On New Physics Models for Top AFB

Kathryn M. Zurek University of Michigan

Why this anomaly now?

³ CDF 5.3 fb^-1, January 2011

$$A_{FB}^{t\bar{t}} = 0.475 \pm 0.114$$
 $A_{FB}^{t\bar{t}} = 0.088 \pm 0.013$ $M_{t\bar{t}} > 450 \text{ GeV}$

Questions to Ask about the anomaly

- Is it systematic?
- Is it QCD?
- How difficult is it to simultaneously fit the anomaly and other constraints?

- Probably not
- Is it statistical?
 Maybe -- though growing statistics
 - Probably not
 - 8 Not so easy, but can be done. Not supersymmetry!

Summary

- Experimental evidence
- SM process
- New Physics processes
 - Tevatron analysis
 - LHC analysis
 - Models of flavor

Moira Gresham, Ian-Woo Kim, KZ 1103.3501 Moira Gresham, Ian-Woo Kim, KZ 1102.0018 Jessie Shelton, KZ 1101.5392

- **3** 2008:
- $^{\bullet}$ CDF 1.9 fb^-1 $A_{FB}^{tar{t}} = 0.17 \pm 0.08$
- $^{\$}$ D0 0.9 fb^-1 $A_{FB}^{tar{t}} = 0.12 \pm 0.08 \pm 0.01$
- Both measurements one leptonic and one hadronic top

- **3** 2011:
- ⁵ 5.3 fb^-1
- Enough data to give mass and rapidity dependent asymmetry in mixed leptonic/ hadronic top system!

CDF 2011

- ⁸ 2011:5.3 fb^-1, mixed case
- "Parton level" = unfold detector

- ³ 2011: 5.3 fb^-1, mixed case
- Detector level

- ³ 2011: 5.3 fb^-1
- Enough data to look at two leptonic tops

 $A_{FB} = 0.14 \pm 0.05$

Asymmetry much larger in ee, mu-mu than in e-mu $A_{FB} = 0.06 \pm 0.077$

 $A_{FB} = 0.27 \pm 0.112$

 $A_{FB} = 0.17 \pm 0.102$

Can QCD Generate This?

First contribution appears at NLO

Stable against higher order corrections? Claim: yes. Threshold resummed results give same asymmetry as fixed order calculation

Almeida, Sterman, Vogelsang 2008

Models to generate top AFB

- s-channel or tchannel
 - s-channel:
 axigluon

Ferrario and Rodrigo

*t-channel: flavor violating gauge boson (Z', W') or scalar color triplet or sextet

Jung, Murayama, Pierce, Wells Shu, Tait, Wang Ligeti, Schmaltz, Tavares Grinstein, Kagan, Trott, Zupan

Challenges

- s-channel models: large AFB, but small change in tt-bar x-section
- t-channel models
 - same sign tops
 - single top

invariant mass distribution

Challenges

s-channel: particular couplings.
Opposite charges for light quarks and top

$$\mathcal{A}_{int} = \frac{g_s^4}{9} \frac{\hat{s}(\hat{s} - m_{G'}^2)}{(\hat{s} - m_{G'}^2)^2 + m_{G'}^2 \Gamma_{G'}^2} (g_L^q + g_R^q) (g_L^t + g_R^t) \\ \left[(2 - \beta^2) + 2 \frac{(g_L^q - g_R^q)(g_L^t - g_R^t)}{(g_L^q + g_R^q)(g_L^t + g_R^t)} c_\theta + c_\theta^2 \right],$$

t-channel: high invariant mass spectrum can become skewed

$$\mathcal{A}_{int} = \frac{2g_s^2}{9} \frac{(g_L^2 + g_R^2)}{\hat{s}\hat{t}_{Z'}} \left[2\hat{u}_t^2 + 2\hat{s}m_t^2 + \frac{m_t^2}{m_{Z'}^2} (\hat{t}_t^2 + \hat{s}m_t^2) \right],$$

Exotic decays are out

- Goodbye SUSY! Or 4th generation!
- fewarrange Top chi^2 looks good $ilde{t}
 ightarrow t \chi$

. Volansky

Any additional MET dramatically changes top chi^2

Models of top AFB

- Carry out phenomenological
 comparison of feasibility of models
 -- models of flavor discussed later
- Unfolding detector level -> parton level -- Highly model dependent?
 - Efficiencies (?)
 - Requires top reconstruction

A Comprehensive Analysis

- Generate ttbar events with MG/ MadEvent, shower with Pythia, pipe through PGS
- Mixed leptonic/hadronic tops; replicate CDF cuts
 - e or mu with pT > 20 Gev, eta < 1; 4 jets with pT > 20, eta < 2, 1 having b-tag; Etmiss > 20 GeV; photon and tau veto
- Reconstruct top

Parton Level Results

Moira Gresham, Ian-Woo Kim, KZ 1103.3501

Parton Level Results

Moira Gresham, Ian-Woo Kim, KZ 1103.3501

Invariant Mass Distribution

Looks disfavored for most models

Assumed Efficiencies

Highly model dependent

Save the day!

