaki et al.; Bardeen et al.., 1986). This is not massless, since
β is nonzero at α = αcr where SχSB occurs.

Denote the n-loop β fn. as βnℓ and the IR zero of βnℓ as αIR,nℓ.

At the n = 2 loop level,

αIR,2ℓ = −
4πb1

b2

which is physical for b2 < 0. 1-loop coefficient b1 is

b1 =
1

3
(11CA − 4NfTf)

where CA ≡ C2(G) is quadratic Casimir invariant, Tf ≡ T (R) is trace invariant.
Focus here on G = SU(Nc).



Asymp. freedom requires Nf < Nf,b1z, where

Nf,b1z =
11CA

4Tf

e.g., for R = fundamental rep., Nf < (11/2)Nc.

2-loop coeff. b2 is (with Cf ≡ C2(R)) (Caswell, Jones)

b2 =
1

3

[

34C2
A − 4(5CA + 3Cf)Nf Tf

]

For small Nf , b2 > 0; b2 decreases as fn. of Nf and vanishes with sign reversal at
Nf = Nf,b2z, where

Nf,b2z =
34C2

A

4Tf(5CA + 3Cf)

For arbitrary G and R, Nf,b2z < Nf,b1z, so there is always an interval in Nf for
which β has an IR zero, namely

I : Nf,b2z < Nf < Nf,b1z



• for SU(2), I: 5.55 < Nf < 11

• for SU(3), I: 8.05 < Nf < 16.5

• As Nc → ∞, I: 2.62Nc < Nf < 5.5Nc.

(expressions evaluated for Nf ∈ R, but it is understood that physical values of Nf are
nonnegative integers.)

As Nf decreases from the upper to lower end of interval I, αIR increases. Denote

Nf = Nf,cr at αIR = αcr

Value of Nf,cr is of fundamental importance, since it separates the (zero-temp.)
chirally symmetric and broken IR phases.

Intensive current lattice studies of SU(Nc) gauge theories with Nf copies of fermions
in various representations R; progress toward determining Nf,cr for various Nc and R.



Higher-Loop Corrections to UV → IR Evolution of Gauge
Theories

Because of this strong-coupling physics, one should calculate the IR zero in β, αIR,
and resultant value of γm evaluated at αIR to higher-loop order: done for general R in
Ryttov and Shrock, PRD83, 056011 (2011) [arXiv:1011.4542] and Pica and Sannino,
PRD83, 035013 (2011) [arXiv:1011.5917].

Although coeffs. in β at ℓ ≥ 3 loop order are scheme-dependent, results give a
measure of accuracy of the 2-loop calc. of the IR zero of β, and similarly with γm
evaluated at this IR zero.

The value of higher-loop calculations has been amply shown in comparison of QCD
predictions with experimental data, e.g., in MS scheme due to Bardeen et al.



Values of b̄ℓ = bℓ/(4π)
ℓ for Nc, where interval I is 8.05 < Nf < 16.5:

Nc Nf b̄1 b̄2 b̄3 b̄4
3 0 0.875 0.646 0.720 1.173
3 1 0.822 0.566 0.582 0.910
3 2 0.769 0.485 0.450 0.681
3 3 0.716 0.405 0.324 0.485
3 4 0.663 0.325 0.205 0.322
3 5 0.610 0.245 0.091 0.194
3 6 0.557 0.165 −0.016 0.099
3 7 0.504 0.084 −0.118 0.039
3 8 0.451 0.004 −0.213 0.015
3 9 0.398 −0.076 −0.303 0.025
3 10 0.345 −0.156 −0.386 0.072
3 11 0.292 −0.236 −0.463 0.154
3 12 0.239 −0.317 −0.534 0.273
3 13 0.186 −0.397 −0.599 0.429
3 14 0.133 −0.477 −0.658 0.622
3 15 0.080 −0.557 −0.711 0.852
3 16 0.0265 −0.637 −0.758 1.121



3-loop coefficient in β function (in MS scheme, Vermaseren et al.):

b3 =
2857

54
C3
A + TfNf

[

2C2
f −

205

9
CACf −

1415

27
C2
A

]

+(TfNf)
2

[

44

9
Cf +

158

27
CA

]

Here, b3 < 0 for Nf ∈ I. Since β3ℓ = −[α2/(2π)](b1 + b2a+ b3a
2), β3ℓ = 0

away from α = 0 at two values:

α =
2π

b3

(

− b2 ±
√

b22 − 4b1b3

)

Since b2 < 0 and b3 < 0, can rewrite as

α =
2π

|b3|

(

− |b2| ∓
√

b22 + 4b1|b3|
)

Soln. with − sqrt is negative, hence unphysical; soln. with + sqrt is αIR,3ℓ.



We showed that with b3 < 0 the value of the IR zero decreases when calculated at the
3-loop level, i.e.,

αIR,3ℓ < αIR,2ℓ

This can be seen as follows:

αIR,2ℓ − αIR,3ℓ =
4πb1

|b2|
−

2π

|b3|

(

− |b2| +
√

b22 + 4b1|b3|
)

=
2π

|b2b3|

[

2b1|b3| + b22 − |b2|
√

b22 + 4b1|b3|

]

The expression in square brackets is positive if and only if

(2b1|b3| + b22)
2 − b22(b

2
2 + 4b1|b3|) > 0

This difference is equal to the positive-definite quantity 4b21b
2
3, which proves the

inequality.



