Report on

Workshop on the Hadronic Light-by-light Contribution to the Muon Anomaly (g-2)

held @ Institute for Nuclear Theory, University of Washington, Seattle

Andreas S. Kronfeld
Fermilab

10 March 2011
Fermilab Theoretical Physics Seminar

Not Your Usual Seminar

- I went to this workshop to learn more about the Standard Model theory of muon (g-2).
- As a BSM curmudgeon, I haven't taken the famous "discrepancy" too seriously:
 - on the one hand, the discrepancy is evidence for susy; yet, on the other, ...
 - ... the agreement provides a strong constraint on susy [Bechtle et al., arXiv:0907.2589].
- Still possible for me to learn a lot about QCD in one week (but I still know less than Bill).
- Barring Tea Party effects, the BNL apparatus is coming here for a new experiment.
- The workshop was on hadronic light-by-light, but hadronic vacuum polarization matters too.

Hadronic vacuum polarization

Hadronic light-by-light

Outline

- Experiments (at BNL & Fermilab) in a nutshell
- Beyond the Standard Model
- Some basics of the theory
- Models of QCD
- Data-driven estimates
- Prospects with lattice gauge theory
- Perspectives

The Muon (g-2) Collaboration from BNL E821 to FNAL E989

BNL E821

B. Lee Roberts

• Inject longitudinally polarized muons into storage ring and measure spin precession:

$$\omega_a = \omega_s - \omega_c = \mp \frac{e}{m} \left[\frac{g-2}{2} \boldsymbol{B} - \left(\frac{g-2}{2} - \frac{1}{\gamma^2 - 1} \right) \boldsymbol{v} \times \boldsymbol{E} \right]$$
 bend focus

where $\omega_{s(c)}$ is spin (cyclotron) angular frequency. Forthwith, $a_{\mu} = (g-2)/2$.

- Electron energy distribution correlated with muon spin s:
 - measure number of electrons above some energy threshold.
- Measure B field early and often.
- Choose "magic" muon momentum so that electric term drops out (i.e., is really, really small).

3.6 billion μ^- decays

G.W. Bennett et al. [Muon (g-2) Collaboration], hep-ex/0602035

Fermilab E989

(verbatim) B. Lee Roberts

- Relocate the (g-2) storage ring to Fermilab;
- Use the many proton storage rings to form the ideal proton beam;
- Use one of the antiproton rings as a 900 m decay line to produce a pure muon beam;
- Accumulate 21 times the statistics;
- Improve the systematic errors;
- Final goal: at least a factor of 4 more precise over E821;
- 2010 Christmas present.

Results and Forecasts for a_{μ}

how	$10^{11}a_{\mu}$	10 ¹¹ ×error
E821 μ+	116 592 03-	90
E821 μ ⁻	116 592 14-	90
<u>E821</u> μ±	116 592 080	63
$SM(\tau)$	116 591 894	54
$SM(e^+e^-)$	116 591 802	49
HVP (Io)	6 923	42
HL×L	105	26
<u>E989</u> μ+	116 59	16

SM values and compilation from Andreas Höcker, <u>arXiv:1012.0055</u>

Error Budgets for Muon (g-2)

error ∝ perimeter; area ∝ weight in sum in quadrature

BNL E821 → FNAL E989

Standard Model Calculation

HVP from $e^+e^- \rightarrow$ hadrons vs. hadronic τ decay

F. Jegerlehner

• The cross section for $e^+e^- \rightarrow$ hadrons contains the needed vacuum polarization:

• The partial width for $\tau \to$ hadrons contains WVP (related to γ VP by isopin):

• Jegerlehner & Szafron [arXiv:1101.2872] find that energy-dependence of mixing in the 2×2 g-γ propagator can resolve the discrepancy. See also Benayoun *et al.*, arXiv:0907.5603.

Sociology

- E989 proponents receive many questions about HL×L (e.g., P5, Intensity Frontier Review):
 - HL×L relies on models and indirect experimental information;
 - "recuperating" from sign mistakes (FORM's form for εμνοσ; mismatch notes/code);
 - hence, the INT workshop.
- Even with a resolution between HVP(e^+e^-) and HVP(τ), E989 will warrant a dramatic improvement in the uncertainty on HVP:
 - my pie imagined $10^{11}a_{\mu}^{HVP} = 6900 \pm 12 \ (42 \div 3.5) \ \& \ 10^{11}a_{\mu}^{HL\times L} = 100 \pm 7 \ (26 \div 3.7);$
 - hence, some future workshop.

