Nonperturbative QCD vacuum polarization corrections

Dru Renner JLab

done in collaboration with **Xu Feng** (KEK), **Marcus Petschlies** (Humboldt U.) and **Karl Jansen** (DESY)

Outline

- start with the muon g-2 as a concrete example
 - \circ measurements and the standard model differ by 3 σ
 - illustrates the relevant phenomenology
 - o allows me to explain our modified lattice method
- continue to illustrate our method with calculations of
 - \circ g-2 for the electron and tau, quite distinct from the muon
 - \circ $\Delta \alpha(Q^2)$, the QCD corrections to the running QED coupling
 - \circ higher-order QCD corrections, using $g_{\mu}-2$ as an example
- ask me about: the Alder function $D(Q^2)$, α_s , or muonic hydrogen

Muon g-2

Status of muon g-2

anomalous magnetic moment due solely to radiative corrections

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = \frac{\alpha}{2\pi} + \mathcal{O}(\alpha^2)$$

experimental measurement at BNL [Muon G-2, PRD 2006]

$$a_{\mu}^{\text{ex}} = 1.16592080(63) \times 10^{-3}$$
 [0.54 ppm]

• standard model estimate [Jegerlehner, Nyffeler Phys. Rept. 2009]

$$a_{\mu}^{\text{th}} = 1.16591790(65) \times 10^{-3}$$
 [0.56 ppm]

ullet a 3.2 σ difference *might* indicate physics beyond the standard model

$$a_{\mu}^{\text{ex}} - a_{\mu}^{\text{th}} = 2.90(91) \times 10^{-9}$$

Future experiments

planned or proposed experiments at Fermilab and J-PARC

$$\sigma(a_{\mu}^{\rm ex}) = 6.3 \times 10^{-10} \rightarrow 1.6 \times 10^{-10}$$
 [using FNAL]

• comparison would be dominated by theory errors $(\sigma(a_{\mu}^{\text{th}})=6.5\cdot 10^{-10})$

$$\sigma(a_{\mu}^{\text{ex}} - a_{\mu}^{\text{th}}) = 9.1 \cdot 10^{-10} \rightarrow 6.7 \cdot 10^{-10}$$

• assuming the measurement remains consistent, i.e. $\pm 2 \sigma$, gives

$$\sigma(a_{\mu}^{\text{ex}} - a_{\mu}^{\text{th}})/(a_{\mu}^{\text{ex}} - a_{\mu}^{\text{th}}) = 3.2 \rightarrow (2.4 - 6.3)$$

- either way, allowed/excluded BSM physics limited by theory errors
- improvements in the standard model estimate are highly desirable

Theory error budget

standard model error is dominated by the QCD corrections

Contribution	$\sigma^{\text{th}} [10^{-10}]$
QCD-LO $[\alpha^2]$	5.3
QCD-NLO $[\alpha^3]$	3.9
QED/EW	0.2
Total	6.6

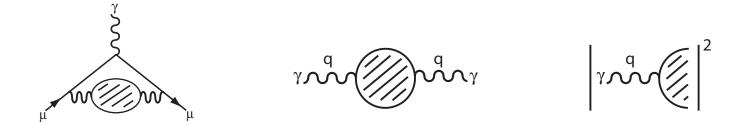
- $\sigma(a_{\mu}^{\rm ex})
 ightarrow 1.6 \cdot 10^{-10}$ will not probe higher QED/EW corrections
- ullet naively, $lpha^4$ QCD correction is not needed at the FNAL precision
- \bullet but the α^2 and α^3 QCD corrections must be improved by factor 4

QCD correction at leading order

ullet QCD contribution is expanded in lpha with nonperturbative coefficients

$$a_{\mu}^{\text{QCD}} = \alpha^2 a_{\mu}^{\text{hlo}} + \alpha^3 a_{\mu}^{\text{hnlo}} + \mathcal{O}(\alpha^4)$$

• QCD corrections first occur at $\mathcal{O}(\alpha^2)$, only smaller than QED piece



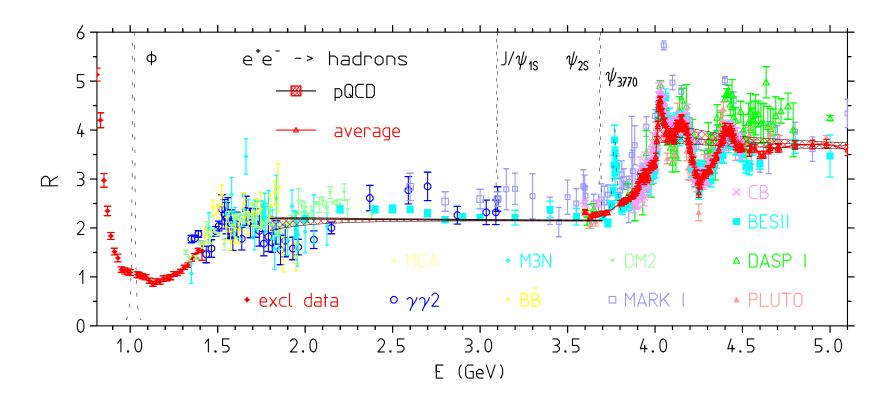
leading-order hadronic contribution (hlo) is in fact measured

$$a_{\mu}^{\text{hlo}} = \alpha^2 \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s} K^{\text{lo}}(s/m_{\mu}^2) R(s)$$
 $R(s) = \frac{\sigma(\gamma^* \to \text{hadrons})}{\sigma(\gamma^* \to e^+ e^-)}$

thus the "theory" calculation requires significant experimental input

Measurement of R(s)

