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IT’S A GOOD TIME TO BE A BIT CRAZY

For the last 30 years

we've been looking for SUSY
and WIMP dark matter
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POP Ill STARS

First generation of stars
- Pop 1 : the sun and sun-like stars
- Pop 1l : older, metal-poor stars
- Pop 11l : never-observed, first generation of stars forming from
primordial metal-free gas

Formation (oversimplified)
- DM halo + gas
- lack of metals makes cooling inefficient (no molecular lines)
- results In a single, very massive star per halo? (Abel et al 2002)
- ~30-300 M ?
- form at redshift z~10-20/
- lives ~ | Myr, then fate depends on mass:

| 40-260 Mo : Pair Instability Supernova with no remnant?

30- 140, 260+ Mo : forms black hole without a supernova!

(Heger et al 2003)
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ENHANCED DM DENSITIES IN POP |l

Gas collapses in center of DM halo
- already a high DM density environment

Gravitational density enhancement
- Inefficient cooling — slow collapse

— ¢“adiabatic contraction” of DM
(Blumenthal et al 1986)

Naive estimate:
- circular orbits + spherical symmetry+ adiabatic collapse:

- cons. of ang. mom.: M’ (r")r' = M (r)r
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ENHANCED DM DENSITIES IN POP Il

Taking NFWV initial profile (p~r')

DM den§ity enhancement by adiabatic contraction
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WARNING! Large uncertainties

how good is the approximation of spherical adiabatic

contraction with circular orbits?
- not circular orbits
- not adiabatic
- not spherical
- ..but pretty much agrees with (Iimrited) simulations (e.g. Gnedin et al 04)

single Pop-lll star or fragmentation into many?
- fragmentation of gas cloud Is bad for DM contraction
- controversial whether it happens or not

- DM annihilation should actually reduces fragmentation
(see Smith et al 1210.1582 ; Freese et al 1304.7415)

Also

- Initial DM profile (how cuspy?)

- mass of Pop-lll stars
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“DARK STARS”

Spolyar, Freese & Gondolo 0705.0521
and many others since

DM feedback on gas:

- more DM contraction — more DM annihilation
- DM annihilation energy — pressure in gas

In a2 “Dark Star”, this pressure prevents further gas collapse

- May result in supermassive stars (>10° Mo),
observable with |[WST? (e.g llie et al 1110.6202)
- very uncertain (see e.g.locco 1103.4384 for a review)

For now imagine Pop-lll star forms what happens after the
Dark Star stage
- assume ~ 100 Mg stars (more mass will help)
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OTHER SIGNALS?

Amazingly high DM densities in vicinity of Pop-Illl star
— inner region where all DM annihilates

Neutrino signal:
- neutrinos can reach us without scattering
-double-bump signal:
redshifted neutrinos from Pop-lll halos
+ unredshifted neutrinos from annihilation in Milky VWay?

Gamma ray signal:

- Gammas and electrons shower with CMB it E>3 TeV x |0/(1+2z)
(Kribs & Rothstein hep-ph/9610468)

- Shower down to E~3 TeV x [0/(|+z), then gammas travel freely

- Energy redshifts 1o Etoday=FEo/(| +2)

-gamma signal at E~300 GeV
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DM ANNIHILATION RATE ESTIMATE

Total DM mass annihilated:
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DM ANNIHILATION RATE ESTIMATE

Significant fraction of star’s mass

may remain in remnant black hole
Heger & Woosley 2002

O(l) fraction of bound DM may remain bound

- Survives until merger, at about Zmerge=(Zform - 1.2)/1.08
Yuan et al 1104.1233

- Increases mass of DM annihilated (by about 3)
- annihilation continues to lower z (by about 1)
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WARNING! More uncertainties

Halo formation rate
- large variation in Iiterature

Continued annihilation around remnant!?
- Size of remnant (depends on star mass)
- Disruption by merger?
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ICECUBE ANOMALY
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|CECUBE DETECTOR

~km? of ice instrumented with PMTs

sees Cherenkov light from charged particles

energy threshold |0s of TeV

Types of event:

=-muon tracks —

stopping distance Is several km
distinctive track of PMT hits

—c

IceCube Preli

O(10%) of energy Is deposited
dE/dx can give total energy
-EM & hadronic showers -
much better contained
O(107%) energy resolution

IceCube Prelinfinary
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ICECUBE ANOMALY

“First Observation of PeV-energy neutrinos with IceCube™

1304.5356

- high-energy search (energy threshold ~PeV) with 616 days data
- 2 shower events with ~PeV energy: "Bert” and "Ernie”

- expected total background: 0.08 events

Lower energy analysis under way.

