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Top: a very special quark

The only ‘natural’ quark	


yt ~ 1

Strongly coupled to the 
Higgs sector

Decay before 
hadronization Probe strong 	



interactions

Probe weak interactions

FOCUS OF THIS TALK



1995: milestone discovery
Single top production 

established as well

Mass,            , W hel fractions, 	


|Vtb|, spin correlations, s-t 
channel single top,  AFB …

�tt̄, �t

The top-quark: a Tevatron success



LHC as a top factory

Figure 2. NLO inclusive cross sections for single and top quark pair production with and without an accom-

panying Z boson. The NLO tt̄Z cross section is estimated from the lowest order result using a K-factor of

1.39 and renormalization and factorization scales µ = mt +mZ/2 [4].

consider the full process (and similarly for the charge conjugate process),

u+ b → t+ Z + d
|
|

|→ µ− + µ+

|→ ν + e+ + b

(1.3)

where the leptonic decay of the top quark is included and we have specified the charged leptons that
are associated with the Z decay. The top quark decay is included using the techniques described in
Refs. [9–11] and retains all spin correlations at the expense of requiring the top quark to be treated
exactly on-shell. Since this calculation involves an incoming b-quark it is necessarily a five-flavor
calculation.

We have also considered the closely-related single top + H process which is of smaller phenomeno-
logical interest in the Standard Model. A brief description of the next-to-leading order result is given
in Appendix B.
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[Campbell, Ellis, Rontsch (2013)]

From discovery to PRECISION PHYSICS



theory: pretty good shapett̄
QCD corrections: an old story [Nason et al (1988)] 

More (~) recent developments:	


• NLO with decay [Melnikov et al (2009), Campbell et al (MCFM)]	



• Spin correlation studies [Mahlon and Parke (2010)]	



• Resummations [Cacciari et al (2012), Beneke et al (2010), Czakon 
et al (2009), Bonciani et al (2008)]	



• Top pair plus jets [Dittmaier et al (2008-2009), Melnikov et al 
(2010), Bredstein et al, Bevilacqua et al (2010)]	



• Full NNLO for stable tops [Czakon et al (2013)]	



• Electroweak corrections [Kuhn et al (2006)] 	


• Parton shower, automation…

FEW PERCENT ACCURACY IS POSSIBLE



Single-top: smaller rates, but sizable yield

A lot is known:	


• NLO in the 4/5FS [Bordes et al (1995), Stelzer et al (1997), Harris 

et al (2002), Beccaria et al (2008), Heim et al (2010)]	



• Corrections with decaying top [Campbell et al (2004-2009), 

Cao et al (2005), Schwienhorst et al (2011), Pittau(1996), Falgari et al 
(2010,2011), Papanastasiou et al (2013)]	



• Soft gluon approximations [Kidonakis; Zhu et al (2010,2011)]	



• NLO + PS, automation [Frederix et al (2012), Alioli et al (2009)]

IS IT ENOUGH TO CLAIM ~ PERCENT 	


THEORETICAL ACCURACY?



Single-top: a closer look
Three distinct production mechanisms

T-CHANNEL

LHC8: ~ 82%	


TEV: ~ 65%

ASSOCIATED PRODUCTION

LHC8: ~ 15%	


TEV: ~ 0

S-CHANNEL

LHC8: ~ 5%	


TEV: ~ 33%

requirement: ~ percent accuracy in the T-CHANNEL



t-channel single top: do we need NNLO?

LOOK AT THE NLO PREDICTION

�LO = 53.77 + 3.03� 4.33 pb

The total cross section at the 8 TeV LHC:

�NLO = 55.13 + 1.63� 0.90 pb

“Small ~ 2% corrections, no need to go further”

HOWEVER…

NAIVELY:



T-channel single top: do we need NNLO?

�LO = 53.77 + 3.03� 4.33 pb

The total cross section at the 8 TeV LHC:  A CLOSER LOOK

�NLO = 55.13 + 1.63� 0.90 pb

+12% -14%

Large cancellations among channels



T-channel single top: do we need NNLO?