Explaining the Anomalous Anomaly BSM

Explanations beyond the Standard Model

Bill Marciano

- Discrepancy in $10^{11}a_{\mu}$ is 278±80 [Höcker, <u>arXiv:1012.0055</u>].
- Generic susy is $sign(\mu)$ 260 $(tan\beta/8)$ (200 GeV/ M_{susy})²; "fits like a glove".
- Multi-Higgs models; extra dimensions,
- Dark photon with $m_A \approx 10-150$ MeV and $\alpha' = 10^{-8}$:
 - would be seen the first weekend of planned searches at JLab or Mainz.
- Insanely light Higgs, $m_{\rm H} < 10~{\rm MeV}$ [Kinoshita & Marciano (1990)]:
 - Why doesn't everyone know why every decade of $m_{\rm H}$ is ruled out?

Theory: Amplitudes and their Constraints

Hadronic Vacuum Polarization

• Integral over space-like momenta [Blum, hep-lat/0212018 (PRL)]:

$$a_{\mu}^{\text{HVP}} = \frac{\alpha}{2\pi} \int_{0}^{\infty} dt \frac{64t^{2}}{(t + \sqrt{t^{2} + 4t})^{4} \sqrt{t^{2} + 4t}} 2\pi\alpha \left[\Pi(m_{\mu}^{2}t) - \Pi(0) \right]$$

where $t = q^2/m_{\mu}^2$ (Euclidean—or Weinberg's—conventions).

• Integral over time-like momenta $s = -q^2 > 0$:

$$a_{\mu}^{\mathrm{HVP}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} ds \, K(s) R(s)$$

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

• Split (both) integrals into data (experimental or numerical) portion & pQCD portion.

• Vacuum polarization function $\Pi(q^2)$ is defined by ($J_{
m em}$ for quarks only)

$$\Pi^{\mu\nu}(q^2) = (q^{\mu}q^{\nu} - \delta^{\mu\nu}q^2)\Pi(q^2) = \int d^4x e^{iq\cdot x} \langle J^{\mu}_{\rm em}(x)J^{\mu}_{\rm em}(0) \rangle$$

which is very smooth: space-like q^2 !!!

• At time-like q^2 , dispersion relations can relate this function to its imaginary part, and then the optical theorem to the total cross section:

$$\Pi(q^2) - \Pi(0) = \frac{q^2}{\pi} \int_0^\infty ds \frac{\Im \Pi(-s)}{s(s+q^2+i0^+)} = \frac{q^2}{\pi} \int_0^\infty ds \frac{\alpha(s)R(s)}{3s(s+q^2+i0^+)}$$

take jagged resonance regions from experiment; rest from pQCD.

Hadronic Light-by-light Amplitude

• The contribution to (g-2) is [e.g., arXiv:0901.0306]

$$a_{\mu}^{\mathsf{HL}\times\mathsf{L}} = \frac{e^2}{24m_{\mu}} \int \frac{d^4k_1}{(2\pi)^4} \frac{d^4k_3}{(2\pi)^4} \, \mathcal{K}_{\mu\lambda\nu\rho\sigma}(p,k_1,k_2,k_3) \, \frac{\partial}{\partial q_{\mu}} \Pi^{\lambda\nu\rho\sigma}(q,k_1,k_2,k_3) \bigg|_{k_2 = k_1 - k_3 - q,\, q = 0}$$

where QED readily yields

$$\mathcal{K}_{\mu\lambda\nu\rho\sigma}(p,k_1,k_2,k_3) = \frac{\operatorname{tr}\{[i\not p - m_{\mu}]\sigma_{\mu\lambda}[i\not p - m_{\mu}]\gamma_{\nu}[i(\not p + \not k_1) - m_{\mu}]\gamma_{\rho}[i(\not p + \not k_3) - m_{\mu}]\gamma_{\sigma}\}}{k_1^2k_2^2k_3^2[(p + k_1)^2 + m_{\mu}^2][(p + k_3)^2 + m_{\mu}^2]}$$

and QCD not-so-readily provides

$$\Pi^{\lambda\nu\rho\sigma}(q,k_1,k_2,k_3) = \int d^4x_1 \, d^4x_2 \, d^4x_3 \, e^{-i(k_1x_1 - k_2x_2 - k_3x_3)} \, \left\langle J_{\rm em}^{\lambda}(0) J_{\rm em}^{\nu}(x_1) J_{\rm em}^{\rho}(x_2) J_{\rm em}^{\sigma}(x_3) \right\rangle$$

