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IR singularities

✦ On-shell parton scattering amplitudes in gauge 
theories contain IR divergences from soft and 
collinear loop momenta

✦ IR singularities cancel between real and 
virtual contributions

✦ Nevertheless interesting:
✦ resummation of large Sudakov logarithms 

remaining after cancellation of divergences 
(relevant for LHC physics!)

✦ check on multi-loop calculations

Bloch, Nordsieck 1937
Kinoshita 1962; Lee, Nauenberg 1964



IR singularities in QED

✦ Singularities arise from soft photon emission 
(for me≠0); eikonal approximation:

✦ IR divergent part is a multiplicative factor
✦ Higher-order terms obtained by exponentiating 

leading-order soft contribution.
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Yennie, Frautschi, Suura 1961
Weinberg 1965



IR singularities in QCD

“In [Yang-Mills theory] a soft photon emitted from an external 
line can itself emit a pair of soft charged massless particles, 
which themselves emit soft photons, and so on, building up a 
cascade of soft massless particles each of which contributes an 
infra-red divergence. The elimination of such complicated 
interlocking infra-red divergences would certainly be a 
Herculean task, and might not even be possible. ”

Weinberg,  Phys. Rev. 140B (1965)



IR singularities in QCD

✦ Much more complicated
✦ soft and collinear singularities
✦ gluons carry color charge, hence soft 

emissions do not simply exponentiate
✦ but only a restricted set of higher-order 

contributions can appear (non-abelian 
exponentiation theorem) 

✦ For long time, explicit form of IR poles was 
only understood at two-loop order

Gatheral 1983; Frenkel, Taylor 1984

Catani 1998



Overview of the talk
✦ IR singularities of gauge theory on-shell amplitudes

✦ can be absorbed into multiplicative Z-factor, 
governed by an anomalous dimension Γ

✦ conjecture: for massless theories Γ involves only 
two-parton color-correlations

✦ Constraints on Γ from non-abelian exponentiation, 
soft-collinear factorization, collinear limits

✦ Order-by-order analysis to 3-loops, exclusion of 
higher Casimir contributions at 4 loops

✦ Phenomenological application: higher-log 
resummation for n-jet processes.



Color-space formalism
✦ Represent amplitudes as vectors in color space:

✦ Color generator for ith parton                        
acts like a matrix:  

✦ ta for quarks, fabc for gluons

✦ product                                   (commutative)

✦ charge conservation                     implies:  

|c1, c2, . . . , cn〉 Catani, Seymour 1996

color index of first parton

T a
i |c1, c2, . . . , cn〉

the generalized expression

dαs

d lnµ
= β(αs, ε) = β(αs) − 2ε αs (8)

for the β-function in d = 4 − 2ε dimensions, where αs ≡ αs(µ) is the renormalized coupling
constant. The simple form of (7) implies that the matrix structure of the anomalous dimension
is the same at all scales, i.e., [Γ({p}, µ1),Γ({p}, µ2)] = 0. The path-ordering symbol can
thus be dropped in (6), and we can directly obtain an expression for the logarithm of the
renormalization factor. Writing Γ({p}, µ, αs(µ)) instead of Γ({p}, µ) to distinguish the explicit
scale dependence from the implicit one induced via the running coupling, we obtain

ln Z(ε, {p}, µ) =

αs∫

0

dα

α

1

2ε − β(α)/α

[

Γ({p}, µ, α) +

α∫

0

dα′

α′

Γ′(α′)

2ε − β(α′)/α′

]

, (9)

where αs ≡ αs(µ), and we have defined

Γ′(αs) ≡
∂

∂ ln µ
Γ({p}, µ, αs) = −γcusp(αs)

∑

i

Ci . (10)

Note that this is a momentum-independent function, which is diagonal in color space. We
have used that, when acting on color-singlet states, the unweighted sum over color generators
can be simplified, because relation (3) implies that

∑

(i,j)

Ti · Tj = −
∑

i

T
2
i = −

∑

i

Ci . (11)

Since the scattering amplitudes are color conserving, this relation can be used in our case.
Note that a different but equivalent form of relation (9) has been given in [3].