In RS, Phys. Rev. D 87, 105005 (2013) [arXiv:1301.3209] we generalized this:

If a scheme had b3 > 0 in I, then, since b2 → 0 at lower end of I, b22 − 4b1b3 < 0,
so this scheme would not have a physical αIR,3ℓ in this region.

Since the existence of the IR zero in β at 2-loop level is scheme-independent, one may
require that a scheme should maintain this property to higher-loop order, and hence
that b3 < 0 for Nf ∈ I.

So the inequality αIR,3ℓ < αIR,2ℓ holds in all such schemes, not just in MS. Analysis
of zeros of β function up to 4-loop order in a general scheme: RS, PRD 87, 105005
(2013) [arXiv:1301.3209].

With MS, from 3- to 4-loop level, slight increase: αIR,4ℓ >∼ αIR,3ℓ; small change, so
overall, αIR,4ℓ < αIR,2ℓ.

Our result of smaller fractional change in value of IR zero of β at higher-loop order
agrees with expectation that calc. to higher loop order should give more stable result.



Numerical values of αIR,nℓ at the n = 2, 3, 4 loop level for SU(2), SU(3) and
fermions in fund. rep. (3-loop and 4-loop calc. in MS scheme):

Nc Nf αIR,2ℓ αIR,3ℓ αIR,4ℓ
2 6 11.42 1.645 2.395
2 7 2.83 1.05 1.21
2 8 1.26 0.688 0.760
2 9 0.595 0.418 0.444
2 10 0.231 0.196 0.200

3 10 2.21 0.764 0.815
3 11 1.23 0.578 0.626
3 12 0.754 0.435 0.470
3 13 0.468 0.317 0.337
3 14 0.278 0.215 0.224
3 15 0.143 0.123 0.126
3 16 0.0416 0.0397 0.0398

(Perturbative calc. not applicable if αIR,nℓ too large.) We have performed the
corresponding higher-loop calculations for SU(Nc) gauge theories with Nf fermions in
the adjoint, symmetric and antisymmetric rank-2 tensor representations.



It is of interest to calculate the anomalous dimension γm ≡ γ for the fermion bilinear,
with series expansion

γ =
∞
∑

ℓ=1

cℓa
ℓ =

∞
∑

ℓ=1

c̄ℓα
ℓ

where c̄ℓ = cℓ/(4π)
ℓ is the ℓ-loop coefficient.

The 1-loop coeff. c1 is scheme-independent, the cℓ with ℓ ≥ 2 are scheme-dependent
and have been calculated up to 4-loop level in MS scheme (Vermaseren, Larin, and van
Ritbergen): c1 = 6Cf ,

c2 = 2Cf

[3

2
Cf +

97

6
CA −

10

3
TfNf

]

etc. for c3, c4.



Denote γ calculated to n-loop (nℓ) level as γnℓ and, evaluated at the n-loop value of
the IR zero of β, as

γIR,nℓ ≡ γnℓ(α = αIR,nℓ)

In the IR chirally symmetric phase, an all-order calculation of γ evaluated at an
all-order calculation of αIR would be an exact property of the theory.

In the chirally broken phase, just as the IR zero of β is only an approx. IRFP, so also,
the γ is only approx., describing the running of ψ̄ψ and the dynamically generated
running fermion mass near the zero of β having large-momentum (large k) behavior

Σ(k) ∼ Λ

(

Λ

k

)2−γ

where γ is bounded above as γ < 2. Schwinger-Dyson estimates suggest γ could be
∼ 1 in walking regime with SχSB (Yamawaki et al., Appelquist..,Holdom). The upper
bound γ < 2 also holds for the chirally symmetric conformal IR phase; from a unitarity
argument, dim(ψ̄ψ) = 3 − γm > 1, so γ < 2.



Illustrative numerical values of γIR,nℓ for SU(2) and SU(3) at the n = 2, 3, 4 loop
level and fermions in the fundamental representation with Nf ∈ I:

Nc Nf γIR,2ℓ γIR,3ℓ γIR,4ℓ
2 7 (2.67) 0.457 0.0325
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 10 (4.19) 0.647 0.156
3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259

Plots of γ as function of Nf for SU(2), SU(3):



Figure 1: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(2) with Nf fermions in fund. rep: (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



Figure 2: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(3) with Nf fermions in fund. rep: (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



A necessary condition for a perturbative calculation to be reliable is that higher-order
contributions do not modify the result too much. We find that the 3-loop and 4-loop
results are closer to each other for a larger range of Nf than the 2-loop and 3-loop
results.

So our higher-loop calcs. of αIR and γ allow us to probe the theory reliably down to
smaller values of Nf and thus stronger couplings, closer to Nf,cr. Of course,
perturbative calculations are not applicable when α is too large.



Comparisons with Lattice Measurements

We compare these calculations with lattice measurements here.

N.B.: for some theories with given gauge group and fermion content, there is not yet a
consensus as to whether the theory is chirally symmetric or chirally broken in the IR.

