In Memoriam Robert Brout...

Why Neutrinos are different ...

- Very low mass
- Large leptonic mixing
- Leptonic number conserved or not ?With link to matter-antimatter asymmetry

J.-M. Frère

Based on work with Maxim Libanov, Serguey Troitsky, Emin Nugaev, Ling Fu-Sin

What we now from oscillations

Our Generic prediction : large mixings, inverted hierarchy suppressed neutrinoless double beta decay

JMF- FNAL Theory, June 9th, 2011

Neutrino-less double beta decay controlled by weighted sum of masses (with phases/signs of mixings entering)

based on **arXiv:1006.5196**, to appear in JHEP And work with M Libanov, S. Troitsly, E Nugaev, FS Ling

In a nutshell:

Previous work :

One family in 6D and proper boundary conditions → 3 families in 6D
 At lowest order in Cabibbo mixing Charged fermion masses are

- Diagonal
- Strongly hierarchical

NOW •At same order, we get 4D Majorana neutrinos with Antidiagonal mass matrix •This yields, in a generic way: Large mixings in the neutrino sector Inverted Hierarchy Pseudo- Dirac structure (further suppression of neutrinoless double beta decay) •Not as automatic, but typical : measurable Θ_{13}

At LHC, this can result in std model like Z' and later more exotic signals ($Z' \pm \rightarrow \mu^+ e^- \gg \mu^- e^+$)

JMF- FNAL Theory, June 9th, 2011

A very few words about extra dimensions ... start with ONE extra spatial dim.

What are Zero Modes ?

Dirac equation in N+1 dimensions, For a fermion interacting with a field Φ :

For ONE compact extra dim

OSY & URR

 $i\partial_A \gamma^A \Psi = \Phi \Psi$ (or m 4) $\Psi(x^{\mu}, y) = \sum \Psi_n(x^{\mu}) e^{i\frac{ny}{2\pi R}}$

= $\int h$

A = 0, 1, 2, 3, 4, 5

 $\mu, \nu = 0, 1, 2, 3$

JMF- FNAL Theory, June 9th, 2011

For 2 compact extra dim

$$\Psi(x^{\mu}, x^{4}, x^{5}) = \sum_{n,l} \psi_{n,l}(x^{\mu}) f_{n,l}(x^{4}, x^{5})$$

$$i\partial_{\nu} \gamma^{\nu} \psi_{n,l}(x^{\mu}) f_{n,l}(x^{4}, x^{5}) = \psi_{n,l}(x^{\mu})(\Phi - i\partial_{4} \gamma^{4} - i\partial_{5} \gamma^{5}) f_{n,l}(x^{4}, x^{5})$$

$$\lim_{\substack{\ell = 0 \\ large}} \lim_{\substack{\ell = 0 \\ \ell = 0}} \lim_{\substack{\ell = 0 \\ \ell = 0}}$$

Look for zero modes ...

JMF- FNAL Theory, June 9th, 2011

Use of dimensional reduction obtain 3+1-dim chiral spinors (L) : use of topological singularities in the extra dimensions to get zero modes, break LR symmetry.

JMF- FNAL Theory , June 9th, 2011

3 families from one in 5+1 dim

For some reason, n=3 !!!

we assume a background
scalar field Φ providing a vortex in the
2 extra dimensions;
It vanishes at the origin– where we live!

The 3 fermion modes have different shapes, and different winding properties in the extra dimension variable φ

JMF- FNAL Theory , June 9th, 2011

The transition from 6-D to the zero- modes of 4D dramatically affects

6-D to the zero-modes of 4D $\overline{\mathcal{Y}} \overline{\mathcal{F}} \underbrace{\overset{i}{\overset{-}{\overset{-}{2}}}_{2} \mathcal{Y}}$ Mart from 4 * 2-components $\Psi = \begin{pmatrix} \psi_{+R} \\ \psi_{+L} \\ \psi_{-L} \\ \psi_{-L} \end{pmatrix}$

Each « zero » (massless) mode only has 2-spinor degrees of freedom: For instance, redundant

$$L \sim \sum_{n} \begin{pmatrix} 0 \\ f_{3-n}(r) \ e^{i(3-n)\phi}\psi_{Ln}(x^{\mu}) \\ f_{n-1}[r) \ e^{i(1-n)\phi}\psi_{Ln}(x^{\mu}) \\ 0 \end{pmatrix}^{T}$$

Table 1: Scalars and fermions with their gauge quantum numbers. For convenience, we describe here also the profiles of the classical scalar fields and fermionic wave functions in extra dimensions.