• complicated analysis of $\mathcal{O}(100)$ channels/experiments



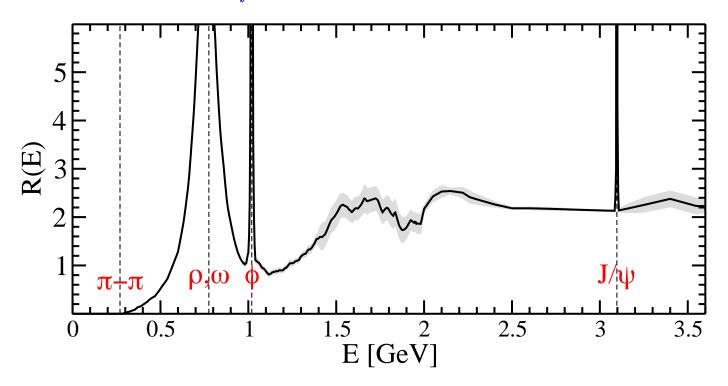
• improvement in $\sigma(e^+e^- \to \text{hadrons})$ coming from many experiments

[Jegerlehner, Nyffeler Phys.Rept.477, 2009]

Phenomenological flavor dependence

 \bullet pheno. analysis uses $R_{N_f}(s)$ to extract $N_f=$ 2 and 3 contributions

$$R_{N_f}(s) = R(s)(\sum_{N_f} Q_f^2)/(\sum_N Q_f^2)$$
 $4m_N^2 \le s \le 4m_{N+1}^2$



• this is a simple/crude means of estimating importance of strange/charm

[R(E) given by F. Jegerlehner's compilation of $\sigma(e^+e^- \to \text{hadrons})]$

Lattice calculation of $a_{\mu}^{ m hlo}$

• a_{μ}^{hlo} can also be calculated directly in Euclidean space

vacuum polarization tensor is a simple two-point function

$$\pi_{\mu\nu}(Q^2) = \int d^4X \, e^{iQ \cdot (X-Y)} \langle J_{\mu}(X) J_{\nu}(Y) \rangle = (Q_{\mu}Q_{\nu} - Q^2 \delta_{\mu\nu}) \pi(Q^2)$$

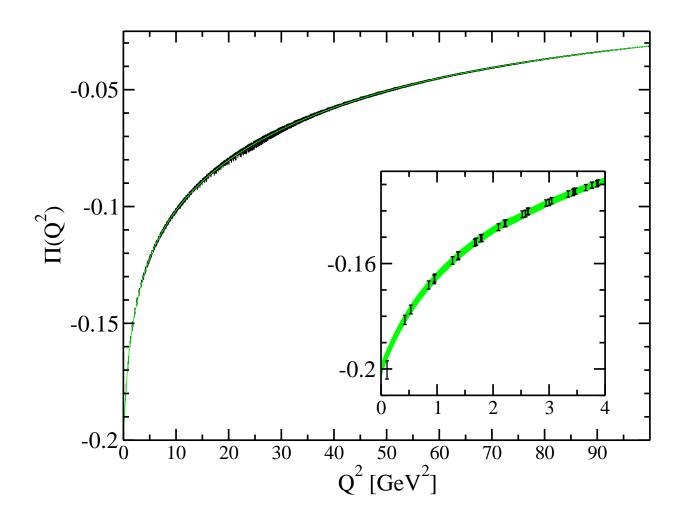
leading-order QCD contribution [Blum, PRL 2003]

$$a_{\mu}^{\text{hlo}} = \alpha^2 \int_0^{\infty} \frac{dQ^2}{Q^2} w^{\text{lo}}(Q^2/m_{\mu}^2) \, \pi_R(Q^2)$$

• $\pi_R(Q^2) = \pi(Q^2) - \pi(0)$ is finite with $R(s) \propto \text{Im}\pi(-s + i\epsilon)$

Advantages of Euclidean space

ullet no complicated resonance structure, almost boring Q^2 dependence



ullet straightforward matching to perturbative QCD at large Q^2

Problems with an external scale

ullet a_l^{hlo} is made dimensionless at the expense of introducing m_l

$$a_l^{\text{hlo}} = \alpha^2 \int_0^\infty \frac{dQ^2}{Q^2} w^{\text{lo}}(Q^2/m_l^2) \, \pi_R(Q^2)$$

the lepton mass is completely unrelated to QCD scales

$$m_e pprox 5.1 \cdot 10^{-4} \; ext{GeV} \hspace{0.5cm} m_{\mu} pprox 0.11 \; ext{GeV} \hspace{0.5cm} m_{ au} pprox 1.8 \; ext{GeV}$$