One of the most heavily studied cases on the lattice is for the gauge group SU(3) with
Nf = 12 fermions in the fundamental representation (with extrapolations to the
continuum limit and to massless fermions):

For this theory, Appelquist et al. (LSD); Deuzeman, Lombardo, and Pallante;
Hasenfratz et al.; DeGrand et al.; Aoki et al. (LatKMI) find that the IR behavior is
chirally symmetric (Jin and Mawhinney, and Kuti et al. found it is chirally broken).

For this SU(3) theory with Nf = 12, our calculations give

γIR,2ℓ = 0.77, γIR,3ℓ = 0.31, γIR,4ℓ = 0.25



some lattice results (N.B. - error estimates do not include all systematic uncertainties):

γ = 0.414 ± 0.016 (Appelquist et al. (LSD Collab.), PRD 84, 054501 (2011).

γ ∼ 0.35 (DeGrand, PRD 84, 116901 (2011).

0.2 <∼ γ <∼ 0.4 (Kuti et al. (method-dep.) arXiv:1205.1878, arXiv:1211.3548,
1211.6164, PTP, finding SχSB).

γ ≃ 0.4 (Y. Aoki et al. (LatKMI Collab.) PRD 86, 054506 (2012) [arXiv:1207.3060]);

γ = 0.27(3) (Hasenfratz et al., arXiv:1207.7162; γ ≃ 0.25; Hasenfratz et al.,
arXiv:1310.1124).

γ = 0.235(46) (Lombardo, Miura, Nunes, Pallante (LMNP), arXiv:1410.0298).

So 2-loop value is larger than, and the 3-loop and 4-loop values closer to, lattice data.

Thus, our higher-loop calculations of γ yield better agreement with these lattice
measurements than two-loop calculations.



SU(Nc) with fermions in fund. rep. and other Nf values:

SU(3) with Nf = 10: Appelquist et al., arXiv:1204.6000 get γIR ∼ 1

SU(3) with Nf = 8, possibly in chirally broken phase; under study by several groups:

Aoki et al. (LatKMI), PRD 87, 094511 (2013) [arXiv:1302.6859]; and Y. Aoki et al.
(LatKMI), PRD 89, 111502 (2014) [arXiv:1403.5000] get γIR ∼ 1.

Appelquist et al. (LSD) PRD 90, 114502 (2014) [arXiv:1405.4752], also get γIR ∼ 1.

Lattice results are consistent with γIR ∼ 1 in quasi-scale invariant (walking) regime of
chirally broken phase. For these theories, the coupling is probably too strong for
perturbative methods to be accurate.

We have done calculations for higher-dimension fermion reps. R and some of these
have been studied on the lattice.



Further Higher-Loop Structural Properties of β

In addition to αIR,nℓ, further interesting structural properties of the n-loop beta fn.

βnℓ include, e.g., the derivative β′
IR,nℓ ≡

dβnℓ
dα

evaluated at αIR,nℓ.

In quasi-scale-invariant case where αIR >∼ αcr, dilaton mass relevant in dynamical
EWSB models depends on how small β is for α ≃ αcr near to αIR. To estimate β at
αcr, use Taylor series expansion:

βnℓ(αcr) = β′
IR,nℓ(αIR,nℓ) × (αcr − αIR,nℓ) + O

(

(αcr − αIR,nℓ)
2
)

We calculated β′
IR,nℓ analytically and numerically in RS, Phys. Rev. D87, 105005

(2013) [arXiv:1301.3209].



We prove a general inequality: for a given gauge group G, fermion rep. R, and
Nf ∈ I (in a scheme with b3 < 0, which thus preserves the existence of the 2-loop IR
zero in β at 3-loop level), β′

IR,nℓ decreases from n = 2 loop to n = 3 loop level. We
calculate the n = 4 loop β′

IR,4ℓ and find a further decrease, so

β′
IR,4ℓ < β′

IR,3ℓ < β′
IR,2ℓ

These results show that when calculated to higher-loop order, the derivative β′
IR,nℓ

decreases, consistent, via the Taylor series expansion, with a decrease in the value of β
itself for α ≃ αIR,nℓ.



Some numerical values:

Nc Nf β′
IR,2ℓ β′

IR,3ℓ β′
IR,4ℓ

2 7 1.20 0.728 0.677
2 8 0.400 0.318 0.300
2 9 0.126 0.115 0.110
2 10 0.0245 0.0239 0.0235

3 10 1.52 0.872 0.853
3 11 0.720 0.517 0.498
3 12 0.360 0.2955 0.282
3 13 0.174 0.156 0.149
3 14 0.0737 0.0699 0.0678
3 15 0.0227 0.0223 0.0220
3 16 0.00221 0.00220 0.00220

Illustrative figure for SU(3) with Nf = 12 fermions:
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Figure 3: βnℓ for SU(3), Nf = 12, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.



It is interesting to study this UV to IR evolution in a SU(Nc) gauge theory with Nf

fermions in the fundamental rep. in the limit Nc → ∞, Nf → ∞ with

r ≡
Nf

Nc

and α(µ)Nc ≡ ξ(µ) finite

denoted the LNN (large Nc, Nf) limit.

