# The Bestest Little Higgs

#### Daniel Stolarski

Martin Schmaltz, DS, Jesse Thaler JHEP 1009 (2010) 018 [arXiv:1006.1356 [hep-ph]].





- \* Arkani Hamed, Cohen, Georgi, "Electroweak Symmetry Breaking From Dimensional Deconstruction" (2001)
- \* Arkani-Hamed, Cohen, Gregoire, Wacker, first use of "Little Higgs" (2002)
- \* Arkani-Hamed, Cohen, Katz, Nelson, Gregoire, Wacker, "The Minimal Moose for a Little Higgs" (2002)

- \* Arkani Hamed, Cohen, Georgi, "Electroweak Symmetry Breaking From Dimensional Deconstruction" (2001)
- \* Arkani-Hamed, Cohen, Katz, Nelson, "The Littlest Higgs" (2002)

- \* Arkani-Hamed, Cohen, Gregoire, Wacker, first use of "Little Higgs" (2002)
- \* Arkani-Hamed, Cohen, Katz, Nelson, Gregoire, Wacker, "The Minimal Moose for a Little Higgs" (2002)

- \* Arkani Hamed, Cohen, Georgi, "Electroweak Symmetry Breaking From Dimensional Deconstruction" (2001)
- \* Arkani-Hamed, Cohen, Gregoire, Wacker, first use of "Little Higgs" (2002)
- \* Arkani-Hamed, Cohen, Katz, Nelson, Gregoire, Wacker, "The Minimal Moose for a Little Higgs" (2002)

- \* Arkani-Hamed, Cohen, Katz, Nelson, "The Littlest Higgs" (2002)
- \* Schmaltz, "The Simplest Little Higgs" (2004)

- \* Arkani Hamed, Cohen, Georgi, "Electroweak Symmetry Breaking From Dimensional Deconstruction" (2001)
- \* Arkani-Hamed, Cohen, Gregoire, Wacker, first use of "Little Higgs" (2002)
- \* Arkani-Hamed, Cohen, Katz, Nelson, Gregoire, Wacker, "The Minimal Moose for a Little Higgs" (2002)

- \* Arkani-Hamed, Cohen, Katz, Nelson, "The Littlest Higgs" (2002)
- \* Schmaltz, "The Simplest Little Higgs" (2004)
- "Bestest Little Higgs"

- \* Arkani Hamed, Cohen, Georgi, "Electroweak Symmetry Breaking From Dimensional Deconstruction" (2001)
- \* Arkani-Hamed, Cohen, Gregoire, Wacker, first use of "Little Higgs" (2002)
- \* Arkani-Hamed, Cohen, Katz, Nelson, Gregoire, Wacker, "The Minimal Moose for a Little Higgs" (2002)

- \* Arkani-Hamed, Cohen, Katz, Nelson, "The Littlest Higgs" (2002)
- \* Schmaltz, "The Simplest Little Higgs" (2004)
- "Bestest Little Higgs"
  - "Worstest title ever" -- Cliff Cheung

#### Outline

- \* SM hierarchy and little hierarchy problems
- \* Higgs and pseudo--Nambu--Goldstone boson and little Higgs
- \* Problems with little Higgs models
- \* A model with a simple quartic
- \* A modular gauge sector
- \* Bestest fermion sector
- Constraints and collider phenomenology

### Hierarchy Problem

- \* Standard Model very successful
- \* Quadratic divergences, need new physics to prevent fine-tuning
  - \* Top:  $\Lambda \lesssim 2 \text{ TeV}$
  - \* Gauge:  $\Lambda \lesssim 5 \,\mathrm{TeV}$
  - \* Quartic:  $\Lambda \lesssim 10 \,\mathrm{TeV}$



### Little Hierarchy Problem

- Precise measurements of SM gauge sector
- No deviations from SM, stringent bounds



\* Custodial symmetry violation  $\frac{1}{\Lambda^2}|h^\dagger D_\mu h|^2$   $\Lambda \gtrsim 5\,{\rm TeV}$ 

\* Four fermion operators  $\frac{1}{2\Lambda^2}(\bar{l}\gamma^\mu\sigma^a l)(\bar{l}\gamma_\mu\sigma^a l)$   $\Lambda\gtrsim 7\,\mathrm{TeV}$ 