Assumed Efficiencies

Detector Level

Efficiencies do not dramatically affect extracted AFB

Invariant Mass Distributions

Di-lepton channel

Also well-produced

Other Observables

Lab vs CM

4 versus
5 jet

Summary: Tevatron observables

- After taking into account efficiencies, both W' and Z' models can effectively reproduce the asymmetry
- Triplet and sextet scalars are ineffective; don't reproduce steep rise and overproduce invariant mass distribution
- Axigluon models also have difficulty

LHC Observables

- Search for O(1) flavor violation!
- Couple strongly; light states; likely observable at LHC7 with 1 fb^-1

Searching for topjet resonances

In tt-bar+jet events, look for resonances in tj

Searching for topjet resonances

Moira Gresham, Ian-Woo Kim, KZ 1102.0018

Searching for topjet resonances

Bump-anti-bump-bump

LHC7 Reach

3 sigma excess with 1 fb^-1

Easy extension of tt-bar resonance searches

Models of Flavor

- LARGE flavor violation!!
- Seems seriously constrained

Even with no tree level flavor violation in coupling, can enter in loops

Horizontal Symmetry

- Strategy: charge minimal number of quarks required to generate anomaly
- Avoid problem with same sign tops

$$(u,t)_R$$

uu and tt couplings can be tuned via mixings

Constraints on models with more sym

Flavor conserving Z' is still there -- dijet constraints, UA2 bounds (sols: higher rep Higgs, light Z')

Jung, Pierce, Wells

Single top production

A Global View Towards Flavor

Try a 1-3 generation gauging

$$\left(egin{array}{c} t \ d \end{array}
ight)_R \quad \left(egin{array}{c} u \ b \end{array}
ight)_R$$
 Jessie Shelton, KZ 1101.5392

- Note that it now mixes RH new physics with CKM physics (Danger!)
- Payoff: anomalies in B system for free

Irreducible Consequences

$$\frac{\mathcal{M}_{LR}}{\mathcal{M}_{LL}} \simeq -0.2 \left(\frac{\tilde{g}}{2}\right)^2 \left(\frac{450 \text{ GeV}}{m_{W'}}\right)^4 \frac{G(x_t)}{G(x_t^0)}$$

Anomalies in B mesons -- new CPV

- Tevatron like sign muons
- lacksquare B) $B_s o \psi \phi$
- $lacksquare{\bullet}$ C) $B_d o \psi K$

$$\Delta M_{B_s}, S_{\psi\phi}$$

$$\Delta M_{B_d}, S_{\psi K}$$

B physics anomalies

Tevatron like-sign muons

$$a_{sl}^b = -(8.5 \pm 2.8) \times 10^{-3}$$
 $b\bar{b} \to \mu^+ \mu^+ X$

- $lacksquare{\bullet} B_s$ mixing in $\Delta\Gamma_s$ and $S_{\psi\phi}$
- Less significant:
 - measurement of $\sin 2\beta$ in $B_d \to \psi K$ and penguin dominated $b \to sq\bar{q}$

Fit to Tevatron anomalies

$$M_{12}^{d,s} = (M_{12}^{d,s})^{SM} (1 + h_{d,s} e^{2i\sigma_{d,s}})$$

$$\Delta m_{q} = \Delta m_{q}^{\text{SM}} \left| 1 + h_{q} e^{2i\sigma_{q}} \right|,$$

$$\Delta \Gamma_{s} = \Delta \Gamma_{s}^{\text{SM}} \cos \left[\arg \left(1 + h_{s} e^{2i\sigma_{s}} \right) \right],$$

$$A_{\text{SL}}^{q} = \operatorname{Im} \left\{ \Gamma_{12}^{q} / \left[M_{12}^{q, \text{SM}} (1 + h_{q} e^{2i\sigma_{q}}) \right] \right\},$$

$$S_{\psi K} = \sin \left[2\beta + \arg \left(1 + h_{d} e^{2i\sigma_{d}} \right) \right],$$

$$S_{\psi \phi} = \sin \left[2\beta_{s} - \arg \left(1 + h_{s} e^{2i\sigma_{s}} \right) \right].$$