• introduces dependence on lattice spacing in dimensionless quantity

$$\frac{Q^2}{m_l^2} = \frac{1}{a^2} \frac{a^2 Q^2}{m_l^2} = \frac{1}{a^2} \frac{[Q^2]_{\text{latt}}}{[m_l^2]_{\text{GeV}}}$$

ullet creates strong m_{PS} dep., as seen in leading vector-meson contribution

$$a_{l,V} \propto g_V^2 \frac{m_l^2}{m_V^2}$$

Effective dimension

ullet $d_{\rm eff}$ captures the dimension of only the QCD scales

$$d_{\text{eff}}[X] = -\frac{a}{X} \frac{\partial X}{\partial a} \Big|_{g_0 = \text{fixed}}$$

ullet for a standard QCD mass scale M, $d_{
m eff}$ is the usual mass dimension

$$d_{\mathsf{eff}}[M^n] = n$$

however, it differs for a composite observable

$$d_{\text{eff}}[\ m_{\mu}^2/m_V^2\] = d_{\text{eff}}[\ 1/m_V^2\] = -2$$

ullet for $a_{\mu}^{
m hlo}$, we have a nonperturbative but physical result

$$d_{\text{eff}}[a_{\mu}^{\text{hlo}}] = -1.887(5)$$

Eliminating the external scale

this understanding leads to a class of modified observables

$$a_{\overline{\mu}}^{\text{hlo}} = \alpha^2 \int_0^\infty \frac{dQ^2}{Q^2} w^{\text{lo}} \left(\frac{Q^2}{H^2} \cdot \frac{H_{\text{phys}}^2}{m_{\mu}^2} \right) \pi_R(Q^2)$$

• H is any hadronic scale and $H(m_{PS} \to m_\pi) = H_{\text{phys}}$, so

$$\lim_{m_{PS} \to m_{\pi}} a_{\overline{\mu}}^{\mathsf{hlo}} = a_{\mu}^{\mathsf{hlo}}$$

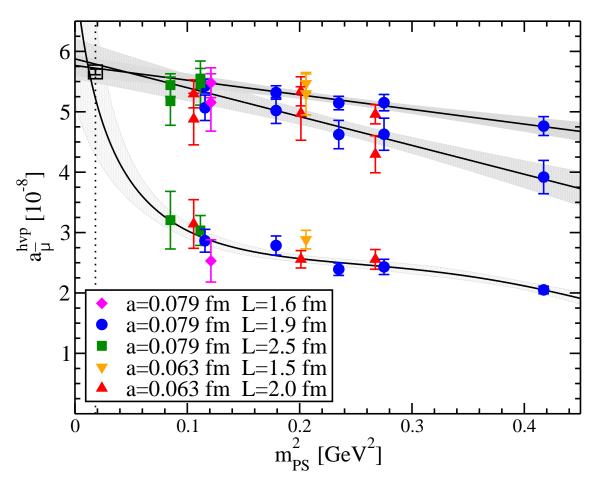
ullet each $a_{\overline{\mu}}^{\mathsf{hlo}}$ behaves like a proper dimensionless QCD quantity

$$d_{\rm eff}[a_{\overline{\mu}}^{\rm hlo}] = 0$$

• each $a_{\overline{\mu}}^{\mathsf{hlo}}$ is composed of hadronic scales only

Modified method for $a_{\mu}^{ m hlo}$

• bottom to top: H=1 (std. method), $H=f_V$ and $H=m_V$



- comparing to $N_f=2$ piece important, full piece is $6.903(53)\cdot 10^{-8}$
- our error of 2.8% is in the ballpark of the 0.8% currently used

Electron and tau g-2

Electron and tau g-2

ullet high precision measurement of g_e [Harvard, PRL 100:120801 (2008)]

$$g_e/2 = 1.00115965218073(28)$$
 [0.28 ppt]

ullet extraction of lpha from g_e just becoming sensitive to QCD corrections

$$\alpha^{-1} = 137.035999084(51)$$
 [0.37 ppb]

ullet g_e provides an very different probe of the QCD vacuum polarization

$$a_e^{\text{hlo}} \approx \frac{4}{3} \alpha^2 m_e^2 \left. \frac{d\pi_R}{dQ^2} \right|_{Q^2=0}$$
 $d_{\text{eff}}[a_e^{\text{hlo}}] = -1.999984 (1)$

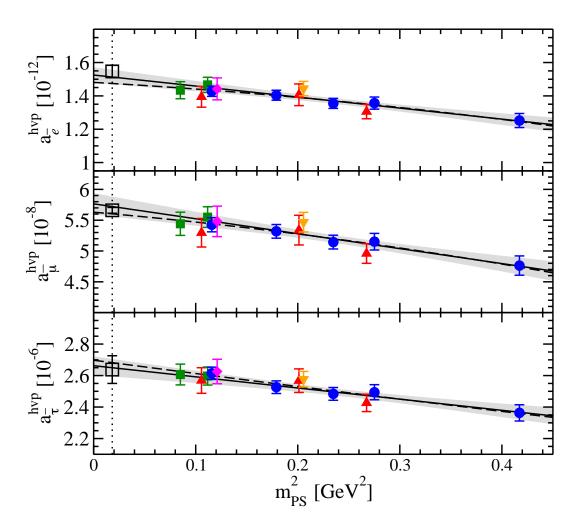
ullet $g_{ au}$ is sensitive to larger Q^2 and provides another test of our calculation

$$d_{\text{eff}}[a_{\tau}^{\text{hlo}}] = -0.936 \,(13)$$

ullet $g_{ au}$ is much more difficult to measure directly but $a_{ au}^{\mathsf{hlo}}$ is not