�LO = 53.77 + 3.03� 4.33 pb

The total cross section at the 8 TeV LHC:  A CLOSER LOOK

�NLO = 55.13 + 1.63� 0.90 pb 3

FIG. 3: Scale dependence of the 2 → 2 and 2 → 3 calculations,
at LO (dashed) and NLO (solid) order. Factorization and
renormalization scales in the heavy and light quark lines are
equal to µ. For the LHC only top production is considered,
the behaviour of the anti-top being very similar.

jet distributions at the Tevatron [34] and the LHC. On
the other hand, the distributions of the spectator b’s are
significantly affected.

In Fig. 3 we show the cross sections for top produc-
tion at the Tevatron and the LHC in the two schemes
as a function of µ/mt, where µ is a common renormal-
ization and factorization scale. The 4F calculation has a
stronger dependence on the scale than the 5F one, par-
ticularly at the Tevatron, which simply reflects the fact
that the 2 → 3 Born calculation already contains a fac-
tor of αs. However, we observe that both calculations are
much more stable under scale variations at NLO than at
LO. To establish an optimal central value for the scales,
we have studied separately the scale dependence associ-
ated with the light and heavy quark lines. As expected,
most of the overall scale dependence is inherited from
the heavy quark line. In the 4F scheme it is minimal
for scales around mt/2 and mt/4 for the light and heavy
quark lines respectively, which therefore sets our central
scale choice. In the 5F scheme the scale dependence is
very mild and we simply choose mt for both lines.

Table I shows the predictions for the total cross sec-
tions in the two schemes, together with their uncertain-
ties. The scale uncertainties are evaluated by varying the
renormalization and factorization scales independently
between µL,H

0 /2 < µF,R < 2µL,H
0 with 1/2 < µF /µR < 2

and µL/µH constant. We see that the uncertainty in
the 4F scheme is larger than (similar to) that in the 5F
scheme at the Tevatron (LHC). The difference between
the NLO predictions in the two schemes is rather small,
with uncertainties typically less than 5% in both cases.

The exception is the 4F calculation at the Tevatron with
an uncertainty of around 10%, which is however still of
the same order as the absolute difference with the 5F
calculation. The small scale uncertainties together with
quite modest increases of the cross sections from LO to
NLO provide a clear indication that the perturbative ex-
pansions are very well behaved.

In Fig. 4 we compare NLO predictions for the top
quark and light jet pseudo rapidity η and transverse mo-
mentum pT . To define the light jet we used the kT al-
gorithm and imposed pT > 15 GeV, ∆R > 0.7. Results
are presented as a bin-by-bin ratio of the normalized (4F
and 5F) distributions. For the LHC only top production
is shown, with the behaviour of the anti-top very similar.
Although the predictions differ somewhat, the differences
are typically at the 10% level and always less than 20%.
Finally, we study the NLO distributions in η and pT for
the spectator b. We find that the fraction of events at
the Tevatron (LHC) where the b is central and at high-pT

(|η| < 2.5, pT > 20 GeV) is 28% (36%) with a very small
scale dependence. From Fig. 5 we see that the largest ef-
fects in the shapes are present at the Tevatron, where the
spectator b tends to be more forward and softer at high
pT than in the 5F calculation (where these observables
are effectively only at LO).

We have reported on the computation of the NLO
corrections to the EW production of top and bottom
quarks through the t-channel exchange of a W boson,
keeping the mass of the heavy quarks finite. This allows
a systematic study of the approximations and improve-
ments associated with the different schemes for treating
heavy flavors in QCD. We find that the 4F calculation
is well behaved: it displays a 10% (4%) scale uncer-
tainty and a modest (very small) increase of the cross
section from LO to NLO at the Tevatron (LHC). It gives
rates that are slightly smaller than the 5F predictions
(by about 6%). The two calculations are consistent at
the Tevatron, where the uncertainty of the 4F calcula-
tion is similar to their difference and marginally consis-
tent at the LHC, where the estimated uncertainties are
much smaller. Such a difference could be interpreted as

Born
TeV t (= t̄) LHC t LHC t̄

(LO) NLO (LO) NLO (LO) NLO

2 → 2 (0.92) 1.00+0.03+0.10
−0.02−0.08 (153) 156+4+3

−4−4 (89) 93+3+2
−2−2

2 → 3 (0.68) 0.94+0.07+0.08
−0.11−0.07 (143) 146+4+3

−7−3 (81) 86+4+2
−3−2

TABLE I: Inclusive cross sections (in pb) for t-channel single
top production at the Tevatron and LHC using (CTEQ6L1)
CTEQ6.6 PDF’s for the (LO) NLO predictions and µL

0 = mt

(µH
0 = mt) and µL

0 = mt/2 (µH
0 = mt/4) as central values

for the factorization and renormalization scales for the light
(heavy) line in the 5F and 4F schemes, respectively. The first
uncertainty comes from scale variations, the second from PDF
errors.