> _∟

11

representations

 $SU(3)_C$

 $\mathbf{1}$

 $\mathbf{1}$

 $\mathbf{1}$

3

3

3

 $\mathbf{1}$

1

 $SU(2)_W$

 $\mathbf{1}$

1

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{1}$

1

 $\mathbf{2}$

Additional couplings involving the vortex field, with winding $e^{i\phi}$ can give the small Cabibbo mixings ϵ

The scheme is very constrained, as the profiles are dictated by the equations, instead of being imposed by hand, like in multilocalisation

Neutrinos ARE different

In the same context (0th order in Cabibbo mixing), we will get indeed (see later):

$$M_{\nu} \sim \left(\begin{array}{ccc} \cdot & \cdot & m \\ \cdot & \mu & \cdot \\ m & \cdot & \cdot \end{array}\right)$$

```
Where m >> \mu
```

After 45° 1-3 rotation and 23 permutation, this leads to an inverted hierarchy, (minute solar mass difference found between the heavier neutrinos)

$$M_{\nu} \sim \left(\begin{array}{ccc} m & \cdot & \cdot \\ \cdot & -m & \cdot \\ \cdot & \cdot & \mu \end{array}\right)$$

The – sign may be absorbed in the mixing matrix, *but contributes destructively to the effective mass for neutrinoless double beta decay* (Pseudo-Dirac structure when full Cabibbo-like mixing is introduced)

WHY the difference? --- return in more detail to the 6D spinors,

Zers modes

 $\Psi = \begin{pmatrix} \psi_{+R} \\ \psi_{+L} \\ \psi_{-L} \\ \psi_{-L} \end{pmatrix}$

4 \$ 1-57 Y J & 1+ [7 J $\begin{pmatrix} \mathbf{o} \\ \mathbf{o} \\ \mathbf{o} \\ \mathbf{o} \end{pmatrix}$ => (R_)

JMF- FNAL Theory, June 9th, 2011

WHY the difference? --- return in more detail to the 6D spinors,

$$\Psi = \begin{pmatrix} \psi_{+R} \\ \psi_{+L} \\ \psi_{-L} \\ \psi_{-R} \end{pmatrix}$$

In each case, the massless mode only has 2-spinor degrees of freedom: For instance, $f = \frac{1}{2} \frac{1}$

JMF- FNAL Theory , June 9th, 2011

WHY the difference? --- return in more detail to the 6D spinors, $\Psi = \begin{bmatrix} \psi_{+L} \\ \psi_{-L} \end{bmatrix}$ For the charged spinors, we have both L and R spinors bound to the vortex. $L \sim \sum_{n} \begin{pmatrix} 0 \\ f_{3-n}(r) \ e^{i(3-n)\phi}\psi_{Ln}(x^{\mu}) \\ f_{n-1}[r) \ e^{i(1-n)\phi}\psi_{Ln}(x^{\mu}) \end{pmatrix} \xrightarrow{R \sim \sum_{n}} \begin{pmatrix} f_{n-1}[r) \ e^{i(1-n)\phi}\chi_{Rn}(x^{\mu}) \\ 0 \\ f_{n-1}[r) \ e^{i(3-n)\phi} \psi_{Ln}(x^{\mu}) \\ f_{n-1}[r) \ e^{i(3-n)\phi} \psi_{Ln}(x^{\mu}) \end{pmatrix}$ $i(t) e^{i(3-n)\phi} \chi$ $R L = \sum_{n,n} R_n \cdot L_n$ $i(t) \int_{0}^{\infty} dt dt f_{3-n} \cdot R_{3-n} \cdot R_{n-1} \cdot R_{n-1}$ ive LarrerEffective Lagrangian : integrate over r and ϕ , JMF- FNAL Theory, June 9th, 2011