Ligeti, Papucci, Perez, Zupan

3 sigma deviation from SM

Amplitudes

$$\frac{\mathcal{M}_{LR}}{\mathcal{M}_{LL}} \simeq -0.2 \left(\frac{\tilde{g}}{2}\right)^2 \left(\frac{450 \text{ GeV}}{m_{W'}}\right)^4 \frac{G(x_t)}{G(x_t^0)}$$

$$\frac{S_{sb}^2 \tilde{g}^2}{m_{Z'}^2} \; \bar{b}_R \gamma^\mu s_R \bar{b}_R \gamma_\mu s_R,$$

$$\Lambda \equiv \frac{m_Z'}{|S_{sb}|\tilde{g}} \sim 0.4 - 1.2 \text{ TeV} \left(\frac{10^{-2.5}}{\tilde{g}|S_{sb}|}\right)$$

Phases

Same size phase appears in anomalous CKM fits as in the Tevatron anomalies, and the phases needed are around the same size

$$S_{\psi K} = \sin \left[2\beta + \arg(1 + h_d e^{2i\phi_d}) \right]$$

$$\pi/2 < \phi_d < 3\pi/4$$

$$\eta_{CP} S_{\psi K} = 0.655 \pm 0.0244$$

$$\sin(2\beta)^{fit} = 0.891 \pm 0.052$$

Constraints

- W' charged state. Z/Z' mixing. Precision EW.
- Mixing matrix

$$Z = \begin{pmatrix} \frac{g}{g_Z} \\ \frac{-g'\tilde{g}^2}{(\tilde{g}^2 + g'^2)g_Z} (1 + \epsilon_Z^2 \frac{{g'}^2 g_Z^2}{g^2(\tilde{g}^2 + g'^2)}) \\ \frac{-g'^2 \tilde{g}}{(\tilde{g}^2 + g'^2)g_Z} (1 + \epsilon_Z^2 \frac{\tilde{g}^2 g_Z^2}{g^2(\tilde{g}^2 + g'^2)}) \end{pmatrix}$$

$$\mathcal{M} = \frac{1}{4} \begin{pmatrix} g^2 v^2 & g g' v^2 & 0\\ g g' v^2 & {g'}^2 (v^2 + 4Y^2 \hat{v}^2) & 4Y T_{3R} g' \tilde{g} \hat{v}^2\\ 0 & 4Y T_{3R} g' \tilde{g} \hat{v}^2 & 4T_{3R}^2 \tilde{g}^2 \hat{v}^2 \end{pmatrix}$$

$$Z = \begin{pmatrix} \frac{g}{-g'\tilde{g}^2} (1 + \epsilon_Z^2 \frac{g'^2 g_Z^2}{g^2(\tilde{g}^2 + g'^2)}) \\ \frac{-g'^2\tilde{g}}{(\tilde{g}^2 + g'^2)g_Z} (1 + \epsilon_Z^2 \frac{\tilde{g}^2 g_Z^2}{g^2(\tilde{g}^2 + g'^2)}) \end{pmatrix} \qquad \qquad \frac{\delta\rho}{\rho} = -\frac{\delta m_Z^2}{m_Z^2} = \frac{(m_Z^2 - m_W^2) \tan^2\theta_R}{m_{Z'}^2 - (m_Z^2 - m_W^2) \tan^2\theta_R}$$

No serious precision EW constraints for heavy Z'

UV Completions

1,3 versus 2nd generation mass terms appear differently

$$\frac{Y_{ij}^{d}}{M} \bar{q'}_{R}^{i} \phi_{R}^{\dagger} H_{L} {q'}_{L}^{j} + \frac{Y_{ij}^{u}}{M} \bar{q'}_{R}^{i} \tilde{\phi}_{R}^{\dagger} \tilde{H}_{L} {q'}_{L}^{j}$$

$$Y_{d}^{j} \bar{q'}_{R}^{2} H_{L} {q'}_{L}^{j} + Y_{u}^{j} \bar{q'}_{R}^{2} \tilde{H}_{L} {q'}_{L}^{j}$$

$$Y_d^j \bar{q'}_R^2 H_L q'_L^j + Y_u^j \bar{q'}_R^2 \tilde{H}_L q'_L^j$$

- A simple way to generate this is via vector-like quarks $\mu ar{Q}Q + ar{Q}H_Lq_L + ar{q}_R H_B^\dagger Q$
- Flavor violation comes down to the couplings of Q to the various generations

Summary

- Top AFB has held up and significance has increased. Await more data from D0 and CDF. Measurement seems clean.
- Phenomenologically viable models require large flavor violation or colored state with exotic couplings

Summary

- Most models which generate top AFB should show up in early LHC data; some worry about light mediators
- While large flavor violation through gauge bosons seems highly constrained, it's less constrained than might be supposed
- May be new physics. Excellent prep for LHC7.