Dominant contributions

• Hadronic vacuum polarization is dominated by the rho meson (VMD):

• Hadronic light-by-light amplitude is dominated by π (and η , η') exchange (normalized by the anomaly; well described by Wess-Zumino Lagrangian)

Of course, the uncertainty is dominated by the other contributions

PDG: $e^+e^- \rightarrow \text{hadrons}$

Crystal Ball: π^0 , η , and η' in $\gamma\gamma \rightarrow \gamma\gamma(1988)$

SLAC-PUB-4580, Fig. 2 (see also Fig. 8)

Estimates of HL×L from Models of QCD

Apology

• Most of the following slides follow the dreadful format "so-and-so gave a nice talk in which he* showed this nice plot".

Just without the nice plots.

• * At this workshop, all speakers were "he".

- Combining several ingredients (covered below), PRV find $10^{11}a_{\mu}^{HL\times L} = 105 \pm 26$:
 - $10^{11}a_{\mu}^{\text{HL}\times\text{L}}(\pi, \eta, \eta') = 114 \pm 13 \text{ [MV} \approx \text{(ENJL+OPE)} \pm \text{max.ENJL]};$
 - $10^{11}a_{\mu}^{\text{HL}\times\text{L}}(a_1, \text{ etc.}) = 15 \pm 10 \text{ [MV} \pm 10\times\text{MV]};$
 - $10^{11}a_{\mu}^{HL\times L}(\text{scalars}) = -7 \pm 7$ [ENJL \pm inflated ENJL];
 - $10^{11}a_{\mu}^{\text{HL}\times\text{L}}(\text{dressed }\pi\text{ loop}) = -19 \pm 19 \text{ [ENJL }\pm\text{ inflated ENJL]};$
 - add error estimates in quadrature.

Extended Nambu-Jona-Lasinio & Chiral Quark Models

Hans Bijnens (work with Pallante & Prades)

- The chiral quark model has a pion field (χPT) constituent-like quark field:
 - quark captures short-distance QCD, but freezes out at long distances;
 - pion captures long-distance constraints of chiral symmetry;
 - need great care to avoid double counting of long & short (>1 invariant!).
- NJL adds to this four-quark interactions whose bubble sums generate non-NG mesons.
- Thus, combo incorporates obviously needed ingredients: pion & other meson exchange + quark loop.
- Hayakawa, Kinoshita, Sanda: meson models, VMD, hidden local symmetry.

• The BPP and HKS papers simplify the pion exchange amplitude

$$\mathcal{A} \propto F_{\pi \gamma^* \gamma^*} \left((q_1 + q_2)^2, q_1^2, q_2^2 \right) \frac{1}{(q_1 + q_2)^2 - m_{\pi}^2} F_{\pi \gamma^* \gamma} \left((q_3 + q_4)^2, q_3^2, 0 \right)$$

with
$$F_{\pi\gamma^*\gamma^*}\left((q_1+q_2)^2,q_1^2,q_2^2\right) \approx F_{\pi\gamma^*\gamma^*}\left(m_\pi^2,q_1^2,q_2^2\right)$$
.

- Off-shell effects should enter. How large are they?
- Can be estimated only using resonance models, and in a model calculation of HL×L, this is not an essentially new ingredient: estimates $10^{11}a_{\mu}^{HL\times L}$ (off shell) $\approx 35-40$.
- NB: magnetic susceptibility $\langle \bar{q}\sigma_{\mu\nu}q\rangle_{F_{\mu\nu}}$ constrains meson exchanges [Belyaev & Kogan, 1984]; can be calculated in lattice gauge theory.

