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Electric Field



Quantum Vacuum
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Existence of Virtual Particles
o Casimir effect
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Existence of Virtual Particles
o Lamb shift

o Light-light Scattering
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Existence of Virtual Particles
o Hawking Radiation

o Many more …

6



Schwinger Effect
o Instability of vacuum under strong external electric fields

o Electric field breaks electron-positron loop and separates them apart.

o Pair creation threshold

𝑒𝐸𝛿𝑙~𝑒𝐸
ℏ

𝑚𝑐
≳ 2𝑚𝑐2 ⇒ 𝐸𝑐~

𝑚2𝑐3

𝑒ℏ
~1016 𝑉/𝑐𝑚

Schwinger Limit
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Electric Field



Schwinger Effect
o Semi-classical picture: Tunneling process

e. g. 𝐴𝜇 = (−𝑧𝐸, 0, 0, 0)
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Diagram from 
(Damour et al, 1975)

Wave function (Klein-Gordon Equation)

(Sauter, 1931)



QED Effective Action

o encodes
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Im 𝑊 ∋

𝑅𝑒 𝑊 ∋ +  ⋯ Dispersive effects, e. g. Vacuum birefringence

+  ⋯ Absorptive effects, e. g. Vacuum pair creation

Euler–Heisenberg Lagrangian

c.f. Quantum Mechanics



QED Effective Action
Effective action for a given A

Using proper-time integral in the frame 𝐸 ∥ 𝐵

The vacuum decay rate per unit volume is
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⇒

(Schwinger, 1951)

In natural unit
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Physicists are planning 
lasers powerful enough 
to rip apart the fabric of 
space and time.



Schwinger Effect in lab?
Laser Experiments, e.g. ELI, IZEST, HiPER, …

Vacuum decay rate

Required intensity of coherent radiation
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The Schwinger Limit
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Intensity evolution (G. Mourou)



in high energy astrophysics?
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(NASA)



Schwinger Effect in Pulsars?

Pulsar?
◦ A rapidly rotating highly magnetized 

neutron star

Observational facts
◦ Very regular pulsed emission with periods 

~ 1ms to 8s

◦ Period almost always increases slowly 
except occasional glitches

◦ Very high brightness temperature 𝑇𝑏 >
1025 − 1030𝐾.
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The Crab pulsar (NASA)



More about Pulsars
o Diameter ~ 20 km

o Mass m ~ 1.4𝑚⨀

o Charges flow along the open field 
line ⇒ Coherent radio emission 
along the axis of magnetic poles, 
“Light house”

o Spinning down mechanism 
= Magnetic Dipole Radiation

𝐵𝑝

𝐺𝑎𝑢𝑠𝑠
~3 × 1019

𝑃  𝑃

𝑠

1/2
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cf. 𝐵𝑐 =
𝑚𝑒
2

𝑒
~4 × 1013𝐺

𝐵𝑐𝑟𝑎𝑏~5 × 1012𝐺

The Crab Pulsar

𝑃 −  𝑃 diagram

𝐵𝑚𝑎𝑔𝑛𝑒𝑡𝑎𝑟 ≳ 1014𝐺

Magnetars



Is a Pulsar ideal place for 
the Schwinger effect?
PROS

o The presence of strong magnetic 
fields may imply the presence of 
strong electric fields.

o still possible without disturbing 
observables from pulsars.

o Many poorly understood pulsar 
phenomena 

CONS

o Induced electric field from a 
rotating dipole

o MHD approximation (Force-free 
condition)
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Rich Phenomenology of Pulsars:
Giant Pulses
o Strong narrow pulses with a energy many times larger that of mean pulse 
energy

𝑆𝐺𝑃 > 100 × 𝑆𝑀𝑃

o Very rare. Only ~14 of out ~2000 known pulsars including the Crab emit 
giant pulses.

o A power-law distribution of pulse energy
N E > 𝐸0 = 𝐾𝐸0

−𝛼

o occur in narrow phase-windows in pulse profile

o occasionally resolved into “nanoshots” (Hankins et al, ‘03)

o Generally polarized (Jessner et al, ‘10) 

o Extremely bright, 𝑇𝑏 > 5 × 1037𝐾

o ns duration -> 30 cm 
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Rich Phenomenology of Pulsars:
Giant Pulses
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Energy distribution of the main-pulse GPs

At 600 MHz (Popov et al, ’09)At a frequency of 2100 MHz 
(Zhuravlev et al, ’11)



21

Example of a normal main pulse at 9GHz. (Hankins et al, 2007) 𝐽𝑦 ≡ 10−23
𝑒𝑟𝑔

𝑠 ⋅ 𝑐𝑚2 ⋅ 𝐻𝑧
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Example of a sparse main pulse at 9.25 GHz. (Hankins et al, 2007)



23

0.4 ns limited by hardware

A “Megapulse” from the Crab

2.2𝑀𝐽𝑦

a main pulse at 9.25 GHz. (Hankins et al, 2007)

Can the Schwinger effect 
be the origin of such a 
strong and short-period 
pulse?