We have carried out this study in RS, Phys. Rev. D87, 116007 (2013)
[arXiv:1302.5434]. Define a rescaled beta function that is finite in the LNN limit:

βξ ≡
dξ

dt
= lim

LNN
βαNc

Interval of r where βξ,2ℓ has an IR zero is

Ir :
34

13
< r <

11

2
, i.e., 2.615 < r < 5.500

2-loop IR zero of βξ,2ℓ is at

ξIR,2ℓ =
4π(11 − 2r)

13r − 34



with more complicated expressions for the IR zero at 3-loop and 4-loop level (see paper).

Value of n-loop γ evaluated at n-loop ξIR,nℓ: γIR,nℓ ≡ γnℓ
∣

∣

ξ=ξIR,nℓ
;

γ
IR,2ℓ

=
(11 − 2r)(1009 − 158r + 40r2)

12(13r − 34)2

with more complicated expressions for γ
IR,nℓ

at 3-loop and 4-loop level (see paper).
Numerical values:



r γ
IR,2ℓ

γ
IR,3ℓ

γ
IR,4ℓ

3.6 1.853 0.5201 0.3083
3.8 1.178 0.4197 0.3061
4.0 0.7847 0.3414 0.2877
4.2 0.5366 0.2771 0.2664
4.4 0.3707 0.2221 0.2173
4.6 0.2543 0.1735 0.1745
4.8 0.1696 0.1294 0.1313
5.0 0.1057 0.08886 0.08999
5.2 0.05620 0.05123 0.05156
5.4 0.01682 0.01637 0.01638



It is instructive to carry out a similar analysis in an asymptotically free N = 1
supersymmetric gauge theory with vectorial chiral superfield content Φi, Φ̃i,
i = 1, ..., Nf in the R, R̄ reps., respectively.

We have done this in Ryttov and Shrock, Phys. Rev. D 85, 076009 (2012)
[arXiv:1202.1297]

An appeal of this analysis: exact results are known from work of Novikov, Shifman,
Vainshtein, and Zakharov (1983, 1986) and Seiberg (1994).

One goal of this study: to compare results from higher-loop perturb. calcs. with exact
results, in particular, for Nf,cr.

One lesson from the O(N ) nonlinear σ model and the NSVZ beta function in SQCD:
when one can sum a subset of diagrams contributing to the beta function to
infinite-loop order, this provides a different and complementary approach to analyzing
zeros of the beta function.

Further discussion of this in general: RS, Phys. Rev. D 91, 125039 (2015)
[arXiv:1505.03588].



One can also apply similar RG methods to analyze the UV to IR evolution of
asymptotically free chiral gauge theories. (The contents of chiral fermions in these
theories are chosen so as to render them anomaly-free.)

However, there are important differences between vectorial and chiral gauge theories,
VGT, χGT: fermion condensation in a VGT breaks global chiral symmetries, but not
the gauge symmetry, while in a χGT it generically breaks both chiral global and gauge
symmetries.

In an asymptotically free χGT that evolves from the UV to strong coupling in the IR,
this typically leads to a sequence of self-breakings of the chiral gauge symmetry.

Some recent work: Appelquist and RS, Phys. Rev. D 88, 105012 (2013)
[arXiv:1310.6076]; Y. Shi and RS, Phys. Rev. D D 91, 045004 (2015)
[arXiv:1411.2042].



Study of Scheme Dependence in Calculation of IR Fixed
Point

Since coeffs. bn in βnℓ, and hence also αIR,nℓ, are scheme-dependent for n ≥ 3, it is
important to assess the effects of this scheme dependence. Our earlier studies: Ryttov
and RS, PRD 86, 065032 (2012) [arXiv:1206.2366] and PRD 86, 085005 (2012)
[arXiv:1206.6895]; further: RS, PRD 88, 036003 (2013) [arXiv:1305.6524]; RS, PRD
90, 045011 (2014) [arXiv:1405.6244]; most recently: Choi and RS, PRD 90, 125029
(2014) [arXiv:1411.6645].

A scheme transformation (ST) is a map between α and α′ or equivalently, a and a′,
where a = α/(4π) of the form

a = a′f(a′)

with f(0) = 1 since ST has no effect in limit of zero coupling.

f(a′) = 1 +

smax
∑

s=1

ks(a
′)s = 1 +

smax
∑

s=1

k̄s(α
′)s

where k̄s = ks/(4π)
s, and smax may be finite or infinite.

The Jacobian J = da/da′ = dα/dα′ = 1 +
∑smax

s=1 (s+ 1)ks(a
′)s, satisfying

J = 1 at a = a′ = 0.



After the scheme transformation is applied, the beta function in the new scheme is
given by

βα′ ≡
dα′

dt
=
dα′

dα

dα

dt
= J−1 βα

with the expansion

βα′ = −2α′
∞
∑

ℓ=1

b′ℓ(a
′)ℓ = −2α′

∞
∑

ℓ=1

b̄′ℓ(α
′)ℓ

where b̄′ℓ = b′ℓ/(4π)
ℓ.

We calculate the b′ℓ as functions of the bℓ and ks. At 1-loop and 2-loop, this yields the
well-known results

b′1 = b1 , b′2 = b2

We find
b′3 = b3 + k1b2 + (k21 − k2)b1 ,

b′4 = b4 + 2k1b3 + k21b2 + (−2k31 + 4k1k2 − 2k3)b1



b′5 = b5 + 3k1b4 + (2k21 + k2)b3 + (−k31 + 3k1k2 − k3)b2

+(4k41 − 11k21k2 + 6k1k3 + 4k22 − 3k4)b1

etc. at higher-loop order.