[Campbell et al (2009)]

•Scale variation similar to 
corrections	



•~ percent difference 
between 4FNS/5FNS 
calculations



T-channel single top: do we need NNLO?

�LO = 53.77 + 3.03� 4.33 pb

The total cross section at the 8 TeV LHC:  A CLOSER LOOK

�NLO = 55.13 + 1.63� 0.90 pb

•Large (accidental?) cancellations between channels	


•Scale variation (~ NNLO!) as large as corrections	


•Larger corrections for more exclusive observables

To control single-top production at the percent level:	


NNLO CORRECTION TO T-CHANNEL PRODUCTION



Single-top t-channel 
prediction @ NNLO



Anatomy of a NNLO computation

RRRVVV

THE GOAL	


To be useful, our computation must be:	



•Fully differential in the top quark	


•Top-decay friendly -> keep track of spin correlations

The ingredients:



Single-top in the ‘factorized’ approximation

Two-loop amplitudes:

Trivial (~NLO2)

Simple

~OK

(very) hard

Must be interfered with tree-level -> COLOR SINGLET

The ‘hard’ amplitude contribution is suppressed by 1/Nc2

In the following, I will CONSISTENTLY NEGLECT IT
[‘factorized/structure function/DIS’ approximation]



Anatomy of a NNLO computation

RRRVVV

[Bonciani et al (2008), 	


Beneke et al (2009)]

Individual ingredients known for a while. 	


What prevented from doing the computation?

A (generic) procedure to extract IR poles from 	


RV and RR was unknown until very recently 

[Campbell et al (2005)]



The big problem: extracting IR divergences

RRRVVV

Z hvv4
✏4

+
vv3
✏3

+
vv2
✏2

+
vv1
✏

+ vv0
i
d�2

Z h rv2
✏2

+
rv1
✏

+ rv0
i
d�3

Z
[rr0] d�4

Divergences are “hidden” in the PS, only become 
manifest after PS integration



The big problem: extracting IR divergences

RRRVVV

Divergences only manifest after PS integration

What we want: arbitrary cuts // arbitrary 
distributions -> fully differential, no PS integration

We need a way to extract IR singularities without 
performing the full PS integration



One step back: the standard NLO solution
Add and subtract local counterterms 

� = �v + �r !
Z

Vd�2 +

Z
[R�S] d�3 +

Z
Sd�3

REQUIREMENTS FOR THE COUNTERTERMS:	


•    approximates     in any unresolved configuration ->	


              is integrable without further regularization	



•    should be integrable analytically for a generic 	


configuration of the H+jet system ->	


and           exactly cancels the poles in     (KLN theorem)

S R

S
R� S

Z
Sd�3 !

Z
[Sd�1]⌦ d�2

[Sd�1] V



The subtraction paradigm: NLO vs NNLO

Nice and universal solution. The problem:	


• find appropriate counterterms (~ easy, use universal 

soft/collinear behavior of QCD)	


• INTEGRATE THEM OVER UNRESOLVED PHASE SPACE 

one extra gluon, can be 
soft and/or collinear

Relatively easy to find    and compute S [Sd�1]

NLO

[Catani, Seymour (1996)]



The subtraction paradigm: NLO vs NNLO

NNLO

2 unresolved gluons, many different 
unresolved configurations

[Sd�2] extremely challenging task

Same configurations as NLO, but 
complicated analytical structure of 
the amplitude (branch cuts in soft/

collinear variables)

MUCH MORE COMPLICATED THAN NLO



The subtraction paradigm @ NNLO:	


a long journey

• proof of concept: IR cancellations for e+e- -> dijet 
[Gehrmann-de Ridder, Gehrmann, Glover (2004)]