#### Higgs as a PNGB

- \* Make the Higgs pseudo--Nambu--Goldstone Boson (PNGB)
  - Kaplan, Georgi, Dimopoulos, 1984; Dugan, Georgi, Kaplan, 1985.
- \* Break a global symmetry, Higgs is one of the broken generators
- \* Explicitly break the global symmetry
- \* Tree level potential for Higgs vanishes, one loop contribution generates mass and self interactions

#### Little Higgs

- \* PNGB Higgs doesn't solve little hierarchy problem
  - Potential will be quadratically divergent, proportional to explicit breaking
  - \* Have to fine-tune two terms

- \* Little Higgs: *collective* symmetry breaking
  - \* Explicitly break global symmetry with two different operators
  - \* Each operator preserves enough symmetry
  - \* Radiative corrections proportional to 2 couplings, only *log* divergent at one loop

### Simple(st) Model

\* SU(3)/SU(2) toy model with two  $\Sigma$  fields

$$\mathcal{L} = \sum_{i=1}^{2} \operatorname{tr}(\partial_{\mu} \Sigma_{i}^{\dagger} \partial^{\mu} \Sigma_{i})$$

\* Parameterize Goldstones

$$\Sigma_1 = e^{i\pi_1/f} \left( \begin{array}{c} 0 \\ f \end{array} \right)$$

$$\Sigma_2 = e^{i\pi_2/f} \left( \begin{array}{c} 0 \\ f \end{array} \right)$$

\* Gauge diagonal SU(3), explicitly break  $SU(3)^2$ 

\* Symmetry is broken collectively: both  $\Sigma_1$  and  $\Sigma_2$  must have gauge interactions

Schmaltz, Tucker-Smith, hep-ph/0502182

## Collective Symmetry in Action

Quadratic divergence generates

$$\frac{g^2\Lambda^2}{16\pi^2} (\Sigma_1^{\dagger}\Sigma_1 + \Sigma_2^{\dagger}\Sigma_2)$$

which does not generate a potential for  $\pi_i$ 



$$\frac{g^4}{16\pi^2} \log \Lambda^2 |\Sigma_1^{\dagger} \Sigma_2|^2 \sim \frac{g^4 f^2}{16\pi^2} \log \Lambda^2 h^{\dagger} h$$





9/41 Daniel Stolarski January 20, 2011

#### Scales of the Theory





10/41 Daniel Stolarski January 20, 2011

### Recipe for a Little Higgs

- \* Spontaneously break global symmetry. Some PNGBs = SM Higgs
- \* Parameterize PNGBs with nlom, cutoff at  $\Lambda \simeq 4\pi f$
- \* Collectively break symmetries to generate gauge, Yukawa, and Higgs self interactions
- Enlarged symmetry means extra particles
- \* Explicit breaking for small couplings, ie light quark Yukawa's

#### Problems with LH models

- \* Fine tuning in top sector  $\Lambda \lesssim 2 \, \mathrm{TeV}$
- \* Precision electroweak constraints  $\Lambda \gtrsim 5\,\mathrm{TeV}$ 
  - Allow some fine tuning
  - \* Implement T-parity to reduce PEW corrections
    Cheng and Low, hep-ph/0308199
  - \* Separate scales control top Yukawa and gauge sectors
- \* Preserve custodial symmetry before and after electroweak symmetry breaking

Collective Higgs quartic

$$\lambda_{+}|\sigma + hh|^{2} + \lambda_{-}|\sigma - hh|^{2}$$

\* No dangerous singlets, must forbid:  $(\sigma \pm h h)$ 

Schmaltz and Thaler, 0812.2477 [hep-ph]

Collective Higgs quartic

$$\lambda_{+}|\sigma + hh|^{2} + \lambda_{-}|\sigma - hh|^{2}$$

\* No dangerous singlets, must forbid:  $(\sigma_{ij} \pm h_i \, h_j)$ 

Schmaltz and Thaler, 0812.2477 [hep-ph]

Collective Higgs quartic

$$\lambda_{+}|\sigma + hh|^{2} + \lambda_{-}|\sigma - hh|^{2}$$

\* No dangerous singlets, must forbid:  $(\sigma_{ij} + h_i h_j)$ 

Schmaltz and Thaler, 0812.2477 [hep-ph]