Using Constraints from Operator Product Expansion

Arkady Vainshtein; Kiril Melnikov

- In the limit $k_1^2 \approx k_2^2 \gg k_3^2 \gg \Lambda_{\text{QCD}}^2$, the OPE relates $\text{FT}\langle VVVV \rangle$ to $\text{FT}\langle AVV \rangle$ [hep-ph/0312226]:
 - fixes normalization of pseudoscalar and axial-vector exchanges in these kinematics;
 - in particular, $\lim_{q^2\gg\Lambda^2}F_{\pi\gamma^*\gamma^*}(q^2,q^2)=\frac{8\pi^2f_\pi^2}{N_cq^2}$ matches low-energy normalization from anomaly;
 - facilitates introduction of a model *function* to interpolate between limits (in contrast to model Lagrangians of other approaches);
 - MV choose an Ansatz; you could choose yours.
- Despite any limitations of MV's Ansatz, it should be clear that model Lagrangians in other approaches should satisfy their OPE constraint.

Holographic QCD

Oscar Catà; Deog Ki Hong

- Exploit (conjectured) duality between d-dimensional strongly-coupled gauge theories and (d+1)-dimensional weakly-coupled gravity:
 - incorporates large N_c & (conformal) short-distance behavior w/ Lagrangian;
 - few parameters (3 new for Catà; no new for Hong);
 - becomes a model when a dilation factor $e^{-\Phi(x)}$ is chosen.
- Focus on $F_{\pi\gamma\gamma^*}$ form factor: obtain numerical results for pseudoscalar exchange in very good agreement with other approaches.
- Hong also obtains non-strange $10^{11}a_{\mu}^{HVP} = 4705 \text{ vs. } 5141\pm38 \text{ from } BaBar \text{ data.}$

Two-loop Chiral Perturbation Theory

Michael Ramsay-Musolf

- Notes that χPT provides useful, model-independent constraint of pion contribution:
 - pion pole term yields \ln^2 ; single \ln from $\pi \to e^+e^-$; last LEC from lattice
 - BR($\pi \rightarrow e^+e^-$) from KTeV 2007 should reduce uncertainty in single ln.
- Resonances built up from higher-order contributions:
 - MRM + students computing full 2-loop χPT HL×L.
- Pion loops will need further LECs from pion charge radius and pion polarizability.
- This seems like a hard way to gain real improvement, but I think these calculations could guide chiral extrapolation of QED+QCD method.

Schwinger-Dyson Equations (DSE)

Richard Williams

- Start with (exact) Dyson-Schwinger eq'ns for dressed propagators, vertex, 4-pt function.
- Introduce "model" functions (e.g., Maris-Tandy) that satisfy—
 - Ward identities;
 - good agreement with phenomenology in other applications;
 - good agreement with lattice calculations (in Landau gauge).
- Keep large N_c part in DSE resummation (i.e., neglect non-planar and 2- & 3-gluon vtx).
- Results: $10^{11}a_{\mu}^{\text{HVP}} = 6700 \& 10^{11}a_{\mu}^{\text{HL}\times\text{L}} = 217 \pm 91 \text{ [arXiv:1012.3886]} \text{ or } 147 \pm 91 \text{ [this talk?]};$ compare: $10^{11}a_{\mu}^{\text{HVP}} = 6923 \pm 42 \text{ [data] } \& 10^{11}a_{\mu}^{\text{HL}\times\text{L}} = 105 \pm 26 \text{ [consensus, } \underline{\text{arXiv:0901.0306]}}.$

Guiding HL×L with Experimental Measurements

- HL×L contains a $\gamma \to \gamma^* \gamma^* \gamma^*$ amplitude, which can be related—by analyticity and optical theorem—to cross sections for $\gamma^{(*)} \gamma^{(*)} \to$ hadrons.
- Crystal Ball (1988) $\gamma\gamma \rightarrow$ hadrons spectrum shows clear peaks for π , η , & η' but nothing else.
- Primakoff effect $(\gamma N \rightarrow \pi^0 \rightarrow \gamma \gamma)$ yields pion part of $\gamma \gamma \gamma \gamma^*$.
- Central π^0 production in e^+e^- (CELLO, CLEO, BaBar, ...) yield pion part of $\gamma^{(*)}\gamma^*\gamma\gamma$.
- Axial-vector mesons require off-shell photon(s) (Lee-Yang theorem): data are "sparse".
- Scalar mesons seen in $\gamma\gamma \to \pi\pi$; tensor mesons needed too....
- Need to connect data with 0, 2, or 4 photons off shell to amplitude with 3 off shell: models inevitably enter: they should be compatible with measurements mentioned here.

