Discriminating Top-Antitop Resonances using Azimuthal Decay Correlations

Brock Tweedie Boston University 14 April 2011 @ Fermilab

Baumgart and Tweedie, arXiv:1104.2043

- Something weird seems to be going on with tops at the Tevatron
- To fully verify the story at the LHC, we may need to consider new variables that characterize top resonances
- Even if the Tevatron anomaly goes away, maybe we should have been thinking about these variables anyway

Hmmm....

CDF Note 10436 (dileptonic)

CDF arXiv:1101.0034

Evidence for New Physics?

m_{tt} > 450 GeV

 3.4σ after unfolding

The Explanation I'm Selling Today: "Axigluons"

 $A_{FB} \sim - g_A^q g_A^t$

=> $g_A^q > 0$ and $g_A^t < 0$

Frampton, Shu, Wang, arXiv:0911.2955

Tevatron Anomaly -> LHC Discovery

Bai, Kaplan, Hewett, Rizzo, arXiv:1101.5203

CMS PAS TOP-10-007

How Would We Know if It's an "Axigluon"?

Lineshape interference $\sim g_V^q g_V^t$

Choudhury, Godbole, Singh, Wagh, arXiv:0705.1499

Top Polarization

semileptonic energy ratio LH 1.5 RH 0.5 0.2 0.4 0.6 0.8 1 $\mathcal{E}_{\ell}/(\mathcal{E}_{\ell}+\mathcal{E}_b)$

subjet energy ratios

Shelton, arXiv:0811.0569

Krohn, Shelton, Wang, arXiv:0909.3855

$$g_{L}^{t} \neq g_{R}^{t} \Rightarrow g_{A}^{t} \neq 0$$

* Also off-peak polarization asymmetry from interference ~ $g_V^{q} g_A^{t}$

Longer-Term Goal: Direct Measurement of A_{FB} at LHC

Forward charge asymmetry

Hewett, Shelton, Spannowsky, Tait, Takeuchi, arXiv:1103.4618

Lingering Issues

- Most observables entangle the top charges with the quark charges
 - absence of lineshape/polarization interference would only tell us that the quarks are axially charged, not the tops
- On-peak helicity bias tells us about the magnitude of g_L^t/g_R^t but not the relative sign
 - pure vector and pure axial look identical
- Might eventually measure A_{FB} directly, but this doesn't conclusively tell us that the resonance is responsible

 maybe with a mass-binned measurement at LHC
- Is there any orthogonal information that we can gather?

Lepton as Spin Analyzer

$$\mathcal{M}(t \to b\ell^+\nu) \propto \left(u(t)_L^T \epsilon \, v(\ell)_L \right) \, \left(u(b)_L^\dagger \, \epsilon \, u(\nu)_L^* \right)$$

lepton spinor talks directly to top spinor... maximum sensitivity to spin effects

Lepton as Spin Analyzer

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_f} = \frac{1}{2} \left(1 + \mathcal{P}_{t'} \star \cos\theta_f \right)$$

tops always produced in same-spin state

can interpolate kinematic regimes using offdiagonal spin basis

Cf. Peskin & Schroeder

Mahlon & Parke, hep-ph/9706304

Dileptonic Spin Correlations at the Tevatron

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d\cos\theta_+ d\cos\theta_-} = \frac{1 + \kappa\cos\theta_+ \cos\theta_-}{4}$$

incl. gluon fusion, $\kappa = 0.8$

κ =1 fit template

data

CDF Note 9824 (2.8 fb⁻¹)

Traditional Spin Correlations and New Resonances

800 GeV Resonances, helicity basis

Frederix & Maltoni, arXiv:0712.2355

Lepton as Spin Analyzer

$$\mathcal{M}(t_{\uparrow} \to b\ell^{+}\nu) \propto e^{i\phi_{\ell}/2} \cos\frac{\theta_{\ell}}{2}$$
$$\mathcal{M}(t_{\downarrow} \to b\ell^{+}\nu) \propto e^{-i\phi_{\ell}/2} \sin\frac{\theta_{\ell}}{2}$$

start in lab frame

boost tt system to rest

boost the tops to rest

and look at their decay products

$$\left(v(\ell)_L^T \epsilon \, u(t)_L \right) \left(u(t)^\dagger \, \Gamma \, v(\bar{t}) \right) \left(v(\bar{t})_L^\dagger \epsilon \, u(\bar{l})_L^* \right) \rightarrow \left(v(\ell)_L^T \Lambda^T \epsilon \, \Lambda u(t)_L \right) \left(u(t)^\dagger \, \Gamma \, v(\bar{t}) \right) \left(v(\bar{t})_L^\dagger \bar{\Lambda}^\dagger \epsilon \, \bar{\Lambda}^* u(\bar{l})_L^* \right)$$

production decay

decay

Full Helicity Interference

In chiral limit ($m_t/M \rightarrow 0$)

- Spin-0 will exhibit $\phi \overline{\phi}$ modulation
- Spin-1(2) will exhibit $\phi + \overline{\phi}$ modulation