It is understood that the result (9) must be expanded in powers of αs with ε treated as a
fixed O(α0

s) quantity. Up to three-loop order this yields

ln Z =
αs

4π

(
Γ′

0

4ε2
+

Γ0

2ε

)
+

(αs

4π

)2
[
−3β0Γ′

0

16ε3
+

Γ′
1 − 4β0Γ0

16ε2
+

Γ1

4ε

]
(12)

+
(αs

4π

)3
[

11β2
0 Γ′

0

72ε4
− 5β0Γ′

1 + 8β1Γ′
0 − 12β2

0 Γ0

72ε3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ε2
+

Γ2

6ε

]

+ O(α4
s),

where we have expanded the anomalous dimensions and β-function as

Γ =
∞∑

n=0

Γn

(αs

4π

)n+1
, Γ′ =

∞∑

n=0

Γ′
n

(αs

4π

)n+1
, β = −2αs

∞∑

n=0

βn

(αs

4π

)n+1
. (13)

Exponentiating the result (12) and taking into account that the different expansion coefficients
Γn commute, it is straightforward to derive an explicit expression for Z. For the convenience
of the reader, we present the result along with the relevant expansion coefficients of the
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CF or CAi≠j

T i · T j =
∑

a

T a
i T a

j
∑

i

T a
i = 0



✦ Specifies IR singularities of dimensionally 
regularized n-parton amplitudes at two loops:

✦ Later derivation using factorization properties 
and IR evolution equation for form factor

Catani’s two-loop formula (1998)

Sterman, Tejeda-Yeomans 2003

with

unspecified

I(1)(ε) =
eεγE

Γ(1− ε)

∑

i

(
1
ε2

+
gi

T 2
i

1
ε

)∑

j !=i

T i · T j

2

(
µ2

−sij

)ε

I(2)(ε) =
e−εγE Γ(1− 2ε)

Γ(1− ε)

(
K +

β0

2ε

)
I(1)(2ε)

− 1
2

I(1)(ε)
(

I(1)(ε) +
β0

ε

)
+ H(2)

R.S.(ε)

[
1− αs

2π
I(1)(ε)−

(αs

2π

)2
I(2)(ε) + . . .

]
|Mn(ε, {p})〉 = finite

amplitude is vector in color space

(pi + pj)2

(“... beautiful, yet mysterious ...”)



All-order generalization
✦ IR divergences in d=4-2ε can be absorbed into a 

multiplicative factor Z (a matrix in color space), 
which derives from an anomalous-dimension 
matrix:

✦ Corresponding RG evolution equation: 

 ⇒ can be used to resum Sudakov logarithms

2 IR factorization and RG invariance

The key observation of our letter [3] was that the IR singularities of on-shell amplitudes in
massless QCD are in one-to-one correspondence to the UV poles of operator matrix elements
in SCET. These poles can therefore be subtracted by means of a multiplicative renormaliza-
tion factor Z, which is a matrix in color space. Specifically, we have shown that the finite
remainders of the scattering amplitudes can be obtained from the IR divergent, dimensionally
regularized amplitudes via the relation

|Mn({p}, µ)〉 = lim
ε→0

Z
−1(ε, {p}, µ) |Mn(ε, {p})〉 . (1)

Here {p} ≡ {p1, . . . , pn} represents the set of the momentum vectors of the n partons, and
µ denotes the factorization scale. The quantity |Mn(ε, {p})〉 on the right-hand side is a
UV-renormalized, on-shell n-parton scattering amplitude with IR singularities regularized in
d = 4 − 2ε dimensions. After coupling constant renormalization, these amplitudes are UV
finite. Apart from trivial spinor factors and polarization vectors for the external particles, the
minimally subtracted scattering amplitudes |Mn({p}, µ)〉 on the left-hand side of (1) coincide
with Wilson coefficients of n-jet operators in SCET [3], to be defined later:

|Mn({p}, µ)〉 = |Cn({p}, µ)〉 × [on-shell spinors and polarization vectors] . (2)

We postpone a more detailed discussion of the effective theory to Section 3 and proceed to
study the implications of this observation.