Preliminary results given in talks
- energy threshold ~30 TeV
- 26 new events

- expected background = | | + 4

Observation of PeV Neutrinos in IceCube

Very high energy events in the 2010/201 1 IceCube data
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Results from lceCube

Nathan Whitehorn, Claudio Kopper, Naoko Kurahashi Neilson
For the IceCube Collaboration
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MISSING DETAILS
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SHOWERS VS TRACKS: DIRTY ANALYSIS

Excess looks especially significant in shower events! (?)

Shower events Track events All events
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(uncertainties not shown!)
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WHAT’S CAUSING THE EXCESS?

Detector issues?
- probably not

(Atmospheric) background prediction is wrong!?
- PDF uncertainties at O(30%) -- not enough to explain excess

Astrophysical sources
- GRBs, AGN!s, ... (e.g. Kistler et al 1301.1703, Laha et al 1306.2309, Chen et al 1309.1764, ...)

- "expected’ flux parametrized with EY spectrum
- can give good fit

“Glashow resonance” (W)

- 6.3 PeV Ve Is on resonance with an electron
- not clear how this could explain 2 events at PeV (Barger et al 1207.4571)

BSM physics?
- decaying DM (Feldstein et al 1303.7320; Esmail & Serpico1308.1105)
p Ieptoquark resonance (Barger & Keung 1305.6907)
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COULD IT BE DM ANNIHILATION?

Looks tantalizingly like the double-bump
spectrum!

line at ~1.1 PeV from galactic annihilations
+ redshifted 50-250 TeV excess from Pop-lll halos?

Approach
- First try to fit “line” with galactic signal
- then come to Pop-lll signal

Disclaimer: statistical fits aren't very good with 2 data points...
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(GALACTIC NEUTRINO SIGNAL

Flux from galactic annihilations:

dP Loy dn,,.
Yyl ann U dQ T (0
TSR (= S d By / (6, 9)

where J (0, ¢) = / dlpp (7)

l.o.s. T

uncertainty in halo profile = factor 3 or more off?
DM substructure — could boost ] by orders of magnitude

For now take typical NFWV profile
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FITTING THE DATA: LINE SPECTRUM

Try to fit to the data above 300 TeV (i.e. just 2 events!)

p—value x P(Neyents <2)

2 events do not make a line:
a broader spectrum works too

if it’s really a line

enormous annihilation el
cross-section!
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FITTING THE DATA: BOX SPECTRUM

p—value x P(Neyents<2)

ov [em3s™!]
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CAN DM HAVE SUCH A HUGE CROSS-SECTION?

(work in progress with
P. Graham, S. Rajendran, R. Sundrum & L.Vecchi)
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CAN DM HAVE SUCH A HUGE CROSS-SECTION?
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CAN DM HAVE SUCH A HUGE CROSS-SECTION?

4
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CAN DM HAVE SUCH A HUGE CROSS-SECTION?

g4

2
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WIMP: O Ure] ~
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(Griest & Kamionkowski 1990)

41 10
OUrel < —5

Mpn Urel

10—24

|

cm3
S

O Vann [

10726

10—28 =

10—30

neutron-like

Jeremy Mardon, SITP Stanford Sep |8th 2003, Fermilab



CAN DM HAVE SUCH A HUGE CROSS-SECTION?

4

g i
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7TmDM .
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CAN DM HAVE SUCH A HUGE CROSS-SECTION?

g4
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VERY IMPORTANT MASSIVE PARTICLES

What they are:
- very massive particles surrounded by an entourage of lighter
particles
- geometric cross section MUCH bigger than compton
wavelength
- | Just made up the name

How to cook them up:
- stable particles charged under a confining sroup with light quarks

- confinement scale A\ is much lower than mpm

- studied previously In context of heavy colored relics
Kang, Luty & Nasri hep-ph/0611322 ; Jacoby & Nusinov 0712.268|

- hadronized by “brown muck’ of light quarks
- like B mesons
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ANNIHILATION OF 2 VIMPS

Annihilation cross sectic7>Tn is
geometric Tl B gy
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HOW TO GET A HARD NEUTRINO SPECTRUM

Issue with SIMPs / composite DM
- only get large cross-section by using strong coupling interactions

SOME IDEAS:

Leptons are composite at scale of DM
- can have large couplings to composite DM particles
- maximal coupling = DM annihilates to spray of soft leptons
- sub-maximal coupling: DM prefers to annihilate to 2 or 4 leptons

Composite DM annihilates into composite vectors
- vectors decay through weak
mixing in to SM
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HOW TO GET A HARD NEUTRINO SPECTRUM

VIMPs:

- annihilation and scattering can be though qurte different
interactions

- e.g. same-flavor heavy quarks annihilated to hidden-sector gluons

- different flavor heavy quarks annihilate through flavor-violating
interactions

P

y
~ . ‘anof-bﬁﬂhj
Qt 3 afm&(

Ll
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DOES IT FIT WiTH PorP |lI?