Spin-0

$$\mathcal{L}_{\rm int} \to -y \,\phi \left(e^{i\,\alpha} \,\bar{t}_R t_L \,+\, e^{-i\,\alpha} \,\bar{t}_L t_R \right)$$

pure scalar: $\alpha = 0$ pseudoscalar: $\alpha = \pi/2$

$$\frac{d^4\Gamma}{d\Omega_\ell \, d\bar{\Omega}_\ell} \propto 1 + \cos\theta_\ell \, \cos\bar{\theta}_\ell - \sin\theta_\ell \, \sin\bar{\theta}_\ell \, \cos\left(\phi_\ell - \bar{\phi}_\ell + 2\alpha\right)$$

all other top decay variables factorize off (lepton energies, b & v orientations)

One Option: 3D Angle

$$\frac{d\Gamma}{d\cos\chi} \propto 1 + \frac{1 - 2\cos(2\alpha)}{3}\cos\chi$$

Bai & Han, arXiv:0809.4487 (fully reconstructed)

But We Could Just Measure ϕ

$$\frac{d\Gamma}{d(\phi_{\ell} - \bar{\phi}_{\ell})} \propto 1 - \left(\frac{\pi}{4}\right)^2 \cos(\phi_{\ell} - \bar{\phi}_{\ell} + 2\alpha)$$

- Don't need to measure the polar angles
- Spin-1(2) doesn't modulate in this variable, nor does the SM continuum
 - cleaner discrimination from other spins
 - cleaner discrimination from background

Spin-1

$$\mathcal{L}_{\text{int}} \to A_{\mu} \left(g_L \, \bar{t}_L \gamma^{\mu} t_L + g_R \, \bar{t}_R \gamma^{\mu} t_R \right)$$

$$g_L = g \cos \xi$$
$$g_R = g \sin \xi.$$

$$\frac{d^2 \Gamma_{J_{\text{beam}}=\pm 1}}{d(\phi_{\ell} + \bar{\phi}_{\ell}) \, d\cos\Theta} \propto \left(1 + \cos^2\Theta\right) - \left(\frac{\pi}{4}\right)^2 \sin(2\xi) \sin^2\Theta \cos(\phi_{\ell} + \bar{\phi}_{\ell})$$

integrate out Θ

$$\frac{d\Gamma_{J_{\text{beam}}=\pm 1}}{d(\phi_{\ell}+\bar{\phi}_{\ell})} \propto 1 - \frac{1}{2} \left(\frac{\pi}{4}\right)^2 \sin(2\xi) \cos(\phi_{\ell}+\bar{\phi}_{\ell})$$

pure vector: -30%pure axial: +30%pure chiral: 0

Even More Formulas!

gg -> spin-1

$$\frac{d^2 \Gamma_{J_{\text{beam}}=0}}{d(\phi_{\ell} + \bar{\phi}_{\ell}) d\cos\Theta} \propto \sin^2 \Theta \left[1 + \left(\frac{\pi}{4}\right)^2 \sin(2\xi) \cos(\phi_{\ell} + \bar{\phi}_{\ell}) \right]$$

$q\overline{q} \rightarrow spin-2$

$$\frac{d\Gamma_{J_{\text{beam}}=\pm 1}}{d(\phi_{\ell}+\bar{\phi}_{\ell})} \propto 1 + \frac{1}{6} \left(\frac{\pi}{4}\right)^2 \sin(2\xi) \cos(\phi_{\ell}+\bar{\phi}_{\ell})$$

gg -> spin-2

$$\frac{d\Gamma_{J_{\text{beam}}=\pm 2}}{d(\phi_{\ell}+\bar{\phi}_{\ell})} \propto 1 - \frac{2}{3} \left(\frac{\pi}{4}\right)^2 \sin(2\xi) \cos(\phi_{\ell}+\bar{\phi}_{\ell})$$

Aside: Z->tt at LEP

Figure 1: Coordinate system in the lab frame. $p_{d\pm}$ is the direction of the τ^{\pm} decay Figure 2: Comparison of the standard model product. p_{e^-} is the direction of the incident $\cos(2\phi)$ asymmetry and the data for the e^- .

 $l^{\mp}\pi^{\pm}$ channel.

ALEPH, CERN OPEN-99-355

- Directly measured vector/axial admixture of Z coupling to taus \mathbf{O}
- Double one-prong events \bullet
 - no attempt to reconstruct neutrinos
 - know the CM frame anyway, get to sit on resonance
- Azimuthal angle of one visible particle about the other follows $\cos(2\phi)$ ightarrowdistribution

Wait a Minute...

Top decays also produce neutrinos. How do we reconstruct any of this in dileptonic mode? How do we even find the resonance??

- 6 lost dof's
- 2 recaptured in MET
- 4 mass constraints (2 tops, 2 W's)
- => exactly soluble up to 4-fold, 2-fold, or 0-fold(!) ambiguity

How to Cook the Math?

