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The SM as an effective field theory
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The Hierarchy Problem

It is interesting, that mass terms for (chiral) fermions and gauge bosons are
forbidden by gauge symmetries.

mQ̄L q
c
R m2AµA

µ
m2H†H

A mass term for a fundamental scalar however can only be eliminated by an
extension of the spacetime symmetry. Such extensions can be divided into
two classes ,

• Supersymmetry
• Conformal Symmetry



The Flavor Problem

The term “Flavor Problem” refers to two different issues.

The first is, that the SM does not explain the orgin of the structure of the
Yukawa matrices and therefore of the CKM matrix.

Y ∼


 ⇒ VCKM ∼




The other aspect is, that new resonances in possible extensions of the SM
can lead to flavor-changing neutral currents (FCNCs), which are loop and
GIM suppressed in the SM.



The Flavor Problem

Theories, which try to explain the flavor structure of the SM are often based
on abelian flavor symmetries, so called Froggatt-Nielsen models.
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However, such a symmetry still allows for large contributions to FCNCs.
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The Flavor Problem

A larger non-abelian symmetry group can solve that problem. In so called
minimal flavor violating (MFV) scenarios, the Wilson coefficients are
proportional to spurions, whose vev corresponds to the Yukawa couplings,
〈χq〉
ΛFl
≡ Yq, so that

Cd =
1

Λ2
Fl

χdχd → Yd Yd

Clearly, this ansatz will not shed any light on the origin of the structure of the
Yukawa matrices.

It is remarkable, that there are theories, which combine the advantages of
MFV models and the Frogatt Nielsen idea.



The Randall-Sundrum Model

SU(3)C × U(1)EMSU(3)C × SU(2)L × U(1)Y
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The Randall-Sundrum Model

UV brane IR brane
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The Randall-Sundrum Model

UV brane IR brane
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The Randall-Sundrum Model

• The entries of the fundamental Yukawa matrices (Yd)ij are anarchical
and ∝ 1:

(Y eff
d )ij ≡ F (cQi)(Yd)
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ij

• Hierarchies in the masses and mixing angles depend solely on natural
parameters,
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The Randall-Sundrum Model

The same parameters, which generate the masses of the light quarks
suppress contributions to FCNCs: RS-GIM.

md ∼
v√
2
F (cQ1)Y

(5D)
d F (cd)

∼ v√
2
Y eff
d

h

F (cQ1
)

F (cd)

Yd 〈H〉

g2
s L

M2
KK

F (cQ1
)F (cd)F (cQ2

)F (cs)

∼ g2
s

M2
KK

L
2mdms(
vY

(5D)
d

)2

g(1)

gs
√
L gs

√
L

d

s

s

d

F (cQ1
)

F (cQ2
) F (cd)

F (cs)



AdS/CFT

The IR brane corresponds to a confining phase at the scale ΛIR.
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AdS/CFT- Example

Consider a bulk U(1) gauge theory. The dual theory corresponds to a model
with an elementary U(1) gauge field and a strongly coupled sector including
an operator with the same quantum numbers as the gauge field.

L = −1

4
FµνF

µν + ωAµJ
µ + Lcomposite

The boundary conditions on both branes determine the character of this
global symmetry:

• Dirichlet BCs on the UV brane remove the gauge field from the dual
theory.

• Dirichlet BCs on the IR brane correspond to a spontaneous breaking of
the global symmetry through confinement.



AdS/CFT

The dual of a 5D theory with bulk fermions is similar
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Couplings to vector mesons read
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AdS/CFT
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Flavor Physics in the RS Model

Large mixing angles suggest large effects in observables which are
sensitive to couplings of third generation quarks.
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The RS Flavour Problem

The RS-GIM mechanism is extremely effective, apart from one observable,
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The RS Flavour Problem

If we had a gauge boson which couples with opposite sign to left- and
right-handed quarks, but with the same coupling strength as the KK gluons,
we could evade the εK- constraint. Something like a 5D axigluon.

Extend the strong bulk gauge group to SU(3)Doublet ⊗ SU(3)Singlet

Lint 3 gD Q̄GDµ γµQ+ gS q̄ G
S
µ γ

µq

and break it via boundary conditions into the gluon

gµ = GDµ cos θ +GSµ sin θ with tan θ = gD/gs

and the axigluon (only for tan θ = 1 it is a clean axigluon)

Aµ = GDµ sin θ −GSµ cos θ

so that
Lint 3 gs (Q̄ gµγ

µQ+ q̄ gµ γ
µq )

+gs ( tan θ Q̄Aµγ
µQ − cot θ q̄ Aµ γ

µq )
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The RS Flavour Problem

Since the SM quarks are (up to small admixtures suppressed by the KK
scale), the zero modes of the 5D doublets/singlets respectively, we achieve
the opposite sign coupling, independent of the mixing angle θ

C4 ∼

KK gluon:
KK axigluon:

gs gs

gs tan θ −gs cot θ

qL

qL

qR

qR

Note that for C1/C̃1

the contributions add
up!

The contributions cancel, if the flavourchanging non-diagonal couplings are
the same. These are specified by overlap integrals of the whole tower of KK
bosons with the profile functions of the SM quarks.
⇒ Set by the boundary conditions.



The RS Flavour Problem
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The RS Flavour Problem

We have to sum over the KK modes

D(t, t′; p) =
∑
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The gluon needs Neumann BCs on both branes in order to have a massless
zero mode (r1, rε → 0)
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where these terms are responsible for ∆F = 2 effects
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The RS Flavour Problem

General boundary conditions lead to
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The RS Flavour Problem

Choosing Neumann BCs on one brane results in
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Both cases lead to identical ∆F = 2 overlap integrals, i.e. couplings as in
the NN case.

There is a cancellation of the contributions to the dangerous mixed chirality
operators, while the equal chirality operators get a factor 2.

Therefore, effects in B and D mixing are still possible.



The RS Flavour Problem
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The RS Flavour Problem

The first option (rε → 0) is ruled out, because it predicts a first KK axigluon
with mA(1) . 0.235MKK.

However, there must be a source of SU(3)D × SU(3)S breaking on the IR
brane, in order to generate Yukawa couplings for the quarks:

L 3 YuQHu u+ YdQHd d

since Q ∼ (3,1,2) and u, d ∼ (1,3,1) under SU(3)D × SU(3)S × SU(2)L,
the Higgs must transform as Hu,d ∼ (3, 3̄,2).
This gives
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The RS Flavour Problem
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LHC Bounds

Branching Fraction:
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LHC Bounds
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Beyond RS?
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Conclusions

• Randall-Sundrum Models explain the mass hierarchies in the quark
sector and solve the gauge hierarchy problem.

• The SU(3)2 Randall-Sundrum model solves the RS flavour problem
without fine-tuning, while allowing for a New Physics scale of
MKK ∼ 1− 2 TeV.

• It is in agreement with current LHC bounds but makes predictions for tt̄
resonance searches and requires additional scalars.

• The idea of a custodial flavor symmetry can be adopted in a wider class
of strongly coupled solutions to the hierarchy problem.
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