Calculation for all three charged leptons

no QCD perturbation theory, complete nonperturbative calculation



- the e is similar to the μ with our result at 2.8% versus 0.8%
- but for the τ we are doing better with 2.0% versus 3.3%

Running of α

QCD corrections to the QED coupling

an effective QED coupling is normally defined by

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta\alpha(Q^2)} \qquad \text{and} \qquad$$

• the hadronic piece is again related to $\pi_R(Q^2)$

$$\Delta \alpha_{\mathsf{had}}(Q^2) = 4\pi \alpha \pi_R(Q^2)$$

ullet precision of lpha is eroded by QCD corrections

$$\frac{\sigma_{\alpha}}{\alpha} \approx 4 \cdot 10^{-10}$$
 \rightarrow $\frac{\sigma_{\alpha}(M_Z^2)}{\alpha(M_Z^2)} \approx 3 \cdot 10^{-4}$

ullet this impacts many SM predictions, for example the Gfitter fit for m_H

$$m_H = 44^{+62}_{-43} \, \mathrm{GeV}$$
 without $\Delta \alpha(M_Z^2)$ $m_H = 96^{+31}_{-24} \, \mathrm{GeV}$ with $\Delta \alpha(M_Z^2)$

Modified definition of $\Delta \alpha_{\rm had}(Q^2)$

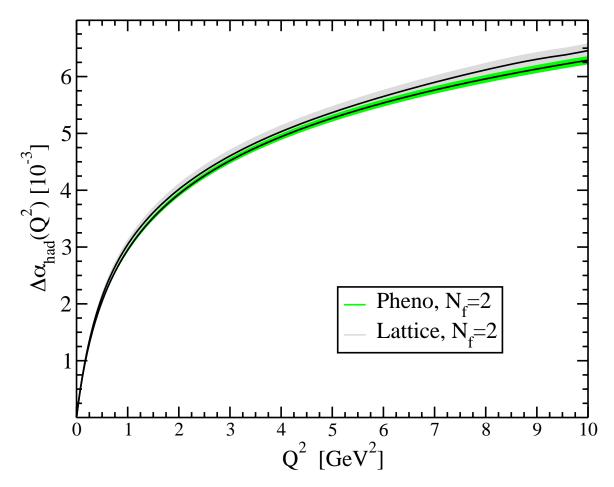
- treat Q^2 as an external scale and similarly define a new observable
- $M_0 = 2.5$ GeV is a common matching point in pheno. work



our 2.1% accuracy is nearly competetive with the currently used 1.1%

Hadronic running of the QED coupling

• lattice artifacts only show up slowly for $Q^2 \gtrsim 7~{\rm GeV^2}$



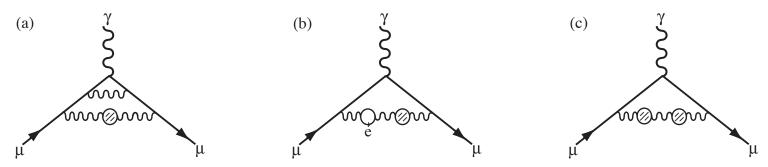
• α_s from $\pi(Q^2)$ used to determine $\Delta\alpha(M_Z^2) - \Delta\alpha(M_0^2)$ at 5 loops

$$\Delta \alpha(M_Z^2) = \Delta \alpha(M_0^2) + \Delta \alpha(M_Z^2) - \Delta \alpha(M_0^2) = 0.01715 (42)$$

Higher order corrections

NLO QCD correction to $g_{\mu}-2$

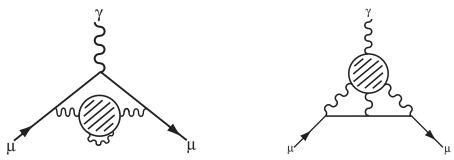
• calculated all three classes of 17 NLO diagrams involving $\pi_R(Q^2)$



• complete non-pert. NLO (α^3) correction, excluding light-by-light

$$\begin{array}{ll} a_{\mu}^{\rm nlo,hvp} = & -7.99\,(20)\cdot 10^{-10} & {\rm Lattice}, \; N_f = 2 \\ a_{\mu}^{\rm nlo,hvp} = & -7.78\,(16)\cdot 10^{-10} & {\rm Pheno}, \; N_f = 2 \end{array}$$

• light-by-light corrections require a different technology



• ongoing work by Blum et. al, QCDSF, JLQCD

$$a_{\mu}^{\text{nlo,lbl}} = 8(4) \cdot 10^{-10} \leftrightarrow 12(4) \cdot 10^{-10}$$
 Pheno