Collective Higgs quartic

$$\lambda_{+}|\sigma + hh|^{2} + \lambda_{-}|\sigma - hh|^{2}$$

\* No dangerous singlets, must forbid:  $(\sigma \pm h^{\dagger}h)$ 

Schmaltz and Thaler, 0812.2477 [hep-ph]

Collective Higgs quartic

$$\lambda_{+}|\sigma + h h|^{2} + \lambda_{-}|\sigma - h h|^{2}$$

\* No dangerous singlets, must forbid:  $(\sigma \pm h r)_{0.812}$  Singlets

13/41 Daniel Stolarski **FNAL Seminar** January 20, 2011

Collective Higgs quartic

$$|\lambda_{+}|\sigma + hh|^2 + |\lambda_{-}|\sigma - hh|^2$$

\* No dangerous singlets, must forbid:  $(\sigma \pm h_1^\dagger h_2)$ 

Schmaltz and Thaler, 0812.2477 [hep-ph]

Collective Higgs quartic

$$|\lambda_{+}|\sigma + hh|^{2} + |\lambda_{-}|\sigma - hh|^{2}$$

- \* No dangerous singlets, must forbid:  $(\sigma \pm h_1^{\dagger} h_2)$ Schmaltz and Thaler, 0812.2477 [hep-ph]
- Ugly in other models

Minimal Moose: 
$$\operatorname{tr}(\Sigma_1 \Sigma_2^{\dagger} \Sigma_3 \Sigma_4^{\dagger} + \Sigma_1 \Sigma_4^{\dagger} \Sigma_3 \Sigma_2^{\dagger})$$

Littlest Higgs:

$$\operatorname{tr}(\Sigma_{1}\Sigma_{2}^{\dagger}\Sigma_{3}\Sigma_{4}^{\dagger} + \Sigma_{1}\Sigma_{4}^{\dagger}\Sigma_{3}\Sigma_{2}^{\dagger}) \quad \varepsilon^{wx}\varepsilon_{yz}\varepsilon^{ijk}\varepsilon_{kmn}\Sigma_{iw}\Sigma_{jx}\Sigma^{*my}\Sigma^{*nz}$$

13/41 Daniel Stolarski January 20, 2011 **FNAL Seminar** 

#### Symmetry Structure



#### Non-linear sigma model

$$\Pi_{h} = i \begin{pmatrix} SO(6) \\ SO(4) \\ -h_{1}^{T} \\ -h_{2}^{T} \end{pmatrix} SO(4) = SU(2)_{L} \times SU(2)_{R}$$

$$\Pi = i \begin{pmatrix} \phi_i + \eta_i & 0 & 0 \\ 0 & 0 & \sigma/\sqrt{2} \\ 0 & -\sigma/\sqrt{2} & 0 \end{pmatrix}$$

#### Collective Quartic

- \*  $\lambda_{65}|\Sigma_{65}|^2 + \lambda_{56}|\Sigma_{56}|^2$
- \*  $\Sigma \to g_A \Sigma g_B^{\dagger}$
- \*  $\lambda_{65}$  operator breaks  $SO(6)_A \times SO(6)_B \rightarrow SO(5)_6 \times SO(5)_5$
- \*  $\lambda_{56}$  operator breaks  $SO(6)_A \times SO(6)_B \to SO(5)_5 \times SO(5)_6$
- \* Two operators combined break  $SO(6)_A \times SO(6)_B \rightarrow SO(4) \times SO(4)$



16/41 Daniel Stolarski January 20, 2011

#### Expanding in terms of II

$$\sum_{65} \sum_{\lambda_{65} (f \sigma - h_1^T h_2 + \ldots)^2 + \lambda_{56} (f \sigma + h_1^T h_2 + \ldots)^2} \sum_{\delta_{65} (f \sigma - h_1^T h_2 + \ldots)^2} \sum_{\delta_{65}$$

Integrate out  $\sigma$  and plug back in to get which is collective

$$\frac{\lambda_{56}\lambda_{65}}{\lambda_{56} + \lambda_{65}} (h_1^T h_2)^2$$

No h mass generated

 $\sigma$  transforms under a symmetry,  $\sigma \to -\sigma, \ h_2 \to -h_2$ Not a dangerous singlet!