18

Interactions

The Majorana term can be traced to the « Majorana mass term » in the Lagrangian (not to be confused with a non-existant 6D Majorana spinor) through a see-saw It leads to a contribution proportional to the effective propagator after summing over a large number of proper modes of the bulk spinor N : - R O Each mode n of the bulk spinor N 2Mn U T Small n (Gevox)

JMF- FNAL Theory , June 9th, 2011

fields		profiles	charges		representations	
			$U(1)_g$	$U(1)_Y$	$SU(2)_W$	$SU(3)_C$
scalar	Φ	$F(heta)\mathrm{e}^{i\phi}$	+1	0	1	1
		$F(0) = 0, F(\pi) = C_{\pi F}$				
scalar	X	$X(\theta)$	+1	0	1	1
		$X(0) = v_X, \ X(\pi) = 0$				
scalar	H	$H(\theta)$	-1	+1/2	2	1
		$H(0) = v_H, \ H(\pi) = 0$				
fermion	L_{+}, L_{-}	3 L zero modes	(3, 0)	-1/2	2	1
fermion	E_{+}, E_{-}	3 R zero modes	(0,3)	-1	1	1
fermion	N	massive modes $\chi_{\lambda,m}, \xi_{\lambda,m}$	0	0	1	1
scalar	S_+	(composite field)	-1	0	1	1
scalar	S_{-}	(composite field)	2	0	1	1

 ${\bf Table \ 1: \ Field \ content \ of \ the \ model \ (scalars \ and \ leptons \ only).}$

We can then introduce some extra terms, carrying winding, to generate the Cabibbo-like mixings,

For charged leptons

$$\frac{\mathcal{L}_E}{\sqrt{-\det g_{AB}}} = \sum_{S_+^l} Y_l^+ (S_+^l) S_+^l H \bar{L} \frac{1+\Gamma_7}{2} E + \sum_{S_-^l} Y_l^- (S_-^l) S_-^l H \bar{L} \frac{1-\Gamma_7}{2} E + \text{h.c.}$$

For neutrinos

$$\frac{\mathcal{L}_D}{\sqrt{-\det g_{AB}}} = \sum_{S_+} Y_{\nu}^+(S_+)\tilde{H}S_+\bar{L}\frac{1+\Gamma_7}{2}N + \sum_{S_-} Y_{\nu}^-(S_-)\tilde{H}S_-\bar{L}\frac{1-\Gamma_7}{2}N + \text{h.c.}$$
$$S_+ = \Phi^*, \ X^*, X^{*2}\Phi, \ \dots$$
$$S_- = X^2, \ X\Phi, \ \Phi^2, \ \dots$$

JMF- FNAL Theory , June 9th, 2011

Example : for charge leptons, on a sphere:

JMF- FNAL Theory , June 9th, 2011

•

Results of this simple approximation:

$$\begin{split} \mathcal{M}_{c} &\sim 6 \,\mathcal{M}_{eV} \\ \mathcal{M}_{\mu} &\sim 85 \,\mathcal{M}_{eV} \\ \mathcal{M}_{\tau} &\sim 1.7 \,\mathcal{F}_{eV} \\ \mathcal{U}_{\rho \mathcal{M} \mathcal{N} \mathcal{S}}^{-1} & \left\{ -51.9358, 51.2292, -2.29345 \right\} \\ \mathcal{U}_{\rho \mathcal{M} \mathcal{N} \mathcal{S}}^{-1} & \left\{ -51.9358, 51.2292, -2.29345 \right\} \\ \mathcal{U}_{\rho \mathcal{M} \mathcal{N} \mathcal{S}}^{-1} & \left\{ -51.9358, 51.2292, -2.29345 \right\} \\ \mathcal{U}_{\rho \mathcal{M} \mathcal{N} \mathcal{S}}^{-1} & \left\{ -51.9358, 51.2292, -2.29345 \right\} \\ \mathcal{U}_{\rho \mathcal{M} \mathcal{N} \mathcal{S}}^{-1} & \left\{ -51.9358, 51.2292, -2.29345 \right\} \\ \mathcal{U}_{\rho \mathcal{M} \mathcal{N} \mathcal{S}}^{-1} & \left\{ -51.9358, 51.2292, -2.29345 \right\} \\ \mathcal{U}_{\rho \mathcal{M} \mathcal{N} \mathcal{S}}^{-1} & \left\{ -51.9358, 51.2292, -2.29345 \right\} \\ \mathcal{U}_{\rho \mathcal{M} \mathcal{N} \mathcal{S}}^{-1} & \left\{ -51.9358, 51.2292, -2.29345 \right\} \\ \mathcal{U}_{\rho \mathcal{M} \mathcal{N} \mathcal{S}}^{-1} & \left\{ -51.21, -51.93, -51.9358, -$$

< marsh > = 19.3 mel

JMF- FNAL Theory, June 9th, 2011

Some other developments :

- compactification of the 2 extra dim on a sphere instead of a plane (avoid localisation of gauge bosons) spinors modified, but conclusions kept (already mentioned) with extra scale 1/R
- phenomenological implications of the excited modes..
- constraint on B-E-H boson (Libanov and Nugaev: LIGHT)

JMF- FNAL Theory , June 9th, 2011

 $\begin{array}{l} \textbf{IMPORTANT}: & (n) is approximatively \\ \textbf{conserved}! & - e^{in\phi} \text{ plays somewhat like a U(1) horizontal symmetry} \end{array}$

2 extra dim : → II gauge bosons, possess 2 types of Kaluza- Klein excitations in particular, Z and Gluons

JMF- FNAL Theory , June 9th, 2011

« family number » (n) is approximatively conserved !~ - somewhat like U(1) horizontal symmetry $e^{i\phi}$

Typical limit

$$K_L \rightarrow \mu^- e^+ \text{ or } \mu^+ e^- B.R. < 10^{-12}$$

Expect thus typical mass scale $M_{Z1} / \kappa > (10^{12})^{1/4} M_Z = \kappa 100 \text{ TeV}$

In fact, the small overlap of wave functions implies *some suppression of the coupling;* $\kappa \ll 1$

→ bound becomes $M(Z_1) > \kappa 100 \text{ TeV}$

numbers for $\mu^{-}e^{+}$ are ONE ORDER below at LHC,due to quark content of protons

Fig. 1. Number of events for $(\mu^+ e^-)$ pairs production as a function of the vector bosons mass M, with $\kappa = M/(100 \text{TeV})$. (also s left in underlying event)

See.JETP Lett.79:598-601,2004, Pisma Zh.Eksp.Teor.Fiz.79:734-737,2004. JMF, M Libanov, S Troitsky, E Nugaev hep-ph/0404139

JMF- FNAL Theory , June 9th, 2011

LHC thus has the potential (in a specific model, of course) to beat even the very sensitive fixed-target K $\rightarrow \mu e$ limit!

t + c or $\overline{b} + s$ are similarly produced by the **gluon excitations**,

Expect a **few 1000's events** --- but must consider background!

JMF- FNAL Theory , June 9th, 2011

Fundamental

In a nutshell:

One family in 6D and proper boundary conditions → 3 families in 6D
 At lowest order in Cabibbo mixing , Charged fermion masses are diagonal strongly hierarchical

At LHC, this can result in exotic signals (Z' $\rightarrow \mu^+ e^- \gg \mu^- e^+$)

•At same order, we get 4D Majorana neutrinos with Antidiagonal mass matrix •This yields, in a generic way: Large mixings in the neutrino sector Inverted Hierarchy Pseudo- Dirac structure (further suppression of neutrinoless double beta decay) •Not as automatic, but typical : measurable Θ_{13}