Outlook for muon g-2

- a precision of 3% (2%) currently achieved for $a_{\mu}^{\rm lo}$ ($\Delta \alpha$) for $N_f=2$
- our $N_f=$ 4 calculation, aiming at 3% is starting now
- 1% with $N_f=$ 4 may be feasible for $a_\mu^{\rm lo}$, would match BNL precision
- ullet FNAL/JPARC precisions would require another factor of 3 for $a_{\mu}^{\mbox{lo}}$
- $a_{\mu}^{\rm nlo,vp}$ with $N_f=$ 4 should be possible at FNAL/JPARC precisions
- \bullet $a_{\mu}^{\mathsf{nlo,lbl}}$ is an active research program, more ideas are still coming
- ullet there are now 6 lattice groups working on the muon g-2

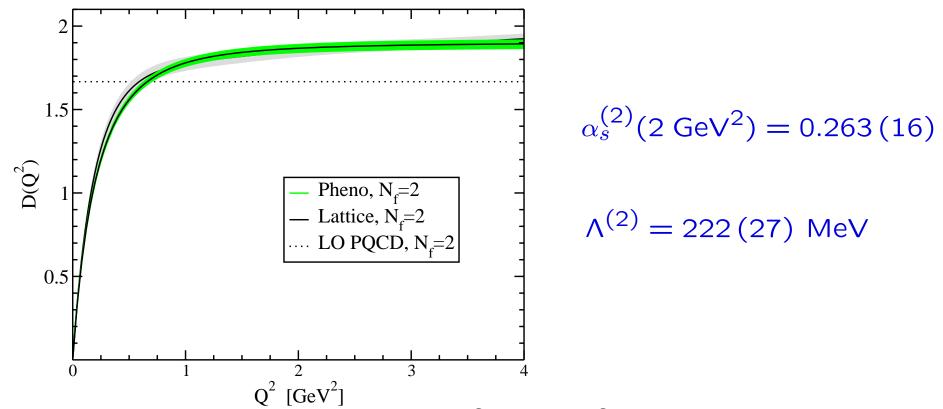
Extra slides

Adler function

the Adler function eliminates the UV divergence by a derivative

$$D(Q^2) = 12\pi^2 Q^2 \frac{d\pi_R}{dQ^2} \rightarrow \overline{D}(Q^2) = D(Q^2/H_{\text{phys}}^2 \cdot H^2)$$

• this makes $D(Q^2)$ much more sensitive to cut-off effects



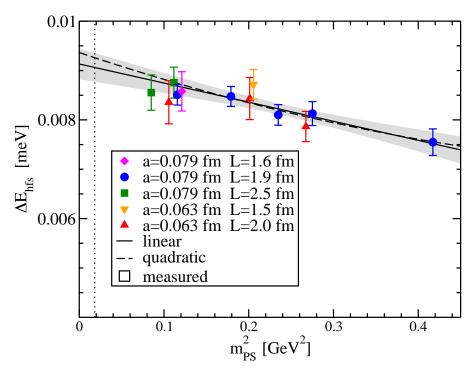
ullet can determine $lpha_s$ and Λ at each Q^2 (2 GeV 2 used) without OPE

Muonic hydrogen

• the LO QCD corrections to the 2P/2S splitting in $\mu^- p$

$$\Delta E_{\text{hfs}}^{\text{hlo}} = 2\pi\alpha^5 \mu^3 \left. \frac{d\pi_R}{dQ^2} \right|_{Q^2 = 0}$$

 \bullet this is closely related to $a_e^{\rm hlo}$ and similarly tests the low Q^2 region



Lattice,
$$N_f=2$$

$$\Delta E_{\rm hfs}^{\rm hlo}=9.06\,(29)\;\mu{\rm eV}$$

$${\rm Pheno},\;N_f=2$$

$$\Delta E_{\rm hfs}^{\rm hlo}=9.17\,(07)\;\mu{\rm eV}$$

ullet small compared to current 5 σ discrepancy, only rough checks needed

$$E_{\rm ex} - E_{\rm th} = 0.316 \, (63) \, \, {\rm meV}$$

Definition of a_{μ}^{hlo} for a>0

ullet the large Q^2 behavior is parameterized by fitting to

$$\pi_R(Q^2) = c + \ln Q^2 \cdot \sum_n a_n Q^{2n}$$

• to be precise, we fix the definition at non-zero lattice spacing with

$$\int_0^\infty dQ^2 \to \int_0^{Q_{uv}^2} dQ^2 \qquad Q_{uv}^2 = 16/a^2$$

- the integral is convergent, so this is just a choice of cut-off effects
- this choice does not require QCD perturbation theory
- this definition does not force us to introduce a lattice spacing
- this last point is important given that $d_{\rm eff}[a_{\mu}] \approx -2$

Definition of $a_{\mu}^{ m hlo}$ for $L<\infty$

ullet define π_R for low Q^2 by including the lowest meson and fitting the a_n

$$\pi_R(Q^2) = \frac{5}{9}g_V^2 \frac{Q^2}{Q^2 + m_V^2} + \sum_n a_n Q^{2n}$$

- fit ensures that $\pi_R(Q^2)$ matches lattice calculation for accessible Q^2
- extrapolation provides a well-defined finite-volume definition
- ullet explicit vector-meson term is systematically reabsorbed as L increases

$$\frac{5}{9}g_V^2 \frac{Q^2}{Q^2 + m_V^2} = \sum_n b_n Q^2 \quad \text{for } Q^2 < m_V^2$$

