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Events / 10GeV

A tale of two Ws
» Process:pp > WW->LvLv

 Mild excesses reported by ATLAS and CMS

at 7 and 8 TeV measurements. [before 2014]
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A tale of two Ws
» Process:pp>WW->LvLEv

 Mild excesses reported by ATLAS and CMS
at 7 and 8 TeV measurements.

NNLO : 1408.5243
Gehrmann et al.

|

NI O
ATLAS CMS Theory (MCFM)

Vs || o [pb] - o [pb] o [pb]
7TeV |(51.9)307539750 (18] (52.4) 50743517 [14] |(47.0453571 080
8 TeV |(71.4)15732457 [15] (69.9)53728731 [16] | (57.25/ 185 050

ONNLO

2.1%
1.8%

2.2%
59.84) 2-2%

49.04

* Discrepancy reduces slightly at NNLO but does not go

away.

* Perhaps not so surprising since MCFM includes
gg = W W contribution (formally NNLO)




A tale of two Ws
* New physics hiding in plain sight? (£ £ + MET final state)
e Could it be SUSY?

1/10 GeV

110 GeV charginos
D. Curtin, PJ, and P. Meade,
T 40 60 80 100 Charginos hiding in plain sight
Pr (LL E ™) [GeV] [arXiv:1206.6888]

* Any new physics charged under electroweak gauge group could
possibly lead to such signatures. Other proposed explanations for the
WW excess include sleptons and stops.



A tale of two Ws

e Could the WW excess have a more subtle explanation?

e Cross-sectionreported:pp > WW + X

X are all hadronic final states i.e. inclusive measurement

 Actual measurement:pp > WW + X

X' are some hadronic final states that pass jet-veto condition.

Jet-veto : No Jets In an event

: CMS :
o1 > 30 GeV
- anti-kT jets with R=0.5 _

ATLAS :
pT > 25 GeV j,:
¢ anti-kr jets with R=0.4 |




A tale of two Ws

e Could the WW excess have a more subtle explanation?

* Cross-sectionreported:pp > WW + X

X are all hadronic final states i.e. inclusive measurement

 Actual measurement:pp > WW + X

X' are some hadronic final states that pass jet-veto condition.

. Measured Jet-veto | .| Reportedinclusive |
Cross-section ; a8 | Cross-section !

Monte-Carlo

Do we have a good thrtil nertanding of MC"?



A tale of tvvo Ws
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Do we have a good theorehcal understandmg of MC?



A tale of two Ws

* Discrepancy between pr distribution shapes from NNLL
resummation and MC JarXiv:1407.4481, P Meade et al.]

* New CMS 8 TeV analysis /cMs-PAS-SMP-14-016] reweights MC to
correct for the pr distribution.
ow+w- = 60.1 £0.9 (stat.) = 3.2 (exp.) == 3.1 (th.) = 1.6 (lum.) pb.

Theory : 59.8717 pb

Measured Jet-veto | i Reported Inclusive |
Cross-section : 8 | Cross-section !

(T AReweight{
P resummahon -.;_;?f‘_; I\/Ionte Carlo

Do we have a good theorehcal understandmg of MC?



A tale of two Ws

* Discrepancy between pr distribution shapes from NNLL
resummation and MC JarXiv:1407.4481, P Meade et al.]

* New CMS 8 TeV analysis /cMs-PAS-SMP-14-016] reweights MC to
correct for the pr distribution.
ow+w- = 60.1 £0.9 (stat.) = 3.2 (exp.) == 3.1 (th.) = 1.6 (lum.) pb.

Theory : 59.8717 pb

Some correlations between jet-veto and pT of the WW system
captured by ptreweighting technique.

Measured Jet-veto | i Reported Inclusive |
Cross-section a8 | Cross-section :

F ¥ Reweight{
pT reSumma’[IOﬂ I\/IOH’[e Carlo

Do we have a good theorehcal understandmg of MC?



A tale of two Ws

 QOur approach : Calculate jet-veto cross-section analytically by
resummation at NNLL without relying on MC.

PJ and T. Okui, An Explanation of the WW Excess at the LHC by Jet-Veto
Resummation, [arXiv:1407.4537].

Comparison of our results
with experimental data

Our Our
®Resummed M ATLASA CMS ® Resummed M ATLASA CMS
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Part 1
Large logs and their resummation



Origin of large logs

* Higher order calculations in perturbation theory
often involve logarithmic terms which under certain
situations can be large.

e Such large logs can spoil perturbative convergence
and need to be resummed to all orders.