A physically acceptable ST must satisfy several conditions:

•C1: the ST must map a (real positive) α to a real positive α′, since a map taking
α > 0 to α′ = 0 would be singular, and a map taking α > 0 to a negative or
complex α′ would violate the unitarity of the theory.

•C2: the ST should not map a moderate value of α, where perturbation theory is
applicable, to a value of α′ so large that pert. theory is inapplicable.

•C3: J should not vanish (or diverge) or else there would be a pole in βα′

•C4: Existence of an IR zero of β is a scheme-independent property, so the ST
should satisfy the condition that βα has an IR zero if and only if βα′ has an IR zero.

These conditions can always be satisfied by an ST near the UVFP at α = α′ = 0, but
they are not automatic, and can be quite restrictive at an IRFP.



For example, consider the ST (dependent on a parameter r)

a =
tanh(ra′)

r
with inverse

a′ =
1

2r
ln

(

1 + ra

1 − ra

)

(e.g., for r = 4π, α = tanhα′). This is acceptable for small a, but if a > 1/r, i.e.,
α > 4π/r, it maps a real α to a complex α′ and hence is physically unacceptable.
For r = 8π, e.g., this pathology can occur at the moderate value α = 0.5.

We have constructed several STs that are acceptable at an IRFP and have studied
scheme dependence of the IR zero of βnℓ using these. For example, we have used a
sinh transformation (depending on a parameter r):

a =
sinh(ra′)

r
with inverse

a′ =
1

r
ln

[

ra+
√

1 + (ra)2
]



Written in the form a = a′f(a′), this has the transformation function

f(a′) =
sinh(ra′)

ra′

This satisfies f(0) = 1 and also approaches the identity map as r → 0. With no loss
of generality, take r ≥ 0.

The Jacobian is J = cosh(ra′), which always satisfies C3, i.e., is nonsingular.

Taylor series expansion of f(a′) has coefficients ks = 0 for odd s and

k2 =
r2

6
, k4 =

r4

120
, k6 =

r6

5040
, k8 =

r8

362880
,

etc. for s ≥ 10. Thus, for small |r|a′,

a = a′
[

1 +
(ra′)2

6
+ O

(

(ra′)4
)]

so (for a 6= 0) a′ < a for |r| > 0.



Illustrative results with this sinh scheme transformation follow. We denote the IR zero
of βα′ at the n-loop level as α′

IR,nℓ ≡ α′
IR,nℓ,r.

For SU(3) gauge theory with Nf = 12, αIR,2ℓ = 0.754, and:

αIR,3ℓ,MS = 0.435, α′
IR,3ℓ,r=3 = 0.434, α′

IR,3ℓ,r=6 = 0.433,

αIR,4ℓ,MS = 0.470, α′
IR,4ℓ,r=3 = 0.470, α′

IR,4ℓ,r=6 = 0.467,

Thus, we find moderately small scheme dependence in the value of the IR zero at
3-loop and 4-loop level for moderate α and r.



Recently, in Choi and RS, PRD 90, 125029 (2014) [arXiv:1411.6645], we have
constructed and applied two new scheme transformations to study the scheme
dependence of an IR zero of the beta function in an AF gauge theory. Our new work
confirms and extends our earlier studies.

SLr scheme transformation:

SLr : a =
ln(1 + ra′)

r

where r is a (real) parameter; corresponding transformation function:

f(a′) =
ln(1 + ra′)

ra′

Inverse : a′ =
era − 1

r
, Jacobian : J =

1

1 + ra′
= e−ra

Here f(a′) has the Taylor series expansion

f(a′) = 1 +

∞
∑

s=1

(−ra′)s

s+ 1
,

i.e., coefficients are ks = (−r)s/(s+ 1).



So for small |r|a′,

a = a′
[

1 −
ra′

2
+ O

(

(ra′)2
) ]

so (for a 6= 0), a′ > a if r > 0 and a′ < a if r < 0.

Note that for a given s, these ks are much larger than those for the sinh ST, so for a
given value of r, the SLr ST is farther from the identity than the sinh ST. Allowed
range of r determined by conditions C1-C4.



Illustrative results with this SLr scheme transformation: We again denote the IR zero
of βα′ at the n-loop level as α′

IR,nℓ ≡ α′
IR,nℓ,r.

For SU(3) with Nf = 12, αIR,2ℓ = 0.754, and:

α′
IR,3ℓ,r=−2 = 0.429, α′

IR,3ℓ,r=−1 = 0.432, α′
IR,3ℓ,r=0 = αIR,3ℓ,MS = 0.435,

α′
IR,3ℓ,r=1 = 0.438, α′

IR,3ℓ,r=2 = 0.441,

α′
IR,4ℓ,r=−2 = 0.450, α′

IR,4ℓ,r=−1 = 0.460, α′
IR,4ℓ,r=0 = αIR,4ℓ,MS = 0.470,

α′
IR,4ℓ,r=1 = 0.482, α′

IR,4ℓ,r=2 = 0.496

Again, we find rather small scheme dependence in the value of the IR zero of beta at
n = 3 and n = 4 loop level with this scheme transformation for moderate α and r.