• Test onset of perturbative QCD behavior for form factors [Brodsky, Lepage]:

$$F_{\pi\gamma^{(*)}\gamma^{(*)}}(q_1^2, q_2^2) = \int_0^1 dx T(x; q_1^2, q_2^2) \phi(x)$$

where $T(x;q^2)$ is hard scattering amplitude $\gamma^{(*)}\gamma^{(*)} \to q\bar{q}$, $\phi(x)$ is the distribution amplitude.

- (My opinion): more likely to shed light on $\phi(x)$ than on HL×L:
 - interesting, but beyond the scope of this talk.
- Medium and low q^2 measurements will (see above) provide constraints for models.

Future Measurements at KLOE/DAΦNE

Dario Moricciani [KLOE Collaboration]; Henryk Czyż

- KLOE-2 detector will study φ region, including 2-photon physics.
- Latter are distinquished from the huge ϕ signal by tagging e^{\pm} at small angles.
- Should clear up some discrepancies from older experiments, improve slope of $\pi\gamma\gamma$ form factor, and shed light on scalar [Moricciani].
- Important tool is the EKHARA event generator: take model form factors to generate events and then compare output to data [Czyż].

Computing HVP and HL×L with Lattice Gauge Theory

Lattice QCD for g-2

- With lattice QCD, one can compute $\text{FT}\langle V_{\mu}(x)V_{\nu}(0)\rangle$ or $\text{FT}\langle V_{\mu}(x)V_{\nu}(y)V_{\rho}(z)V_{\sigma}\rangle$ (from first principles) and convolute the result with QED Feynman diagrams.
- In addition to usual worries (continuum limit, physical pion cloud), need $q \sim m_{\mu}$, so might expect to need box-size a few times $\pi/m_{\mu} \sim 6$ fm.
- Structure in Green functions expected at two QCD scales: $m_{\pi} \approx 1.3 m_{\mu}$ and $m_{\varrho} \approx 7 m_{\mu}$; also need to match onto pQCD regime.
- HVP 2-pt function has 2 (1) form factors; HL×L has 138 (43 by gauge symmetry; 32 in g–2).
- In the end, need only two numbers, HVP (≈ 7000) to 0.2%, HL×L (≈ 100) to 5%, to match measurement of approved experiment Fermilab E989.
- Probably need cleverness, not just brute force.

Sea Quarks are Necessary for g-2

- Not just for processes sketched in the top figure (for both vacuum polarization and HL×L).
- All fermion lines/loops connected to initial or final state must be treated separately:
 - "disconnected diagrams" --
 - present because photon is flavor singlet;
 - really, really demanding.
- As far as I know, no one has attempted a fully disconnected calculations for HL×L or HVP.

QCD+QED: Direct Calculation of HL×L

Tom Blum

- Computing $FT\langle VVVV\rangle$ seems difficult and unnecessarily so.
- Need one number: the (hadronic part of the) muon's magnetic form factor at $q^2 = 0$.
- Compute $F_2(0)$ in lattice QCD+QED (QED quenched for now):
 - need subtraction to eliminate some QED renormalization parts;
 - successful in pure QED for muon, not for electron—signal ~ $(m_{leg}/m_{loop})2$, noise same;
 - in QCD+QED, muon suffers from the same problem—constituent $m_{loop} \sim m_{\mu}$.
- Smells like a promising way forward; see also Blum's talk at (Lattice| | Experiment).

Two Approaches to Form Factor for $\pi \gamma^{(*)} \gamma^*$

Shoji Hashimoto

- Space-like [arXiv:0912.0253]:
 - standard lattice QCD form factor techniques;
 - ABJ anomaly reproduced (most involved calculation ever) ⇒ precise pion width;
 - limited range of momentum transfer: twisted bc? constrain with unitarity & analyticity?
- Time-like [S. Cohen et al., arXiv:0810.5550]:
 - exploit masses of vector mesons to get to time-like $q^2 = p^2 m_V^2 < 0$;
 - pilot study by JLab group; new preliminary work by JLQCD.