* QOrigin of such large logs is usually the presence of
multiple scales in the problem.



Example :

Scales in
the problem

Logs at
higher orders

Choice of p to
minimize logs

Origin of \arge \ogs

. Inclusive |

pp—»WW ,"

| Jetveto |

log(M ,,,/u)
log(pyIu)

No choice of
Large logs of the form
log(p/M,, ) remain




Origin of large logs

Structure of IR logs in perturbation theory is
l+a (L*+L+1)+a’ (L + L+ L+ L+1)+..

where U T S
—M,, —i¢€ M, :
=log I T

(p;eto)2 - - (p;eto)2.

L=log

At each order in perturbation theory, leading log term
enters as powers of o L’

Consider WW production at LHC, for Mww ~ 250 GeV
and prveto ~ 25 GeV,

M
log’ _1~20

(p;eto)Z
Also, 112 terms can be sizable.




SCET

 We will use EFT to resum large logs, specifically
Soft-Collinear Etfective Theory (SCET).

Degrees of Freedom and power counting:

Unlike usual EFTs, power counting is not in the mass scale.
Instead, power counting is in the virtuality.

e Collinear Modes : (p+,p—,p1) ~ (1, )\2, A M
o Anti-collinear Modes :  (p4,p—,pL) ~ (A%, 1, \)M

* S0it Modes : (p+7p—7pJ_) ™~ (>‘7 A, A)M

—%ﬁ A= P



SCET : Parallels with generic EFTs

EFT (Fermi’s theory)

Integrate out heavy modes
(~mw) and keep only the light
modes (~my) in EFT.

Information about heavy modes .

encoded in Wilson coefficients

by matching to full theory at high |

scale.

Wilson coefficient is run down to !

a low mass scale where
computations are performed.

The RG running effective resums

large logs  ~log(mw/m)

SCET (WW jet-veto)

ntegrate out high virtualities (or
nighly off-shell modes ~ Mww) and
Keep only almost on-shell modes
(~ ptveto) in SCET.

Information about highly off-shell
modes encoded in Wilson
coefticients by matching to full
theory (i.e. QCD) at high scale.

Wilson coetticient is run down to a
low virtuality scale where

computations are performed. The
RG running effective resums large

logs ~log(Mww/pTVet)



Peculiar features of SCET

 Non-locality of SCET operators

From the power scaling of momentum components
Ot e ~ M@, O—¢c ~ )\zMgbm 01 P ~ AM ¢

Derivatives along x+ direction unsuppressed.

Example :

fdt Cl(t,...) <|>c(x++t,x_,xl)...



Peculiar features of SCET

Gauge symmetry for each sector

* Multiple copies of SU(3), one for each sector.

e j.e. Collinear modes transforgn under SU(3)c but

singlet under SU(3)e  ¢c(z) — ¢L(z) = Us(z) de(x)

e Anti-Collinear modes transform under SU(3)e but
singlet under SU(3).

* Unlike QCD, following operator not
gauge invariant under SU(3)c x SU(3)¢

w.W.,qI'" " q

qq—o Ww



Peculiar features of SCET

Wilson lines

e Wilson lines for each sector.

We(z) = Psexp [—igc / Ooods Gc+(2(8))]

—

zYs)=aT+s, 27 (s)=a, Z.(s)=7,

* Wilson lines are not only allowed in SCET due to
non-locality of operators but also essential for
constructing gauge-invariant operators.

w.W.gW T W g

Gauge invariant under SU(3)c x SU(3)c
qq—o Ww



SCET : Jet-veto calculations

e Scaling of the WW system momentum ~ M (1, 1, A)
e Scalingofx ~1/M (1, 1, 1/A)

 Keeping leading order terms in A (SCET power
counting parameter) in SCET Lagrangian and allowing
for non-locality I.e. multipole expansion

X (@™ +t2,71) T Xeig(x™+ 11, 21) Xe(z) = Wi(z) ()

- QCD .
No UV poles Scaleless integrals = 0
IR poles : €2, g UV poles = IR poles : €2 | &




SCET : Jet-veto calculations

o Match SCET to full theory (QCD) at p ~ Mww

 Bun down the Wilson coetticient from last step down to
U —~ pTveto

X (@™ +t2,71) T Xeig(x™+ 11, 21) Xe(z) = Wi(z) ()

QCD

" SCIISiraIs =0
IR poles : €2, g UV poles = IR poles : €2 | &




SCET : Jet-veto calculations

* What remains is the matrix elements of SCET operators
between initial proton states and final hadronic states,

called Beam Functions
2

= Beam function

over all X passing jet veto

« Beam Functions are generalization of PDFs
2

PDF = 3

X

> X

(51000"0
- N)J )
0000000008
o -

over all X

e Evaluate Beam Functions as OPE on to PDFs.