#### Radiative Corrections

\* Quadratic divergence

$$-\frac{3f^2\Lambda^2}{16\pi^2} \left(\lambda_{65}|\Sigma_{65}|^2 + \lambda_{56}|\Sigma_{56}|^2\right)$$



\* Log divergence

$$\frac{\lambda_{65}\lambda_{56}f^2}{16\pi^2}\log\left(\frac{\Lambda^2}{m_{\sigma}^2}\right)\left(h_1^Th_1 + h_2^Th_2\right)$$

\* Right order of magnitude for natural EWSB





$$\frac{9 g_{\text{EW}}^2 \Lambda^2}{128\pi^2} \left( h_1^T h_1 + h_2^T h_2 \right)$$



\* Collective symmetry breaking,  $g_i \rightarrow 0$  then full SO(6) is preserved



- \* Collective symmetry breaking,  $g_i \rightarrow 0$  then full SO(6) is preserved
- Gauge and top partner masses controlled by f



- \* Collective symmetry breaking,  $g_i \rightarrow 0$  then full SO(6) is preserved
- \* Gauge and top partner masses controlled by *f*
- \* Situation worse because  $\frac{m_T}{m_{W'}} \simeq \frac{m_{\mathrm{top}}}{m_W} \simeq 2$

#### Modular Gauge Sector



- \* Add a gauge breaking module,  $\Delta$  that has a decay constant F
- \*  $\Delta$  is a singlet under SO(6) global symmetries
- \* Make F > f, gauge partner mass ~ g F while top partners mass ~  $\lambda_t f$

#### Reduction to Initial Model



Global: 
$$SO(6)_A$$
  $SO(6)_B$   $\int$   $\langle \Sigma \rangle = 11$  Gauged:  $SU(2) \times U(1)$ 

$$m_{W'}^2 \simeq f^2 + F^2$$

#### A Generic Tool

\* While LH quartic is difficult, this shows that putting in gauge sector is easy

\* This tool is very generic, can be used by LH model builders again

#### Consequences



$$i \begin{pmatrix} \phi + \eta & 0 & 0 \\ 0 & 0 & \sigma/\sqrt{2} \\ 0 & -\sigma/\sqrt{2} & 0 \end{pmatrix}$$

\* Traditional LH models:  $\phi$  is eaten

#### Consequences



- \* Traditional LH models:  $\phi$  is eaten
- \*  $\Delta$  means more PNGB's,  $\phi$  remains in the spectrum

#### Consequences



- \* Traditional LH models:  $\phi$  is eaten
- \*  $\Delta$  means more PNGB's,  $\phi$  remains in the spectrum
- \* Custodial symmetry unbroken without hypercharge

#### Top Yukawa Coupling

- \* Want to minimize fine tuning and partner masses
- \* Use three different symmetry breaking operators

$$\mathcal{L} = y_1 \mathcal{O}_1 + y_2 \mathcal{O}_2 + y_3 \mathcal{O}_3$$

- \* Each operator and each pair leaves enough symmetries unbroken
- \* One loop radiative corrections proportional to 3 couplings -> finite
- \* Each operator increases top Yukawa coupling for fixed partner mass

#### SO(6) Fermions

\* SO(6) fundamentals: Q and  $U^c$ 



#### SO(6) Fermions

\* SO(6) fundamentals: Q and  $U^c$ 

\* SO(6) incomplete multiplets:  $Q'_a$  and  ${U'_5}^c$ 



|                  | $SO(6)_A$ | $SO(6)_B$ | $SU(3)_C$      |
|------------------|-----------|-----------|----------------|
| $\overline{Q}$   | 6         |           | 3              |
| $Q'_a$           | $2^{(*)}$ | <u>-</u>  | 3              |
| $Q'_a \ U^c$     |           | 6         | $\overline{3}$ |
| $U_5^{\prime c}$ | <u>-</u>  | $1^{(*)}$ | $\overline{3}$ |

#### SO(6) Fermions

\* SO(6) fundamentals: Q and  $U^c$ 

- \* SO(6) incomplete multiplets:  $Q'_a$  and  ${U'_5}^c$
- \* Additional gauge generator for hypercharge



|                  | $SO(6)_A$ | $SO(6)_B$ | $SU(3)_C$      | $U(1)_X$ |
|------------------|-----------|-----------|----------------|----------|
| $\overline{Q}$   | 6         |           | 3              | 2/3      |
| $Q'_a$           | $2^{(*)}$ |           | 3              | 2/3      |
| $U^c$            |           | 6         | $\overline{3}$ | -2/3     |
| $U_5^{\prime c}$ | _         | $1^{(*)}$ | $\overline{3}$ | -2/3     |