• dijet and trijet in e+e- collisions

[Gehrmann-de Ridder, Gehrmann, Glover, Heinrich (2007)]

• extension to hadron collider: 	


DIJET PRODUCTION AT THE LHC (gg only)

[Gehrmann-de Ridder, Gehrmann, Glover, Pires (2013)]

• processes involving massive particles: work in progress



The subtraction paradigm @ NNLO:	


nice shortcuts for simpler processes

For specific processes, the subtraction terms can be 
obtained much more easily from resummation formulas

• qT resummation: Higgs, W/ZH, Drell-Yan, γγ, Zγ	


[Catani, Cieri, De Florian, Ferrera, Grazzini, Kallweit, Torre (2007-2013)]	



• SCET + phase space slicing: top decay	


[Gao, Li, Zhu (2012)]

Powerful techniques, but BOUND TO THE EXISTENCE OF A 
RESUMMATION FORMULA 	



(common lore at the LHC: production of colorless states (?))



The subtraction paradigm @ NNLO:

Can we find a fully generic approach 
to NNLO computation which does 
not involve analytic integration over 

complicated counterterms?



A different approach:	


LET  THE  PHASE SPACE  INTEGRATE  FOR  YOU

Again a simpler NLO example: 

|M |2 ⇠ 1

1� cos ✓

dd�1g

(2⇡)d�1
2Eg

⇠
�
1� cos

2 ✓
��✏

d cos ✓

✓
Z

|M |2d�3 ⇠
Z

d cos ✓

(1� cos ✓)1+✏
f(cos ✓, {y}){dy}2

Z
dx

x

1+✏
f(x, {y}) = �f(0, {y})

✏

+

Z 1

0
dx

f(x, {y})�f(0, {y})
x

cos ✓ ! 1� 2x

With this parametrization, (integrated) subtractions arise 
naturally from the PS, no need for analytic integration



A different approach:	


LET  THE  PHASE SPACE  INTEGRATE  FOR  YOU

Again a simpler NLO example: 

|M |2 ⇠ 1

1� cos ✓

dd�1g

(2⇡)d�1
2Eg

⇠
�
1� cos

2 ✓
��✏

d cos ✓

✓

Z
dx

x

1+✏
f(x, {y}) = �f(0, {y})

✏

+

Z 1

0
dx

f(x, {y})�f(0, {y})
x

cos ✓ ! 1� 2x



Basic idea: find a clever parametrization of the PS which makes 	


IR SINGULARITIES MANIFEST:

Z
|M |2d� !

F (x) =

Z
[|M |2x]{dy}

Remap singular denominators on the hypercube	


• Singularities are extracted before integration	


• Subtraction terms given in terms of reduced (=lower 

multiplicity) ME and universal soft/collinear factors

Z
[|M |2x]{dy} dx

x

1+✏
= �1

✏

F (0) +

Z
dx

F (x)� F (0)

x

+ ...

A different approach:	


LET  THE  PHASE SPACE  INTEGRATE  FOR  YOU



NNLO: same spirit, new problems to solve
Overlapping divergences       SECTOR DECOMPOSITION

|M |2 ⇠ 1

sijk
=

1

sij + sik + sjk

•Sector 1: x1 > x2 ! x2 = zx1

Z
|M |2d� ⇠

Z
dx1dx2

x

1+✏
1 x

1+✏
2 (x1 + x2)✏

F (~x; {y}){dy}

Z
|M |2d� ⇠

Z
dx1dz

x

1+3✏
1 z

1+✏(1 + z)✏
F (~x; {y}){dy}

•Sector II: 
Z

|M |2d� ⇠
Z

dtdx2

t

1+✏
x

1+3✏
2 (1 + t)✏

F (~x; {y}){dy}

x1 < x2 ! x1 = tx2

[Binoth, Heinrich;  Anastasiou, Melnikov, Petriello (2004)]



SECTOR DECOMPOSITION: pro et contra

Powerful tool for fully differential NNLO computations:	


• dijet production at LEP  [Anastasiou, Melnikov, Petriello (2004)]	


• Higgs production at hadron colliders  [Anastasiou, Melnikov, Petriello (2005)]	


• DY production at hadron colliders  [Melnikov, Petriello (2006)]	



• bb->H  [Bühler, Herzog et al (2012)]

Subtraction and integrated subtraction terms are for free	


(no need for analytic PS integrations)

BUT	


Parametrization become challenging for more complicated processes

Parametrization known only for ONE COLLINEAR DIRECTION

As it is, highly process-dependent framework

Z
|M |2d� =

F (0)

✏

+

Z
dx

F (x)� F (0)

x

+ ...