Numerology
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Radio bolometric luminosity

Electric field at emission

Lower but close to the critical field, 𝐸𝑐

(Jassner, ’10)

~0.05 𝐸𝑐

𝐽𝑦 ≡ 10−23
𝑒𝑟𝑔

𝑠 ⋅ 𝑐𝑚2 ⋅ 𝐻𝑧
𝐿⨀ ≈ 3.8 × 1033𝑒𝑟𝑔/𝑠



Toy model: 
Schwinger Spark Chamber
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Power Supply

𝑗𝑒𝑥𝑡

B

Collinear Frame

𝐵 ∥ 𝐸



Toy model: 
Schwinger Spark Chamber
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Power Supply
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Toy model: 
Schwinger Spark Chamber
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Power Supply
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From QFT 
to Kinetic Theory
How to describe employ particle production and its back-reaction 
consistently?
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⇒

Quantum Correlation Function Boltzmann  and Maxwell’s Equation



Close Time Path integral
o One need to compute expectation value for a given quantum state.

o Expressing the evolution operators using path integral, we get

where the time contour is: 
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From QFT 
to Kinetic Theory
From closed-time-path effective action

We obtain equations of motion (Kadanoff-Baym eq) 
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Statistical
functions

Spectral
functions



From QFT 
to Kinetic Theory
In terms of Fourier modes

Parameterization
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QFT analogue of Boltzmann Equation



From QFT 
to Kinetic Theory
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For

Quantum Vlasov Equantion
(Kluger et al, ‘91)



From QFT 
to Kinetic Theory
Quantum Vlasov Equation

Maxwell’s equation

In the Markovian (semiclassical) Limit  𝜏𝑞𝑚 ≫ 𝜏𝑐𝑙 ≫ 𝜏𝑝𝑙 (Kluger et al, ’98)
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Compton time

particle number

Plasma oscillation

Occupation number



Toy model:
Schwinger Spark Chamber
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Power Supply
𝑗𝑒𝑥𝑡

B, E

Due to the strong magnetic 
field 𝐵 ≳ 𝐸,  only fermion pairs 
can be produced at  the lowest 
Landau level.

Vacuum Decay rate



Toy model:
Schwinger Spark Chamber
Semiclassical 1D approximation
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Vacuum Decay Rate

the width of the Chamber 

𝑗𝑒𝑥𝑡



Toy model: 
Schwinger Spark Chamber
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The electric field limit 𝐸𝑙𝑖𝑚~0.05𝐸𝑐

Schwinger spark!

1/ ln
𝑚𝑐

ℏ
𝑤 ~0.037



Validity Conditions of 
The Spark Chamber
o Finite width to prevent the plasma oscillation

o Finite radius for small induced magnetic field
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Validity Conditions of 
The Spark Chamber
o Negligible photon-induced pair production
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B, E

For                          >>  1          

(Katkov, ‘11)

Decay rate

Gamma-ray 
Flux density

(HESS coll, ‘13)

Ratio



Nanoshots
from a Spark chamber
The Poynting vector at far distance

If a Schwinger spark chamber exists near the surface of the Crab pulsar, 

luminosity and width of nanoshots
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Width of a Schwinger spark

(In natural unit)



Schwinger sparks and Nanoshots from the Crab

Schwinger spark can 
generate a wide 
range of EM pulses.
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Schwinger sparks and Nanoshots from the Crab

If nanoshots are from 
Schwinger spark, …

geometrical 
parameters are 
constrained.

3 length scales

◦ Nanoshot wid. cΔ𝑡

◦ Chamber wid. 𝑤

◦ Spark wid. c𝛿𝑡∗

=> Obs. Data 
indicates 𝑐Δ𝑡~𝑤~𝑐𝛿𝑡∗
.
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160 𝑘𝐽𝑦



Summary & Outlook
o We construct a toy model that generates a narrow EM pulse from the 
Schwinger effect, a “Schwinger spark”. 

o We derive the 1D evolution equation of field from QV equation and 
Maxwell’s equations for the toy model.
 Effects of collisional terms, validity conditions for QV equation?

o Schwinger spark can be a feasible origin of giant pulses (nanoshots) 
from the Crab pulsar.

o If so, the model suggests the existence of a region that has a strong 
electric field 𝐸~0.05𝐸𝑐 and a size similar to the width of nanoshots
𝑤~𝑐Δ𝑡~30𝑐𝑚. 
 High energy electron-positron pairs (𝐸~10𝑃𝑒𝑉 ) are also generated.

◦ pair cascade in the pulsar magnetosphere

◦ PeV neutrinos
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Mean Profile of the Crab Pulsar
(Hankins et al, ‘07)



Vacuum Pair Production
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Virtual Pair
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Electric Field

Gravitational 
Particle
Production

The Schwinger
effect