- Our workaround
 - always get 4 complex solutions for neutrino momenta
 - take the real parts, pick solution with smallest m_{tt}
- Bai & Han
 - allow solutions that aren't too imaginary and don't have neutrinos dominating the event energy
 - norm out the complex reconstructed top momenta
 - all good solutions weighted equally
- The "correct" way: χ^2 minimization over visible & invisible kinematics
 - assuming leptons are perfectly measured, still a 10-parameter minimization
 - we didn't try this!

But Also Many Simpler Options

- M_{Tcl}
 - transverse mass of visible 4-vector (2 leptons + 2 b's) and MET
 - effectively one neutrino with $\eta_v = y_{VIS}$
- "Minimal neutrino"
 - similar idea, but set $\eta_v = \eta_l$ (lepton closest to MET)
- M_{eff}
 - scalar-sum visible p_T 's and MET
- M_{VIS}
 - just take the mass of the visible 4-vector

Performance Comparison

Hadron-level MadGraph+PYTHIA simulations include jet reconstruction and jet/lepton energy smearings as per CMS, simple lepton (mini)isolation, hemisphere-based jetlepton pairing, no b-tags. MET defined to just balance bjets and leptons. (Reduc. backgrounds highly subleading.)

Performance Comparison

scan over mass windows & transversity cuts (M_{eff}/M_{reco})

For maximizing significance of the resonance region, M_{Tcl} seems to win. Doesn't necessarily carve out a well-defined peak, but we'll already know where to look from I+jets discovery.

Our LHC7 Cuts

LHC 7	Mass/Transversity Cuts	$\varepsilon_S^{ ext{selection}}$	$\varepsilon_S^{ m selection+cuts}$	σ_B
1 TeV, Narrow	$M_{Tcl} = [750, 1025] \text{ GeV}, M_{eff}/M_{Tcl} > 0.65$	0.38	0.24	21 fb
1 TeV, 15%-Width	$M_{Tcl} = [700, 1450] \text{ GeV}, M_{eff}/M_{Tcl} > 0.65$	0.33	0.19	$24 \mathrm{fb}$
2 TeV, Narrow	$M_{Tcl} = [1600, 2100] \text{ GeV}, M_{eff}/M_{Tcl} > 0.50$	0.58	0.20	$0.07 {\rm ~fb}$
2 TeV, 15%-Width	$M_{Tcl} = [1425, 2925] \text{ GeV}, M_{eff}/M_{Tcl} > 0.75$	0.40	0.09	0.17 fb

typically ~20% of dileptonics => ~1% of all tt

Spin-O Azimuthal Modulations

1 TeV Spin-0

1.8

perfect M_{Tcl} minimal v visible real quartic Bai-Han

* MadGraph topBSM

1.8

solid: pure scalar, dashed: pseudoscalar, dotted: mixed CP

Spin-1 Azimuthal Modulations

perfect M_{Tcl} minimal v visible real quartic Bai-Han

solid: pure vector, dashed: axial vector, dotted: LH chiral

SM Azimuthal Modulations

perfect M_{Tcl} minimal v visible real quartic Bai-Han

Hand-Selected A_{FB} Example Model

- $g_A^q = 0.5$, $g_A^t = -2.5$ ($g_V^s = 0$), M = 1.5 TeV
- safe from resonance and contact interaction searches, pushes A_{FB} up to within 2σ of CDF
- $\sigma \times BR(tt) = 2 \text{ pb (LHC7)}, \Gamma = 12\%$
 - $-5 \text{ fb}^{-1} \Rightarrow 10,000 \text{ resonance events}$
 - 500 dileptonic
 - -100 pass into our analysis (S/B ~ 10)
 - enough to distinguish vector from axial at ~3 σ using 2-bin (asymmetry) analysis

l+Jets

- Pros
 - rate X 6
 - e.g., probe up to higher-mass resonances
 - easier to fully reconstruct
 - better peak -> better S/B with less severe cuts
- "Cons"
 - smaller modulation effects: 40% as big if we correlate lepton and b
 - formally need 6X higher stats...convenient coincidence
 - can try to boost correlation through smarter choice of jet
 - need to identify b-(sub)jet
 - b-tag or internal kinematics

Summary

- If nothing else the Tevatron A_{FB} anomaly motivates us to think hard about discriminating top-antitop NP scenarios
 - spin-1 vector/axial coupling to top is a notable semi-blind spot
- Azimuthal decay correlations directly encode helicity interference effects and tell us about top couplings to new resonances
 - discriminate vector from axial vector
 - directly measure scalar CP phase
 - discriminate spin-0 from spin > 0
- They look surprisingly easy to reconstruct in dileptonic mode, even though two neutrinos
 - largest modulations amongst top decay modes
 - can still reconstruct the resonance, more or less...simple $m_{\rm tt}$ estimators seem to work best
- Might be testable for A_{FB}-relevant spin-1 octet models without waiting for LHC14 (if we're lucky)
- Improvable in I+jets?