Finding a ‘good’ global parametrization is (very) hard

Higgs plus jet: singularity structure
Much more complicated singularity structure. Collinear:

x3

x2,

Potential troubles: and combinationss1g, s2g, s3g, sgg, s1gg, s2gg, s3gg

⇠ Pqgg · |M |2

sigg
,
Pgg ⌦ |Mj |2

sgg

⇠ PqqPqq · |M |2

sigsjg



Sector-improved subtraction scheme
HOWEVER: collinear sing. cannot occur all together [Czakon (2010)] 

sigg, sgg
sig, sjg

Troubles:	


             only Troubles:	



             only

Can we make use of it, i.e. 	


can we single out different collinear directions?

YES, just use the Frixione-Kunszt-Signer (FKS) partitioning
[Czakon (2010)] 

�g1||i,g2||j
s ! 0 when g1||pl, g2||pm, l 6= i, m 6= j

1 =
X

�g1||i,g2||j



FKS redux
Again the NLO case [Frixione, Kunszt, Signer (1995)]

⇢i = 1� cos ✓ig

✓1g

✓2g ✓3g

1 =
⇢2⇢3 + ⇢1⇢3 + ⇢1⇢2
⇢2⇢3 + ⇢1⇢3 + ⇢1⇢2

Z
|M |2 · 1 d�3 =

Z |M |2⇢2⇢3 d�3

⇢2⇢3 + ⇢1⇢3 + ⇢1⇢2
+

Z |M |2⇢1⇢3 d�3

⇢2⇢3 + ⇢1⇢3 + ⇢1⇢2
+

Z |M |2⇢1⇢2 d�3

⇢2⇢3 + ⇢1⇢3 + ⇢1⇢2



Sector-improved subtraction scheme
Sector decomposition + FKS

Z
|M |2d� =

X

s

Z
|M |2d��g1||i,g2||j

s

Z
|M |2d��g1||1,g2||1

Z
|M |2d��g1||1,g2||3

Single collinear direction	


 ∼ parametrization of 
ggH, DY, e+e- → dijets

No matter how complicated the process is,	


it can be reduced to the sum of individual contributions. For each of 
them, we know a sector decomposition-friendly PS parametrization	



[Czakon (2010)]

Two (∼uncorrelated) dir.	


∼ NLO^2



Sector-improved subtractio: single-top
Worked-out details for RR: [Czakon (2010)] 

(Although we use a slightly different parametrization and sector definition)

Three triple-collinear partitions	


Each: 5 sectors

Six double-collinear (energy ordering) 	


No sector decomposition required

RRi =

Z
Fi(x1, x2, x3, x4, {y})

Y
dxi

x

1+ai✏
i

{dy} =

Z
{dy}

(
Fi(~0, {y})

a✏

4
+

1

✏

3

" 
Fi(x1, 0, 0, 0, {y})� Fi(~0, {y})

bx1

!
dx1 + ...

#
+ ...

)



Sector-improved subtraction: single-top
Worked-out details for RV: [Boughezal, Melnikov, Petriello (2011)] 

Three collinear partitions	


(same of NLO)

Phase-space is simple (same of NLO), but amplitudes have 	


non trivial branch-cuts

RVi =

Z
{dy} dx1

x

1+2✏
1

dx2

x

1+✏
2

�
Fi,1 + (x2

1x2)
�✏

Fi,2 + x

�2✏
1 Fi,3

�
=

=

Z
{dy}


A

✏4
+

B

✏3
+

C

✏2
+

D

✏
+ E

�



Sector-improved subtraction: 	


building blocks

Recall the general structure:	


!