Pop Il physics very uncertain

Best we can do:
- see what Pop Il physics we would need to explain lceCube
- see If It fits with what we learn in the future about Pop llI stars
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INFERRING THE NEUTRINO PRODUCTION RATE

What would the cosmic rate of neutrino production from
DM annihilations need to be to fit the excess?

Take simple parametrization and fit to data
- quadratic function

- production begins at z=25 (not very important)

- continues until zend e Infered neutrino productionrate |
- overall normalization A ine] and [box] specta
This is the spread 4.
of what fits — ol P
(approximate) A
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WHAT POP-lll FORMATION RATE DO WE NEED?

Divide by DM mass annihilated per Pop-lll halo to get halo

formation rate red curve: if all matter formed
a Pop-lll halo

Results using simple \
adiabatic contraction model ~ Pop-lilhaloformtionrate
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WHAT POP-lll FORMATION RATE DO WE NEED?

Divide by DM mass annihilated per Pop-lll halo to get halo

formation rate

Jeremy Mardon, SITP Stanford
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WHAT POP-lll FORMATION RATE DO WE NEED?

Enhanced DM densities survive around Pop-lll remnant
Annihilation continues until disrupted by merger

Take Zmerge = (Zform =1.2)/1.08 (Lacey & Cole 1993;Yuan et al 1104.1233)

Pop—III halo formation rate
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LOOKS ALMOST BELIEVABLE!
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TESTING POP-lll ORIGIN WITH GAMMA RAYS

Gamma ray signal

- Ys from DM annihilations will scatter with CMB photons
- so will e™/e” if they can escape halo without syncrotron loss
-at z=10, a single PeV Yy/e*/e- showers

into about 300 (Y/e*/e")’s with ~3 [eV energy each

- redshift to give signal at ~300 GeV
(Kribs & Rothstein hep-ph/9610468)

PeV gammas from annihilation in Milky Way?
- Impossible (¢) to distinguish from cosmic rays with air/water
Cherenkov telescopes
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TESTING POP-lll ORIGIN WITH GAMMA RAYS

Fermi LAT
Extra Galactic Background

I 9 |
0 i

Pop-IIl gamma ray signal \,
Power-law background
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TESTING POP-lll ORIGIN WITH GAMMA RAYS

How robust is it?

- depends on neutrino production rate (function of z)
fit this from neutrino signal

does NOT depend on Pop-Illl astrophysics!
learn about Pop-lll formation history from this? (Ey ~ /(1+2)?)

- depends on production of Ys and e™e™ relative to Vs

hard to avoid producing e™e” when there is a channel to Vs
may be Increased with larger BR to Ys

may be decreased If there are B-fields in halo causing syncrotron
losses
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OTHER POSSIBILITIES

s all the lceCube excess from Pop-lll DM annihilation?
2 cllEfhceadt MM~ 5-20 PeV

- OVann ~ |0 22 @rpp 5h
- gamma signal roughly unchanged

s all the lceCube excess from galactic DM annihilations!?
- requires softer initial neutrino spectrum

B O-Varm e |O_22 Cm3 S_l ?
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WHAT’S NEXT

Need more IceCube data

- Is there a line at ~| PeV !

- Is there a gap from ~300 TeV - PeV!?
- does 1t extend beyond | PeV?
- does it come from Milky Way!

Need more gamma ray data
- Fermi pass-3 will reduce uncertainties and go to higher E
- as more point sources are discovered, EGB will go down

Need better simulations of Pop lll stars and halos
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CONCLUSION

The sites where the first stars (Pop-lll) form may be

remarkable places for DM
- gravitational contraction enhances density
- region near star where ALL DM annihilates?
- still highly uncertain

If we journey beyond perturbativity, DM mass and cross-
section can be well beyond s-wave unitarity limit.

Could this explain the IceCube neutrino excess!?

- a line at ~| PeV would be a smoking gun for DM
- key withesses In the case:

double-bump signature of galactict+Pop-IlIl DM annihilation
gamma bump In Ferm

May find out in the next year or two
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BACKUP
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SHOWERS & TRACKS
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SAMPLE FITS

Line spectrum, m=

p—value x P(Neyens=28)
A S —

line spectrum

Mmpy = 1.1 PeV
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p—value x P(Neyents<28)

box spectrum

mpy = 2.0 PeV

N events

N events

N events

10.00
5.00

1.00
0.50

0.10
0.05

10.00
5.00

1.00
0.50

0.10
0.05

10.00
5.00

1.00
0.50

0.10
0.05

1 PeV  Box spectrum, m=2.0PeV

Track events

1.5 20 2.5 30

log,(E,/TeV
Track events

1.5 20 2.5 30

log,oE,/TeV
Shower events

1.5 20 2.5 30
log,yE,/TeV



PROTONS VS. S-WAVE UNITARITY

pp cross—section: data vs theory
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