- this is not a systematic error but a proper finite-volume definition
- a practical matter of explicitly verifying controlled finite-size effects

Details on the effective dimension

ullet d_{eff} attempts to capture the dimensionality of only the QCD scales

$$d_{\text{eff}}[X] = -\frac{a}{X} \frac{\partial X}{\partial a} \Big|_{g_0 = \text{fixed}}$$

ullet for a standard mass scale M, definition is the usual mass dimension

$$d_{\text{eff}}[M^n] = -\frac{a}{M^n} \frac{\partial}{\partial a} \left(\frac{1}{a^n} \widehat{M}^n(g_0) \right) = -\frac{a}{M^n} \widehat{M}^n(g_0) \frac{\partial}{\partial a} \left(\frac{1}{a^n} \right) = n$$

however, it differs for a composite observable

$$d_{\text{eff}} \left[\frac{m_{\mu}^2}{m_V^2} \right] = d_{\text{eff}} \left[\frac{1}{m_V^2} \right] = -2$$

• for a_{μ} , we have an expression that must be evaluated on the lattice

$$d_{\text{eff}}[a_{\mu}] = -2\left(\int \frac{dQ^2}{Q^2} w(Q^2/m_{\mu}^2) Q^2 \frac{d\pi_R}{dQ^2}\right) / \left(\int \frac{dQ^2}{Q^2} w(Q^2/m_{\mu}^2) \pi_R\right) < 0$$

• you can easily prove that $d_{\mathsf{eff}}[a_{\mu}] \to -2$ (0) for $m_{\mu} \to 0$ (∞)

Vector meson contribution to a_{μ}

ullet the vector-mesons dominate the hadronic contribution to a_{μ}

on general grounds we expect any model to give

$$a_{\mu,V} \approx c \frac{m_{\mu}^2}{m_V^2}$$

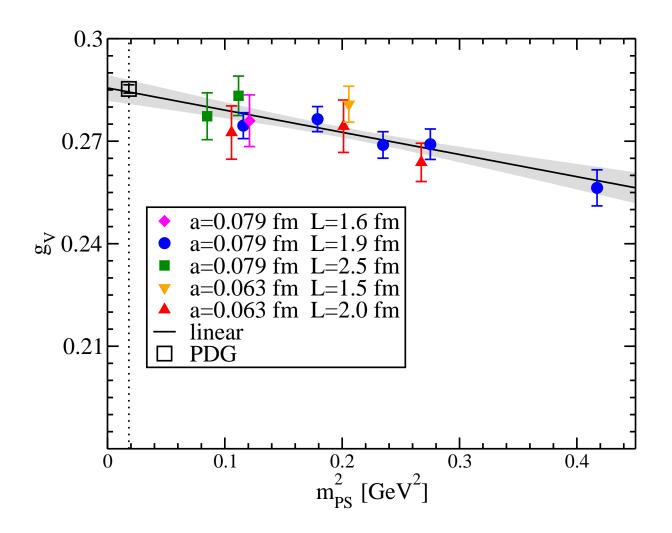
tree-level chiral perturbation theory gives

$$a_{\mu,V} = \alpha^2 g_V^2 f(m_\mu^2 / m_V^2) = \frac{2}{3} \alpha^2 g_V^2 \frac{m_\mu^2}{m_V^2} + \mathcal{O}(m_\mu^4 / m_V^4)$$

ullet this allows us to model the vector meson contribution to a_{μ}^{hlo}

Electromagnetic coupling of vector-meson

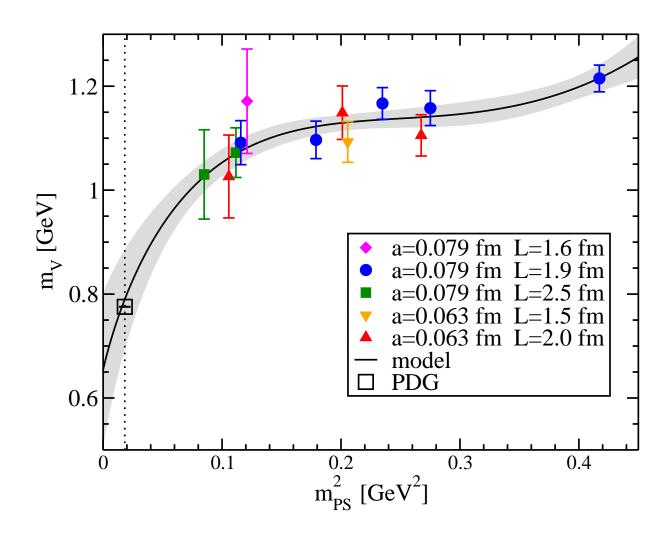
dimensionless quantities are typically better calculated