F (x) =

Z
[|M |2x]{dy}

We need to provide	


•                : fully-resolved matrix element (RR and RV)	



•                      : matrix element in a singular configuration 

F (~x; {y})
lim
xi!0

F (~x; {y})

lim
xi!0

F (~x; {y})                     : reduced (=lower multiplicity) matrix 
element times universal eikonals / splitting functions

[Catani, Grazzini (1998, 2000); Kosower, Uwer (1999)]

At the end: ∼ 100 different configurations to consider

Z
|M |2d� =

F (0)

✏

+

Z
dx

F (x)� F (0)

x

+ ...



Single-top: building blocks

Apart from eikonals/splitting functions, we require	


• tree-level t+3j	


• tree-level t+2j up to         (although          cancels out)	


• tree-level t+j	



• one-loop t+2j [Campbell et al (2009)]	



• one-loop t+1j up to           (although see [Weinzierl (2011)])	



• two-loop t+1j [Bonciani, Ferroglia (2008); Beneke et al (2009)]	



• renormalization, collinear subtractions

Because of gluon spin correlations, we chose to work in full CDR

O(✏)

O(✏2)

Amplitudes are evaluated near to singular configurations: 
have to be very stable (and possibly fast) →	



ANALYTIC RESULTS, SPINOR-HELICITY FORMALISM

EXTREMELY GRATEFUL TO MCFM FOR PROVIDING 
EXCELLENT AMPLITUDES ALREADY AS A FORTRAN CODE!

O(✏)



A glimpse into technical details: D-dim angles

1

3

4
5

2

p12 = (x,0,0,x)	


p3 = (x,x,0,x)	


p4 = (x,x,x,x)	


p5 = (x,x,x,x; x)

Fundamental for proper spin correlations 
in the collinear limit (the price of locality...)

|M |2 ! Pµ⌫g|M |
2

µ⌫ hPµ⌫g|M |
2

µ⌫id=4 6= PAP
g|M |

2

NLO: force correct behavior by hand. NNLO: more involved 
correlations; soft/collinear FKS dampings do not collapse



1
p12 = (x,0,0,x)	


p3 = (x,x,0,x)	


p4 = (x,x,0,x)	


p5 = (x,x,x,x; x)

Should we define D-dim observables and 
compute amplitudes with D-dim momenta?

A trick: rotate such that the softest gluon has 5d
Then, only potential problem: 	



hardest gluon collinear, softest gluon generic

2

5

34

p12 = (x,0,0,x)	


p3 = (x,x,0,x)	


p4 = (x,x,0,x)	


p5 = (x,x,x,x; 0)

Ry5

One direction is lost -> 
ROTATE AGAIN

D-dim momenta always decouple from reduced ME 
and observables, at any stage of the computation

Do NOT decouple from eikonals/splitting functions



D-dim angles: spinor-helicity in higher dimension
Because of gluon spin correlations, we are forced to work in full CDR

We need        and          for tree and 1-loop amplitudesO(✏2)O(✏)

Naively: just square a bunch of diagrams.	


But we want to KEEP TRACK OF SPIN CORRELATIONS

O(✏)

Scalar-like gluons with polarization vectors pointing in the D=5,6 
subspaces

Similar to what is done for 1-loop in D-dimensional unitarity	


•although slightly more tricky if quarks are around	


  [                          (1-loop) vs                      (here)]	



•and analytic-friendly

ū�µp̂1...p̂n�
µv ū�µp̂1...p̂kv

Dimensional reconstruction:          from spinor-helicity in higher D



Finally, we note that following a similar approach, it is straightforward to obtain the double-

correlated matrix element |Mspin(h1, h′1, h2, h
′
2)|2, which is needed to describe singular limits

in the double-collinear sectors.