We have also considered scheme transformation involving rational transformation
functions; for example,

SQr : a =
a′

1 − ra′

where r is a (real) parameter; corresponding transformation function:

f(a′) =
1

1 − ra′

Inverse : a′ =
a

1 + ra
, Jacobian : J =

1

(1 − ra′)2
= (1 + ra)2

Here f(a′) has the Taylor series expansion

f(a′) = 1 +

∞
∑

s=1

(ra′)s ,

i.e., coefficients are ks = rs. So for small |r|a′,

a = a′
[

1 + ra′ + O
(

(ra′)2
) ]

.



Here, a′ < a if r > 0 and a′ > a if r < 0. Again, allowed range of parameter r
determined by the conditions Ci, i = 1, ..4.

For the SQr scheme transformation, as with the SLr ST, we find that the shift in the
IR zero of the beta function at 3-loop and 4-loop level is small for moderate α and r.

These results are in agreement with our previous ones for the sinh scheme
transformation.

Our studies provide a quantitative evaluation of scheme-dependent effects in
calculations of the IR zero in the beta function. We have found reasonably small
scheme-dependence in the value of the IR zero of β for moderate αIR and
ST-parameter r.



Since the coefficients bℓ at loop order ℓ ≥ 3 in the beta function are
scheme-dependent, one might expect that it would be possible, at least in the vicinity
of zero coupling (UVFP in an asymp. free theory; IRFP in an IR-free theory) to
construct a scheme transformations that would set b′ℓ = 0 for some range of ℓ ≥ 3,
and, indeed a ST that would do this for all ℓ ≥ 3, so that βα′ would consist only of the
1-loop and 2-loop terms (’t Hooft scheme).

We have constructed an explicit scheme transformation that can do this in the vicinity
of zero coupling constant. However, we have also shown that it is much more difficult
to try to do this at a zero of β away from the origin (IR zero for an asymp. free theory;
UV zero for an IR-free theory).

Specifically, we construct a scheme transformation, denoted SR,m,k1, that removes the
terms in the beta function from loop order 3 up tom+ 1, inclusive, for small coupling.
In the limit m → ∞, this transforms to the ’t Hooft scheme.

To construct this ST, first, we take advantage of the property that in b′ℓ, the ST
coefficient kℓ−1 appears only linearly. For example, b′3 = b3 + k1b2 + (k21 − k2)b1,
etc. for higher-ℓ b′ℓ. So solve eq. b′3 = 0 for k2, obtaining

k2 =
b3

b1
+
b2

b1
k1 + k21



This determines SR,2,k1.

To get SR,3,k1, substitute this k2 into expression for b′4 and solve eq. b′4 = 0, obtaining

k3 =
b4

2b1
+

3b3

b1
k1 +

5b2

2b1
k21 + k31

This determines SR,3,k1. We continue this procedure iteratively to calculate SR,m,k1
for higher m. In general, the equation b′ℓ = 0 is a linear equation for kℓ−1, so one is
guaranteed a unique solution.

So the ST SR,m,k1 has nonzero ks, s = 1, ...,m and in the transformed beta
function, sets b′ℓ = 0 for ℓ = 3, ...,m+ 1. The coefficients ks for this ST depend on
the bn in the original beta function for n = 1, ...,m+ 1, and on the parameter k1.

In addition to the successful application near the origin, α = 0, we have shown that
this ST SR,m,k1 can be applied over part, but not all, of the interval I where the
2-loop beta function has an IR zero.



Study of RG Flows in Infrared-Free Gauge Theories

If the β function of a theory is positive near zero coupling, then this theory is IR-free;
as µ increases from the IR to the UV, the coupling grows. It is of interest to
investigate whether an IR-free theory might have a UV fixed point (UV zero of β).

In addition to performing perturbative calculations of β to search for such a UVFP in
an IR-free theory, one can use large-N methods. An explicit example is the O(N )
nonlinear σ model in d = 2 + ǫ spacetime dimensions. From an exact solution of this
model in the limit N → ∞ in 1976, we found that (for small ǫ)

β(λ) =
dλ

dt
= ǫλ

(

1 −
λ

λc

)

, i.e., β(x) =
dx

dt
= ǫx

(

1 −
x

xc

)

where λ is the effective coupling, λc = 2πǫ/N ; x = limN→∞ λN , xc = 2πǫ
(W. Bardeen, B. W. Lee, and R. Shrock, Phys. Rev. D 14, 985 (1976); E. Brézin and
J. Zinn-Justin, Phys. Rev. B 14, 3110 (1976)). Thus this theory has a UVFP at xc, so
that if initial value of x < xc, then x ր xc as µ → ∞.

There has long been interest in RG properties of d = 4 QED and, more generally, U(1)
gauge theory (early work: Gell-Mann and Low; Johnson, Baker, and Willey; Adler;
Yamawaki, Miransky,..).



Consider a vectorial U(1) theory with Nf massless Dirac fermions of charge q. With no
loss of generality, set q = 1. Write β function as

βα = 2α

∞
∑

ℓ=1

bℓ a
ℓ

The 1-loop and 2-loop coefficients are

b1 =
4Nf

3
, b2 = 4Nf

These coefficients have the same sign, so the two-loop beta function, βα,2ℓ, does not
have a UV zero, and this is the maximal scheme-independent information about it. The
coefficients have been calculated up to five loops in the MS scheme.