ullet result for g_V represents quantitative success for our calculation

Mass of vector-meson

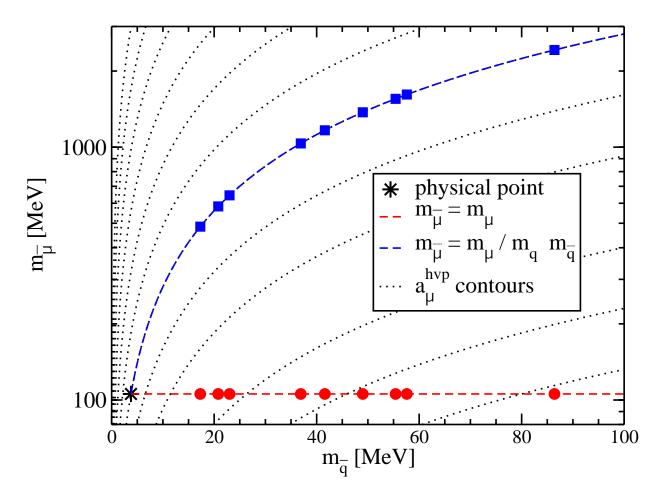
dimensionful quantities are sensitive to the overall scale setting



ullet phenomenological fit includes the PDG value of $m_
ho$

Renormalization of QCD + QED

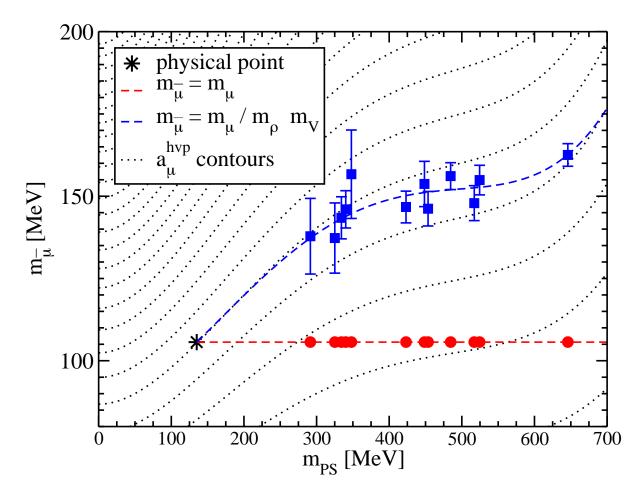
ullet introduce a variable muon mass $m_{\overline{\mu}}$ and quark mass $m_{\overline{q}}$



- ullet both paths, with $m_{\overline{\mu}}$ or $m_{\overline{\mu}}/m_{\overline{q}}$ fixed, define valid physical limits
- but $m_{\overline{\mu}} = (m_{\mu}/m_q) \, m_{\overline{q}}$ follows a contour of a_{μ}^{hlo} in pQCD

Hadronic scheme

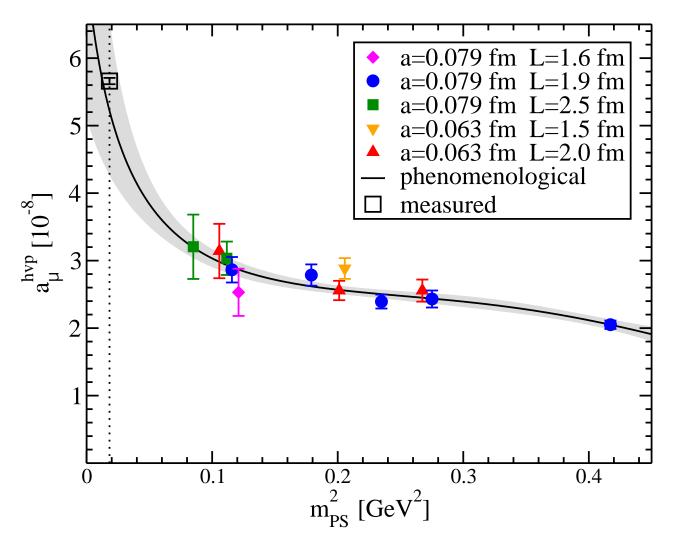
ullet introduce variable muon mass $m_{\overline{\mu}}$ and pseudo-scalar mass m_{PS}



- curve $m_{\overline{\mu}}=(m_{\mu}/m_{
 ho})\,m_V$ is implicitly defined so that $m_{\overline{\mu}} \to m_{\mu}$
- contours from VMD model (ask me) matched to the lattice calc.