We also need to discuss the ϵ-dependent parts of 0 → Hgggg amplitudes. In this case,

we use the following color decomposition

A(1h1 , 2h2 , 3h3 , 4h4) = 2iλ(0)
Hggg

2
s

∑

σ∈S2

(F cσ(2) · F cσ(3))c1c4A(1
h1 , 2h2 , 3h3 , 4h4). (5.7)

The situation now is slightly more involved than before because there are more options for

extra-dimensional polarizations. Indeed, with four gluons the amplitude does not vanish

if all of them have identical extra-dimensional polarizations but also when there are two

pairs of gluons with different extra-dimensional polarizations. We will denote color-ordered

amplitudes for these cases as A(1s, 2s, 3s, 4s) and A(1s, 2s, 3s
′

, 4s
′

). These amplitudes can be

written in a relatively compact form. For example,

A(1s, 2s, 3s, 4s) =
4
∑

i=0

RiF (1, 2, 3, 4),

F (1, 2, 3, 4) =
m2

h

s123

(

1 +
s12
s23

+
s23
s12

)

−
(

m2
h

2s12
+

m2
h

2s23

)

+
1

2

(

s12s34
s14s23

−
s13s24
s12s34

)

,

A(1s, 2s, 3s
′

, 4s
′

) = m2
h

(

s14 + s12
s12s124

−
s13

s12s123
+

s14 + s34
s34s134

−
s24

s34s234

)

+
s14s23
s12s34

−
s13s24
s12s34

− 1,

A(1s, 2s
′

, 3s, 4s
′

) = 2−m2
h

(

1

s124
+

1

s134
+

1

s234
+

1

s123

)

,

(5.8)

where R is a permutation operator defined as RF (a, b, c, d) = F (b, c, d, a). The amplitudes

remain compact even if only one pair of gluons has extra-dimensional polarization. For

example, we obtain

A(1s, 2+, 3s, 4+) = −
⟨1|ph|4]⟨3|ph|4]
s123⟨12⟩⟨23⟩

+
⟨1|ph|2]⟨3|ph|2]
s134⟨14⟩⟨34⟩

+
m2

h⟨13⟩2

⟨12⟩⟨14⟩⟨23⟩⟨34⟩
, (5.9)

where ph is the outgoing momentum of the Higgs boson. Similar results for all other helicity

configurations can be derived.

We are now in position to discuss how to use these amplitudes to assemble the matrix

element squared for 0 → Hgggg, summed over polarization vectors of all gluons. Similar

to the 0 → Hggg case that we already discussed, amplitudes with two gluons with extra-

dimensional polarizations, e.g. A(1i, 2j , 3s, 4s), enter with a (d− 4) = −2ϵ weight. The same

is true for the amplitude A(1s, 2s, 3s, 4s), as s just counts the number of extra-dimensional

polarizations. For amplitudes like A(1s, 2s, 3s
′

, 4s
′

), we have again d− 4 polarizations for the
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t-channel single-top 	


at NNLO: 

(preliminary) results
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Single-top @ NNLO
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Conclusions

• We presented results for (DIS-like) t-channel single-top	



• O(82%) of the total cross-section at the LHC	



• Neglected term color-suppressed -> subdominant	



• Result needed for reliable ~ percent theoretical control	



• Already now, LHC can measure the total cross-section at the 
~10 % level (Tevatron final combinations: ~ 20%)	



• Corrections are small -> perturbative expansion behaving well	



• NNLO dependence on μ very small -> use for PDFs?	





Conclusions
NNLO QCD for generic fully exclusive observables is feasible 	



• In theory:	



• The antenna method 	



• FKS+sector decomposition [Czakon (2010), Boughezal, Melnikov, 
Petriello (2011)]	



• Semi-analytic subtraction (for e+e-) [Bolzoni, Del Duca, Somogyi, 
Trocsanyi (2010) 	



• In practice:	



•      production [Czakon, Fiedler, Mitov (2013)]	



• dijet production [Currie, Gehrmann-De Ridder, Gehrmann, Glover, Pires 
(2013,2014)	



• Higgs plus 1 jet [Boughezal, FC, Melnikov, Petriello, Schulze (2013)]

[Gehrmann-de Ridder, Gehrmann, Glover (2004)]

tt̄



Outlook

• For real phenomenology: include top-quark decay	



• spin information is always traced -> simple to interface	



• we know top-decay@NNLO [Brucherseifer, FC, Melnikov (2013)]	



• missing step: combining everything	



• Compute interesting differential distributions	



• lepton/jet distributions, angular correlations…	



• Results with ATLAS/CMS setup

INTERESTING LHC PHENOMENOLOGY 	


BEHIND THE CORNER!



Thank you for  
your attention!