The 3-loop coefficient (deRafael and Rosner) is negative:

b3 = −2Nf

(

1 +
22Nf

9

)

Hence, βα,3ℓ has a UV zero, namely,

α
UV,3ℓ

= 4πa
UV,3ℓ

=
4π[9 +

√

3(45 + 44Nf) ]

9 + 22Nf



The 4-loop coefficient is (Gorishny et al.)

b4 = Nf

[

− 46 +
(760

27
−

832ζ(3)

9

)

Nf −
1232

243
N 2
f

]

Numerically,
b4 = −Nf (46 + 82.97533Nf + 5.06996N 2

f ]

This is negative for all Nf > 0.

Recently, b5 has been calculated (Kataev, Larin; Baikov et al., 2012, 2013).
Numerically,

b5 = Nf(846.6966 + 798.8919Nf − 148.7919N 2
f + 9.22127N 3

f

which is positive for all Nf > 0.

In RS, PRD 89, 045019 (2014) [arXiv:1311.5268], we have investigated whether the
n-loop beta function for this U(1) gauge theory has a UV zero for n up to 5 loops, for
a large range of Nf . Our results are given in the table (dash means no UV zero).



Nf α
UV,2ℓ

α
UV,3ℓ

α
UV,4ℓ

α
UV,5ℓ

1 − 10.2720 3.0400 −
2 − 6.8700 2.4239 −
3 − 5.3689 2.0776 −
4 − 4.5017 1.8463 −
5 − 3.9279 1.67685 2.5570
10 − 2.5871 1.2135 1.3120
20 − 1.7262 0.8483 −
100 − 0.7081 0.33265 −
500 − 0.3038 0.1203 −
103 − 0.2127 0.07678 −
104 − 0.016614 0.016965 −

A necessary condition for the perturbatively calculated β function to yield evidence for
a stable UV zero is that it should remain present when one increases the loop order and
the fractional change in the value should decrease going from n to n+ 1 loops.

As is evident from the table, we do not find that the UV zeros that we have calculated
at ℓ = 3, 4, 5 loop order for a large range of Nf values satisfy this necessary
condition. Hence, our results do not give evidence for a UVFP in U(1) gauge theory for
general Nf .



We have also carried out an analysis in the limit

Nf → ∞ with finite y(µ) ≡ Nf a(µ) =
Nf α(µ)

4π
We denote this as the LNF (large-Nf) limit; analogous to N → ∞ limit in nonlinear
σ model.

We set b1 = b1,1Nf with b1,1 = 4/3. Further,

bℓ =

ℓ−1
∑

k=1

bℓ,kN
k
f for ℓ ≥ 2 ,

where the bℓ,k are independent of Nf .

Hence,
bℓ ∝ N ℓ−1

f for ℓ ≥ 2 as Nf → ∞

We thus define the finite quantities

b̌ℓ ≡
bℓ

N ℓ−1
f

for ℓ ≥ 2

so
lim

Nf→∞
b̌ℓ = bℓ,ℓ−1 for ℓ ≥ 2



We define a rescaled β function that is finite in the LNF limit as βy ≡ βαNf . Then

βy = 8πb1,1 y
2

[

1 +
1

b1,1Nf

∞
∑

ℓ=2

bℓ y
ℓ−1

]

The condition that the n-loop βy, βy,nℓ, has a zero at y 6= 0 is the equation

1 +
1

b1,1Nf

n
∑

ℓ=2

bℓ y
ℓ−1 = 0

In the LNF limit, of the n− 1 roots of this equation, the relevant one has the
approximate form

y
UV,nℓ

∼

(

−
b1,1Nf

bn,n−1

)
1

n−1

Hence, βy,nℓ has a zero for y 6= 0 in the LNF limit if and only if bn,n−1 < 0, which is
not, in general true. Further, even if it were true for a given loop order n, in the LNF
limit, limNf→∞ yUV,nℓ = ∞.

One can reexpress βy as a series in powers of ν ≡ 1/Nf :



βy = 8πb1,1 y
2
[

1 +
∞
∑

s=1

Fs(y)ν
s
]

An exact integral representation of F1(y) is known (cf. Holdom, 2010). We have used
this representation to determine the signs of bn,n−1 up to n = 24 loops. We find that
these signs are scattered, and show no indication of an onset of negative signs. This
confirms our earlier discussion.

Thus, we do not find evidence of a UVFP in a U(1) gauge theory with Nf massless
charged fermions for large Nf .

We have also studied an SU(N ) non-Abelian gauge theory with Nf massless fermions
in a given representation, for large Nf . This theory is again IR-free, and we again we
do not find evidence of a UVFP.



RG Flows in the O(N) λ|~φ|4 Theory

We have carried out a similar study, again up to 5-loop order, of another IR-free theory,
namely O(N ) λ|~φ|4 theory (in d = 4) to search for a possible UV zero of the beta
function, in RS, Phys. Rev. D 90, 065023 (2014) [arXiv:1408.3141].