#### Top Yukawa Operator 1

$$\mathcal{L} = y_1 \mathcal{O}_1 + y_2 \mathcal{O}_2 + y_3 \mathcal{O}_3$$

$$\mathcal{O}_1 = Q^T S \Sigma S U^c$$
$$S = \operatorname{diag}(1, 1, 1, 1, -1, -1)$$

|                  | $SO(6)_A$ | $SO(6)_B$ |
|------------------|-----------|-----------|
| $\overline{Q}$   | 6         | -         |
| $Q'_a \ U^c$     | $2^{(*)}$ | _         |
| $U^c$            | <u> </u>  | 6         |
| $U_5^{\prime c}$ | <u>-</u>  | $1^{(*)}$ |

#### Top Yukawa Operator 1

$$\mathcal{L} = y_1 \mathcal{O}_1 + y_2 \mathcal{O}_2 + y_3 \mathcal{O}_3$$

$$\mathcal{O}_1 = Q^T S \Sigma S U^c$$
$$S = \operatorname{diag}(1, 1, 1, 1, -1, -1)$$

# $egin{array}{c|c|c} SO(6)_A & SO(6)_B \ \hline Q & {f 6} & - \ Q'_a & {f 2}^{(*)} & - \ U'^c & - & {f 6} \ U'^c_5 & - & {f 1}^{(*)} \ \hline \end{array}$

Can do a field redefinition:

$$Q^T \to Q_L^T S$$
 and  $U^c \to S U^c$ 

#### Top Yukawa Operator 1

$$\mathcal{L} = y_1 \mathcal{O}_1 + y_2 \mathcal{O}_2 + y_3 \mathcal{O}_3$$

$$\mathcal{O}_1 = Q^T S \Sigma S U^c$$
$$S = \operatorname{diag}(1, 1, 1, 1, -1, -1)$$

|                  | $SO(6)_A$ | $SO(6)_B$ |
|------------------|-----------|-----------|
| $\overline{Q}$   | 6         | <u> </u>  |
| $Q'_a \ U^c$     | $2^{(*)}$ | _         |
| $U^c$            | <u> </u>  | 6         |
| $U_5^{\prime c}$ | <u>-</u>  | $1^{(*)}$ |

Can do a field redefinition:

$$Q^T \to Q_L^T S$$
 and  $U^c \to S U^c$ 

No global symmetries are broken by  $\mathcal{O}_1$ 

#### Top Yukawa Operators 1 and 2

$$\mathcal{L} = y_1 \mathcal{O}_1 + y_2 \mathcal{O}_2 + y_3 \mathcal{O}_3$$
$$\mathcal{O}_1 = Q^T S \Sigma S U^c$$

$$\mathcal{O}_2 = Q_a^{\prime T} \Sigma U^c$$

|                  | $SO(6)_A$ | $SO(6)_B$ |
|------------------|-----------|-----------|
| $\overline{Q}$   | 6         | <u> </u>  |
| $Q'_a \ U^c$     | $2^{(*)}$ | _         |
| $U^c$            | <u> </u>  | 6         |
| $U_5^{\prime c}$ | <u>-</u>  | $1^{(*)}$ |

#### Top Yukawa Operators 1 and 2

$$\mathcal{L} = y_1 \mathcal{O}_1 + y_2 \mathcal{O}_2 + y_3 \mathcal{O}_3$$
$$\mathcal{O}_1 = Q^T S \Sigma S U^c$$
$$\mathcal{O}_2 = Q'_a^T \Sigma U^c$$

|                  | $SO(6)_A$ | $SO(6)_B$ |
|------------------|-----------|-----------|
| $\overline{Q}$   | 6         | <u> </u>  |
| $Q'_a \ U^c$     | $2^{(*)}$ | _         |
| $U^c$            | <u> </u>  | 6         |
| $U_5^{\prime c}$ |           | $1^{(*)}$ |

Can do more complicated field redefinition:

$$U^c \to \Sigma U^c$$
 and  $Q_L^T \to Q_L^T S \Sigma S \Sigma^T$ 

which gives  $Q^T U^c + {Q'_a}^T U^c$  and doesn't generate a potential for the PNGB's.