SCET : Jet-veto calculations

* What remains is the matrix elements of SCET operators
between initial proton states and final hadronic states,

called Beam Functions
2

= Beam function

over all X passing jet veto

* One final complication : Beam functions have
divergences which are not regulated by dimensional
regularization!

* [he additional singularities go by the name of rapidity
divergences



Part 2
Rapidity Renormalization Group



Origin of rapidity divergences

Recall :

» (Collinear Modes : (P4, p—p1) ~ (1, )‘27)‘)M

. Modes : (P+,P—,PL) ~ (A1, )M

e Soft Modes : (P+,p—p1) ~ (A A A)M

* |nthe usual EFTs, divergences arise when EFT Is run into

UV and such divergences need to be regulated.

o Similarly in SCET, UV divergences arise when we let the
theory run into high virtuality regime (or highly off-shell
regime). Such divergences are regulated by DR.

 What happens when collinear mode runs into anti-
collinear mode” Or soft mode into collinear mode”



Origin of rapidity divergences

Recall :

. Collinear Modes : (P+>P—;p1) ~ (L, A A M
. Modes : (p+,D—,p1) ~ (>\2, 1, \)M

e Soft Modes : (P4,P—,pL) ~ (A AANM

What happens when collinear mode runs into anti-
collinear mode” Or soft mode into collinear mode”
By the same logic as before, we expect divergences.

DR does not regulate such divergences because all the
modes have the same virtuality ~ (M A)=.

Need a regulator that separates these modes.



Origin of rapidity divergences

Recall :

2
. Collinear Modes : (P+:P—sp1) ~ (1, A%, \)M

. Modes : (p+,p—,m) ~ (AQ» 1, )\)M

e Soft Modes : (P4,p—,p1) ~ (M A A)M

* Need a regulator that separates these modes.
* Rapidity of these modes are vastly different : logA, -logA, |

 Need rapidity regulator to separate modes.
Correspond, ng to rapidity regulator exists a rapidity
renormalization group (RRG) equations, just as there
exists RG equations corresponding to dim reg regulator p.




Rapidity Regulator

Vast literature in SCET on rapidity regulators. We choose to work
with analytic rapidity regulator, similar to one used by Becher et al.

for Drell-Yan pT resummation [arXiv:1007.4005] . *Analytic rapidity
regulators in SCET have been used before as well.

However, formulation of RRG with analytic regulator had been
missing. We address this issue [arXiv:1506.xxxx : PJ and Takemichi Okui].

We introduce the following analytic regulator

(1) o g+ (i) o -#0

Splits the phase space integrals into regions of different rapidities

ne light-cone divergences in the beam function are now regulated
' the expense of introducing regulator scales v and v , which

-
5
play role analogous to py in DR. Correspondingly, the role of € is
played by & and ¢y




Rapidity RG (RRG)

« With the regulators in place, factorized cross-section takes the
form
do _

m ~ H(,u) ZS(/L,I/,D)B(/L,I/) B(“’D)

The hard function H(u) is the squared Wilson coefficient RG
evolved from p~Mww to p~prveto,

B(u, v) is the regulated beam function.

To cancel divergences from the beam functions, a
renormalization constant Zs has to introduced. Alternatively,
/s can be interpreted as soft function which is matrix element
consisting of states with soft modes.

Requiring cross-section to be independent of the scale v
gives RRG.

We benetfit from the condition that RG evolution is
independent of the path in (U, v) parameter space.



Rapidity RG (RRG)

« With the regulators in place, factorized cross-section takes the
form -
do

m NH(,LL) Zs(/laVaD)B(,u7V)B(/'L’D)

* Just as the initial condition for RG of the Wilson coefficient is
chosen to be p~Mww to minimize logs, similarly, initial
conditions for rapidity scales are chosen to minimize logs.

e Just as truncation in perturbation series leads to scale
uncertainty associated with y, there are scale uncertainties
associated with rapidity scales.