Interaction term: Lint = − λ
4!
(~φ 2)2

β function : βa =
da

dt
= a

∞
∑

ℓ=1

bℓ a
ℓ where a =

λ

16π2

Coefficients:

b1 =
1

3
(N + 8) , b2 = −

1

3
(3N + 14)

b3 =
11

72
N 2 +

(

461

108
+

20ζ(3)

9

)

N +
370

27
+

88ζ(3)

9
Numerically,

b3 = 0.15278N 2 + 6.93976N + 24.4571

and so forth for b4 and b5 (calculated in MS scheme)



Although the two-loop beta function has a UV zero, it occurs at too large a value of
the coupling for the perturbative calculation to be reliable, as shown by the fact that
when one calculates to higher-loop order, the 3-loop beta function has no UV zero, and
the 4-loop and 5-loop beta functions differ considerably from the 2-loop and 3-loop beta
functions where the 2-loop function has a zero.

We have studied this further with scheme transformations and Padé approximants.

We thus conclude that in the range of λ where the perturbative calculation of the
n-loop beta function is reliable, the theory does not exhibit evidence of a UV zero up to
the level of n = 5 loops.

See figure with beta function curves and table of values of the UV zero a
UV,nℓ

of the
n-loop beta function. Dash − means no physical UV zero.
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Figure 4: Plot of the n-loop β function βa,nℓ as functions of a for N = 1 and (i) n = 2 (red), (ii) n = 3

(green), (iii) n = 4 (blue), and n = 5 (black). At a = 0.18, going from bottom to top, the curves are

for n = 4, n = 2, n = 3, and n = 5.



N a
UV,2ℓ

a
UV,3ℓ

a
UV,4ℓ

a
UV,5ℓ

1 0.5294 − 0.2333 −
2 0.5000 − 0.2217 −
3 0.4783 − 0.2123 −
4 0.4615 − 0.2044 −
5 0.4483 − 0.1978 −
6 0.4375 − 0.1920 −
7 0.4286 − 0.1869 −
8 0.42105 − 0.1823 −
9 0.4146 − 0.1783 −
10 0.4091 − 0.1746 −
100 0.3439 − 0.1012 −
1000 0.3344 − 0.07241 0.02276
3000 0.3337 − 0.5475 0.008850
104 0.3334 − − 0.003460



RG Flows in a Scalar-Fermion Theory

With E. Mølgaard, we have calculated RG flows for scalar-fermion theories in Mølgaard
and RS, PR D 89, 105007 (2014) [arXiv:1403.3058].
To study flows in simple context, use the (one-gen.) leptonic sector of the SM with the
gauge fields turned off . This has a global chiral symmetry group: SU(2)L ⊗ U(1)Y .

fermions: ψL: fund. rep. of SU(2)L with U(1)Y charge Yψ; χR: singlet of SU(2)L
with U(1)Y charge Yχ; scalar φ: fund. rep. of SU(2) with U(1)Y charge Yφ.

Set Yφ = Yψ − Yχ so Yukawa term yψ̄LχRφ+ h.c. allowed.

Fermions in Lagrangian are massless; chiral symmetry forbids fermion masses.

Now the RG flows depend on two couplings rather than one, namely y and the quartic
scalar coupling λ, so they are more complicated than the ones we have discussed so far.
Two beta functions (with dt = d lnµ):

βy =
dy

dt
, βλ =

dλ

dt



Convenient variables: ay = y2/(4π)2 and aλ = λ/(4π)2. Corresponding beta
functions: βay = day/dt = (2y)(4π)−2 βy and βaλ = daλ/dt = (4π)−2 βλ.

As before, a condition for perturbation theory to be reliable is that calculating the beta
functions to given loop orders and then comparing with beta functions calculated to one
higher loop should give similar results.

With βy and βλ calculated to various loop orders (1,1), (1,2), (2,1), (2,2), we have
integrated to get the RG flows. See plots.

For small ay and aλ, the RG flow is to the IR-free zero of both beta functions at
ay = aλ = 0, i.e., y = λ = 0.

For larger y and λ, the flows show further structure.

Comparison of these different loop-order RG flows yields information on the extent of
the region in ay and aλ where the perturbative calculations agree with each other and
hence may be reliable.



Figure 5: RG flows obtained via integration of beta functions βay,ℓ and βaλ,ℓ′ for small ay and aλ, calculated

for loop orders (ℓ, ℓ′): (1,1) (upper left); (1,2) (upper right); (2,1) (lower left); and (2,2) (lower right).

Arrows are flows from UV to IR.



Figure 6: RG flows obtained via integration of beta functions βay,ℓ and βaλ,ℓ′ for moderate ay and aλ,

calculated for loop orders (ℓ, ℓ′): (1,1) (upper left); (1,2) (upper right); (2,1) (lower left); and (2,2) (lower

right). Arrows are flows from UV to IR.



Conclusions

• Understanding the UV to IR evolution of an asymptotically free gauge theory and
the nature of the IR behavior is of fundamental field-theoretic interest.

• Our higher-loop calcs. give info. on this UV to IR flow and on determination of
αIR,nℓ and γIR,nℓ; interesting comparison with γIR from lattice.

•We have investigated effects of scheme-dependence of IR zero in the beta function
in higher-loop calculations and have constructed explicit scheme transformations that
remove higher-loop terms in beta.

• RG flows in IR-free theories: U(1) gauge theory, nonabelian g.t. with Nf > Nf,b1z,

and λ|~φ|4; general evidence against a UV zero in beta functions.

• RG flows in Yukawa models.
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