#### Top Yukawa Operators 2 and 3

$$\mathcal{L} = y_1 \mathcal{O}_1 + y_2 \mathcal{O}_2 + y_3 \mathcal{O}_3$$
$$\mathcal{O}_2 = Q_a'^T \Sigma U^c$$

$$\mathcal{O}_3 = Q^T \Sigma U_5^{\prime c}$$

|                  | $SO(6)_A$ | $SO(6)_B$ |
|------------------|-----------|-----------|
| $\overline{Q}$   | 6         | <u> </u>  |
| $Q'_a \ U^c$     | $2^{(*)}$ | _         |
| $U^c$            | <u> </u>  | 6         |
| $U_5^{\prime c}$ | <u>-</u>  | $1^{(*)}$ |

#### Top Yukawa Operators 2 and 3

$$\mathcal{L} = y_1 \mathcal{O}_1 + y_2 \mathcal{O}_2 + y_3 \mathcal{O}_3$$
$$\mathcal{O}_2 = Q_a'^T \Sigma U^c$$

$$\mathcal{O}_3 = Q^T \Sigma U_5^{\prime c}$$

|                  | $SO(6)_A$ | $SO(6)_B$ |
|------------------|-----------|-----------|
| $\overline{Q}$   | 6         |           |
| $Q'_a \ U^c$     | $2^{(*)}$ | <u> </u>  |
| $U^c$            | <u> </u>  | 6         |
| $U_5^{\prime c}$ |           | $1^{(*)}$ |

Can do another field redefinition:

$$U^c \to \Sigma U^c \text{ and } Q_L^T \to Q_L^T \Sigma$$

which eliminates  $\Sigma$  from  $\mathcal{O}_2$  and  $\mathcal{O}_3$ .

#### Top Yukawa Operators 2 and 3

$$\mathcal{L} = y_1 \mathcal{O}_1 + y_2 \mathcal{O}_2 + y_3 \mathcal{O}_3$$
$$\mathcal{O}_2 = Q_a'^T \Sigma U^c$$

$$\mathcal{O}_3 = Q^T \Sigma U_5^{\prime c}$$

|                  | $SO(6)_A$ | $SO(6)_B$ |
|------------------|-----------|-----------|
| $\overline{Q}$   | 6         | <u> </u>  |
| $Q'_a \ U^c$     | $2^{(*)}$ | _         |
| $U^c$            | <u> </u>  | 6         |
| $U_5^{\prime c}$ | <u>-</u>  | $1^{(*)}$ |

Can do another field redefinition:

$$U^c \to \Sigma U^c \text{ and } Q_L^T \to Q_L^T \Sigma$$

which eliminates  $\Sigma$  from  $\mathcal{O}_2$  and  $\mathcal{O}_3$ .

Need all three operators to generate potential.

#### Top and Partner Spectrum

- Mass spectrum for top Yukawa operators
  - \* 6 colored Dirac fermions with mass ~  $y_t f$
  - \* 3 massless Weyl fermions; SM top

|                  | $SO(6)_A$ | $SO(6)_B$    |
|------------------|-----------|--------------|
| $\overline{Q}$   | 6         | _            |
| $Q'_a \ U^c$     | $2^{(*)}$ | <del>_</del> |
| $U^c$            | <u>-</u>  | 6            |
| $U_5^{\prime c}$ |           | $1^{(*)}$    |

\* Coupling to Higgs:  $y_t q h_1 u$ 

$$y_t = 3 \frac{y_1 y_2 y_3}{\sqrt{(|y_1|^2 + |y_2|^2)(|y_1|^2 + |y_3|^2)}}$$

One loop Coleman--Weinberg potential

$$-\frac{3 m_t^2}{8 \pi^2 v_1^2} \frac{m_T^2 m_U^2}{m_T^2 - m_U^2} \log \left(\frac{m_T^2}{m_U^2}\right) h_1^T h_1$$

29/41 Daniel Stolarski January 20, 2011

#### Spectrum



# Sweet Spot for f

\* Masses of top partners and (most) scalars controlled by *f* 

\* For  $f \sim 1$  TeV, evade all direct bounds

\* Indirect constraints fall like 1/F

\* Choosing f now dictated by naturalness

# Constraint: Triplet VEV

\* Electroweak measurements require:

$$\langle \phi \rangle \ll \langle h_i \rangle$$

\*  $\langle \phi \rangle$  generated through  $h^\dagger \phi \, h$ 

- Forbidden by symmetries
- \* Symmetries broken by combination of *SU*(2) and hypercharge gauge couplings
- \* VEV is only generated at 2 loops, so no constraint