* While the source of u scale uncertainty can be traced to
strong coupling running, the source of v scale uncertainty

are logs of the form log(u/v) i.e. p uncertainty feeds into v
uncertainty.



Rapidity RG (RRG)

Scale uncertainties from RRG

e Qur all-order factorization formula is identical to Becher et al,
there is no dependence on rapidity scales. So, naively there

IS no rapidii

'y scale to vary that may lead to scale uncertainty.

e However, a

- a given order in resummed perturbation theory,

dependence on rapidity scale reappears which is a source
of additional scale uncertainties.

| arXiv:1506.00x : PJ and Takemichi Okui |



Part 3
Applications to WW + O jets



Counting

We work at leading order in SCET
.e. consider terms that are singular in A = prveto/Mww

Higher order corrections are suppressed by powers of A,
they are called power corrections.

Counting large logs as 1/as ,

e NLL :Keepterms up to 0(1)

 NNLL : Keep terms up to 0(as)
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Results

Comparison with fixed order

.
IIIII

(M NNLL+NLO

NNLL+NLO |

“A (> 0)

15

20 25 30
pr° [GeV]

NNLL+NLO means power corrections included

39

(M NNLL+NLO

__ NNLLANLO |
(7, > 0)

10 15 20

25 30

pre [GeV]

(which are < 1%)

39

R dependence

through log(R)

terms at NNLO



Results

- Comparison with MC+Parton shower

Madgraph '
| +Pythia |
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Vs =8TeV
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Results

¢ (I/Ve%yonly) W ATLASA CMS ¢ (Vveﬁvryonly) M ATLASA CMS
Vs =TTeV _- 60F /s = 8 TeV
| | 551 |
{+ { = 50} * 1
| = | $
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R=04 R—05 | asl_ ft=10.4 R=0.5

With m2 Resummation



2 2
lomm or nottom

e Logarithms in the Wilson coetfticient of the form

- 2 . -
—MWW—ze
2

w

log

 Matching SCET to QCD should be performed at a scale un so as to
minimize logs.

* Naive choice of un = Mww leads to factors of i m which on squaring can
give large contributions of ~ 1.

e On the other hand, un® = -(Mww)? gives no m° terms.

* |In general, un is complex while the RG equation runs down to factorization
scale which is real.

« The complex phase of un? is associated with large perturbative
corrections which can be resummed in SCET. The RGE for the Wilson
coetticient, be it real or complex, is already known.



log

Arg[unZ] = 6, we want to resum

B2 terms.

It logs are the only source of 12
terms, obvious choice is [B] = m

It not, need to vary 6 in analogy
with varying scales by factors

2 2
Tomm or nottom

Logarithms in the Wilson coefficient of the form

- 2 . -
—MWW—Z€

2

w

of 1/2 and 2.

A Im(IUZ)




2 2
Tomm ornottom

. Before |
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Impact of RRG

Jet-parameter R=1

, Before RRG |

After RRG |

7777 NNLL

NNLL

20} / 20 [/
- NLL % S NLL
10 15 20 25 30 35 10 15 20 25 30 35
P [GeV] picto [GeV]

e Scale uncertainty before RRG ~ 1% (can'’t be right)

* Scale uncertainty after RRG ~ 5%



Used by LHC
experiments

Impact of RRG _

Jet-parameter R=0.4 &

| After RRG i

' Before RRG i

,,,,,,,,

//////////////////

| i.v 106 Xx ‘: " '?,,‘
. and Takemichi Okui |

v/
'/
/4
/
I/’
/I//'
'/,’/.

77772 NNLL | 77771 NNLL
9 NLL Y NLL
10 15 20 25 30 35 10 15 20 25 30 35
pre [GeV] prEe [GeV]

* Scale uncertainty after RRG more than 10% !

* Reason for large NNLL uncertainty is large log(R) terms which arise
at NNLO and resummation of which is currently an open problem.



Future directions

 Understand correlations between pT resummation and jet-veto
resummation [work in progress with P. Meade and H. Ramani]

* (Calculation of fully differential beam function, which would allow
us to get pT distributions in the O-jet bin [work in progress with T.

Okui]

 How to resum log(R) terms.