Phenomenological description of $a_{\mu}^{ m hlo}$

ullet can combine model expectations with our calc. of g_V and m_V



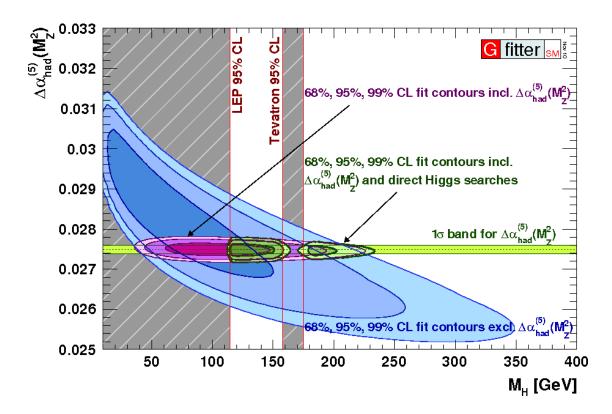
ullet apparently strong m_{PS} dependence of m_V is reflected in a_μ^{hlo}

Standard model predictions and $\Delta \alpha_{\mathsf{had}}$

• precision of α $(\sigma_{\alpha}/\alpha \approx 4 \cdot 10^{-10})$ is eroded by QCD corrections

$$\frac{\sigma_{\alpha(M_Z)}}{\alpha(M_Z)} \approx 3 \cdot 10^{-4}$$
 $\frac{\sigma_{G_F}}{G_F} \approx 9 \cdot 10^{-6}$ $\frac{\sigma_{M_Z}}{M_Z} \approx 2 \cdot 10^{-5}$

ullet this impacts many SM predictions, for example m_H



Modified definition of $\Delta \alpha(Q^2)$

• a change of variables gives $a_{\overline{\mu}}^{\text{hvp}}$ as

$$a_{\overline{\mu}}^{\text{hvp}} = \alpha^2 \int_0^\infty \frac{dQ^2}{Q^2} w(Q^2/m_{\mu}^2) \, \pi_R \left(Q^2/H_{\text{phys}}^2 \cdot H^2 \right)$$

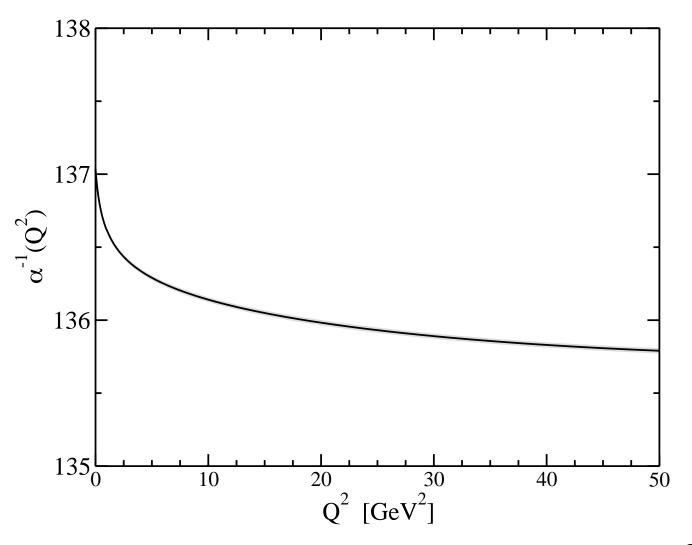
ullet this suggests treating Q^2 as an external scale like m_μ^2 and defining

$$\Delta \overline{\alpha}_{had}(Q^2) = 4\pi \alpha \pi_R \left(Q^2 / H_{phys}^2 \cdot H^2 \right)$$

ullet this choice for $\pi_R(Q^2)$ then defines all other observables consistently

Running of α

• includes only the QCD corrections, remember full $lpha^{-1}(M_Z) pprox 129$



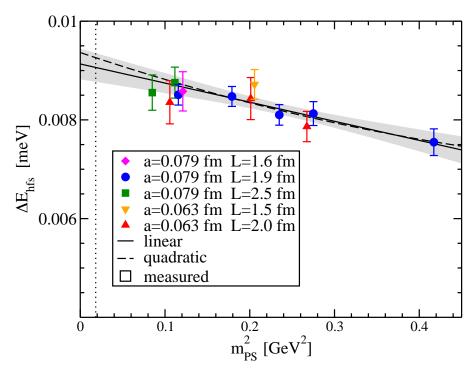
• future work will need matching to pQCD and/or larger Q^2

Muonic hydrogen

• the LO QCD corrections to the 2P/2S splitting in $\mu^- p$

$$\Delta E_{\text{hfs}}^{\text{hlo}} = 2\pi\alpha^5 \mu^3 \left. \frac{d\pi_R}{dQ^2} \right|_{Q^2 = 0}$$

 \bullet this is closely related to $a_e^{\rm hlo}$ and similarly tests the low Q^2 region



Lattice,
$$N_f=2$$

$$\Delta E_{\rm hfs}^{\rm hlo}=9.06\,(29)\;\mu{\rm eV}$$

$${\rm Pheno},\;N_f=2$$

$$\Delta E_{\rm hfs}^{\rm hlo}=9.17\,(07)\;\mu{\rm eV}$$

ullet small compared to current 5 σ discrepancy, only rough checks needed

$$E_{\rm ex} - E_{\rm th} = 0.316 \, (63) \, \, {\rm meV}$$

Isospin violating corrections

• by varying from m_π^0 to m_π^+ , the standard method changes by

$$\Delta_{m_u \neq m_d} = 9.0 \cdot 10^{-11}$$

• by taking the maximum variation under m_π^0 to m_π^+ and ρ^0 to ρ^+

$$\Delta_{m_u \neq m_d} = 8.0 \cdot 10^{-11}$$

ullet this suggests isospin violating effects are potentially $\mathcal{O}(10^{-10})$