# Constraints from Heavy Particles

- \* Use effective field theory analysis of Han and Skiba, hep-ph/0412166
- Dangerous operators generated only by heavy gauge bosons

$$\frac{1}{\Lambda^2} (\overline{q} \gamma^{\mu} \sigma^a q) (\overline{l} \gamma_{\mu} \sigma^a l)$$

$$\frac{i}{\Lambda^2} (h^{\dagger} \sigma^a D^{\mu} h) (\overline{q} \gamma_{\mu} \sigma^a q)$$



\* Bound *F*, but *f* is unaffected

#### Light Quarks and Leptons

\* Yukawa couplings for light quarks:

$$y_c c_L \Sigma_h c_R$$

$$y_b Q_L \varepsilon \Sigma_h^* b_R$$

\* Can leptons in a different way:

$$y_e e \varepsilon \Sigma_h^* L$$

\* Couple all fermions to  $h_1$  (but don't have to)

#### Bounds on Heavy Gauge Bosons



Can get better fit than SM

\* Top partners are always lighter, *O*(1 TeV)



#### Reduce Fine Tuning

\* Fine tuning ~  $\frac{\delta m_h^2}{m_h^2}$ 

\* Change electroweak fit, heavier Higgs is allowed

 Can make gauge partners even lighter



36/41

Daniel Stolarski

January 20, 2011

**FNAL Seminar** 

# Collider Phenomenology

\* Biggest difference: heavy gauge partners (lighter fermions)

\* Gauge partner pheno similar to other LH models

\* Can be discovered at the LHC if mass  $\lesssim 5 \text{ TeV}$ 

#### Collider Phenomenology II

- \* 6 new colored Dirac fermions with masses 600 GeV to 1 TeV
- \* Can singly produce T doublet with Wb or Wt

\* All can be pair produced, three lightest will dominate



#### Lots of b's and t's

\* Have would be eaten Goldstones  $\eta$  and  $\phi$ , largest coupling via Yukawa coupling

$$\frac{m_f}{f} \, \eta \, \bar{f} \gamma^5 f$$

- \* Top partners often decay to t or b and  $\eta$  or  $\phi$
- \* Scalars tend to decay to third generation quarks also



Single production events have 4 third gen. quarks

Pair production events have 6 third gen. quarks

#### Light Pseudoscalar (Axion)

- \* This model (and other LH models) contains a light pseudo  $\eta^0$
- \* No gauge charges or direct coupling to Higgs
- \* Couples to massive fermions  $\frac{m_f}{f} \eta \bar{f} \gamma^5 f$
- \* Easiest place to find is events with tops
- \* Phenomenological study underway with Jesse Thaler

#### Conclusions

- \* Other LH models try to solve the hierarchy problem, but break cust. symmetry, have ugly quartics, and are still more than 10% fine-tuned
- \* We have built the first model which has a natural Higgs potential with no fine-tuning in the scalar, gauge, or fermion sector

#### **Traditional LH:**

$$\frac{m_T}{m_{W'}} \simeq \frac{m_{\text{top}}}{m_W} \simeq 2$$

#### Bestest LH

$$\frac{m_T}{m_{W'}} \simeq \frac{y_t f}{g_{\rm EW} F} \simeq \frac{1}{2}$$

- \* Our modular gauge sector can be implemented in many LH models
- Collider signatures with copious top/bottom production
- Looking for triplet could provide smoking gun



# Hypercharge?

- \* Could use modular trick again with  $\Delta'$  to cut off divergence
- \* Hypercharge coupling is small, so just gauge diagonal  $T_R^3$  of SO(6)
- \* One loop corrections given by

$$\frac{3g_Y^2\Lambda^2}{32\pi^2} \left[ \eta_1^2 + \eta_2^2 + \frac{1}{4}(h_1^T h_1 + h_2^T h_2) \right]$$

- \*  $\eta_3$  is neutral and light
- \* Fine-tuning is small, and heavy hypercharge boson are among biggest problems from precision electroweak