HVP with 2 Twisted-mass Sea Quarks

Karl Jansen

- Lattice calculations of a_{μ}^{HVP} pioneered by Blum, Blum & Aubin.
- New, and precise, calculation of up-down contribution to HVP (data $10^8 a_{\mu}^{HVP} = 5.66 \pm 0.05$):
 - first attempt lacked control of chiral extrapolation: head scratching: resolution:
 - solving this problem: $10^8 a_{\mu}^{\text{HVP}} = 5.66 \pm 0.11$;
 - agrees with expt and error is only twice;
- Now attack with 2+1+1 flavors of sea quarks!!!

Direct Calculation of FT(JJJJ)

QCDSF Collaboration (Paul Rakow, Gerrit Schierholz)

- Note that, short of calculating $FT\langle JJJJ\rangle$ at "all" momenta, a well-chosen subset can put constraints on models—similar & complementary to input from experiment—
 - goal of workshop participants to define "well-chosen subset";
 - QCDSF may already know.
- Rakow [QCDSF] had to cancel at short-ish notice; info from linked talk and e-mail:
 - computing connected diagram and see pion dominance in signal;
 - have ideas to obtain non-small disconnected diagram;
 - expect 5% calculation of HL×L [Schierholz], with HVP a by-product.

Conclusions and Outlook

Compilation of Models: Consensus?

Andreas Nyffeler

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN	FGW
π^0, η, η'	85±13	82.7±6.4	83±12	114±10	_	114±13	99 ± 16	84±13
axial vectors	$2.5 {\pm} 1.0$	$1.7 {\pm} 1.7$	_	22 ±5	_	15±10	22 ±5	_
scalars	$-6.8 {\pm} 2.0$	_	_	_	_	-7 ± 7	-7 ± 2	_
$oldsymbol{\pi}, oldsymbol{K}$ loops	-19 ± 13	$-4.5 {\pm} 8.1$	_	_	_	-19 ± 19	-19 ± 13	_
π , K loops $+$ subl. N_C	_	_	_	0±10	_		_	_
other	_	_	_	_	_	_	_	0± 2 0
quark loops	21±3	9.7 ± 11.1	_	_	_	2.3	2 1±3	10 7 ±48
Total	83±32	89.6 ± 15.4	80±40	136±25	110±40	105 ± 26	116 ± 39	191±81

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, Nyffeler '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = Nyffeler '09, JN = Jegerlehner, Nyffeler '09; FGW = Fischer, Goecke, Williams '10, '11 (used values from arXiv:1009.5297v2 [hep-ph], 4 Feb 2011)

Where is the way out?

- Models are faced with several obstacles (my opinion):
 - solidification possible.
- Leaves lattice gauge theory:
 - QCD;
 - QCD+QED.

- Let's assume that the monkey-on-your-back topology can be safely neglected (likely).
- Let's assume that the HVP to needed precision comes along with HL×L (not obvious).
- Let's focus on QCD+QED: easier to forecast one number than many form factors.
- BCHIYY find 100% error using 10⁻² Tflop s⁻¹ yr, and planning "reasonable" calculation with 10 Tflop s⁻¹ yr. Target 10% (5%) needs—naïvely—a factor of 100 (400) more computing:
 - 1–5 Tflop s⁻¹ yr needed.
- Caveats: with 100% error it is hard to foresee obstacles both surmountable and unsurmountable. Estimate is, thus, more likely to be over-pessimistic or over-optimistic than accurate.

Resources for g-2

ASK

- "Luminosity" formula: resource = f_{g-2} × budget × Moore's Law; f_{g-2} = fraction for g-2:
 - USQCD Moore's Law: $2^{t/1.6}$ Tflop s⁻¹ (\$M)⁻¹; (now t = years since 2005/09)
 - USQCD budget experience: 2.9×2^{t/10.5} \$M yr⁻¹; (omits Tea Party effects)
 - TB et al. are increasing f_{g-2} from 10^{-4} to 10^{-2} .
- Predict resource of 5 Tflop s⁻¹ yr in 2016.
- Coincides with forecast of computing need.
- Several groups engaged: perhaps even human resource will be available.