#### Masses of Particles

\* Heavy gauge bosons: 
$$m_A^2=\frac{1}{4}(g_1^2+g_2^2)(f^2+F^2)$$
  $m_A\gtrsim 3\,{\rm TeV}$ 

\* One loop Coleman--Weinberg, only log divergent and finite pieces

$$\frac{3g_{\text{EW}}^2 m_A^2}{16\pi^2} \log \left(\frac{\Lambda^2}{m_A^2}\right) \left(\frac{3}{8}h_1^T h_1 + \frac{3}{8}h_2^T h_2 + \phi_i \phi^i\right)$$

\* Other scalars uncharged under SU(2)

#### Top and Partner Spectrum

\* Take  $\Sigma \to \langle \Sigma \rangle$  in the top Yukawa Lagrangian

$$y_{1}f(U_{a} \cdot Q_{b} + Q_{6}U_{6})$$

$$\sqrt{|y_{1}|^{2} + |y_{2}|^{2}} f\left(\frac{y_{1}}{\sqrt{|y_{1}|^{2} + |y_{2}|^{2}}}Q_{a} + \frac{y_{2}}{\sqrt{|y_{1}|^{2} + |y_{2}|^{2}}}q'\right) \cdot U_{b}$$

$$\sqrt{|y_{1}|^{2} + |y_{3}|^{2}} f Q_{5} \left(\frac{y_{1}}{\sqrt{|y_{1}|^{2} + |y_{3}|^{2}}}U_{5} + \frac{y_{3}}{\sqrt{|y_{1}|^{2} + |y_{3}|^{2}}}t'\right) \qquad U$$

- \* Remaining light particles are orthogonal linear combination:
  - \* *SU*(2) doublet, Y=1/6
  - \* singlet, Y=-2/3

45/41 Daniel Stolarski

# SU(4) Language

$$SO(6) \simeq SU(4)$$



# SU(4) Language

$$SO(6) \simeq SU(4)$$

$$\frac{SU(4)}{SU(2)_L}$$

$$SU(2)_R$$

$$\begin{pmatrix} 0 & \tilde{H_2}^* - i\tilde{H_1}^* & H_2 - iH_1 \\ \tilde{H_2}^T + i\tilde{H_1}^T & 0 & 0 \\ H_2^{\dagger} + iH_1^{\dagger} & 0 & 0 \\ \tilde{H} = i\tau^2 H \end{pmatrix}$$

#### SU(4) Language

$$SO(6) \simeq SU(4)$$

$$SU(4)$$
 $SU(2)_L$ 
 $SU(2)_R$ 

$$\begin{pmatrix} 0 & \tilde{H_2^*} - i\tilde{H_1^*} & H_2 - iH_1 \\ \tilde{H_2}^T + i\tilde{H_1}^T & 0 & 0 \\ H_2^{\dagger} + iH_1^{\dagger} & 0 & 0 \end{pmatrix}$$

$$\tilde{H} = i\tau^2 H$$

$$\begin{pmatrix} \phi_i \tau^i + \frac{\sigma}{\sqrt{2}} \mathbb{1} & 0 \\ 0 & \eta_i \tau^i - \frac{\sigma}{\sqrt{2}} \mathbb{1} \end{pmatrix}$$

#### Old and New Particles

- \* Light quarks do not couple to top partners (except  $b_L$ )
- \* Light quark coupling to other scalars at dimension > 4
- \* Minimal flavor bounds on third generation (only  $Z \to b\bar{b}$  which is small)
- \* Could have chosen to put down-type quarks or leptons in 6th component, changes little
- \* Radiative corrections do not generate new operators and are small

#### Higgs Potential

- \* Kinetic Term  $f^2\operatorname{tr}(D_{\mu}\Sigma^TD^{\mu}\Sigma)$
- \* Radiative corrections also generate small quartics
- \* Need to lift flat direction with operator  $tr(\Sigma)$  which gives small mass to all scalars

\* Need to destabilize origin for EWSB with  $\Sigma_{65} + \Sigma_{56}$  which has  $-B\mu \, h_1^T h_2$ 

$$V_{\text{higgs}} = \frac{1}{2} m_1^2 h_1^T h_1 + \frac{1}{2} m_2^2 h_2^T h_2$$
$$-B\mu h_1^T h_2 + \frac{\lambda_0}{2} (h_1^T h_2)^2$$

\* Easy to show that vacuum preserves global symmetry