To analyze the general case of an arbitrary n-parton amplitude, it is convenient to use the
color-space formalism of [21, 22], in which amplitudes are treated as n-dimensional vectors
in color space. Ti is the color generator associated with the i-th parton in the scattering
amplitude, which acts as an SU(Nc) matrix on the color indices of that parton. Specifically,
one assigns (T a

i )αβ = taαβ for a final-state quark or initial-state anti-quark, (T a
i )αβ = −taβα for

a final-state anti-quark or initial-state quark, and (T a
i )bc = −ifabc for a gluon. We also use

the notation Ti · Tj ≡ T a
i T a

j summed over a. Generators associated with different particles
trivially commute, Ti · Tj = Tj · Ti for i %= j, while T 2

i = Ci is given in terms of the quadratic
Casimir operator of the corresponding color representation, i.e., Cq = Cq̄ = CF for quarks or
anti-quarks and Cg = CA for gluons. Because they conserve color, the scattering amplitudes
fulfill the relation ∑

i

T
a
i |Mn(ε, {p})〉 = 0 . (3)

It follows from (1) that the minimally subtracted scattering amplitudes satisfy the RG
equation

d

d lnµ
|Mn({p}, µ)〉 = Γ({p}, µ) |Mn({p}, µ)〉 , (4)

where the anomalous dimension is related to the Z-factor by

Γ({p}, µ) = −Z
−1(ε, {p}, µ)

d

d ln µ
Z(ε, {p}, µ) . (5)
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The formal solution to this equation can be written in the form

Z(ε, {p}, µ) = P exp

[∫ ∞

µ

dµ′

µ′ Γ({p}, µ′)

]
, (6)

where the path-ordering symbol P means that matrices are ordered from left to right according
to decreasing values of µ′. The upper integration value follows from asymptotic freedom and
the fact that Z = 1 + O(αs).

In the Section 4, we will discuss theoretical arguments supporting an all-order conjecture
for the anomalous-dimension matrix presented in [3], which states that it has the simple form

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs) , (7)

where sij ≡ 2σij pi · pj + i0, and the sign factor σij = +1 if the momenta pi and pj are both
incoming or outgoing, and σij = −1 otherwise. Here and below the sums run over the n
external partons. The notation (i1, ..., ik) refers to unordered tuples of distinct parton indices.
Our result features only pairwise correlations among the color charges and momenta of different
partons. These are the familiar color-dipole correlations arising already at one-loop order from
a single soft gluon exchange. The fact that higher-order quantum effects do not induce more
complicated structures and multi-particle correlations indicates a semi-classical origin of IR
singularities. Besides wave-function-renormalization-type subtractions accomplished by the
single-particle terms γi, the only quantum aspect appearing in (7) is a universal anomalous-
dimension function γcusp related to the cusp anomalous dimension of Wilson loops with light-
like segments [23–25]. The three anomalous-dimension functions entering our result are defined
by relation (7). They can be extracted from the known IR divergences of the on-shell quark
and gluon form factors, which have been calculated to three-loop order [26–28]. The explicit
three-loop expressions are given in Appendix A.

Concerning the form of (7), we note that a conjecture that an analogous expression for
the soft anomalous-dimension matrix (see Section 4.4 below) might hold to all orders was
mentioned in passing in the introduction of [12], without presenting any supporting arguments.
In a very recent paper, Gardi and Magnea have analyzed the soft anomalous-dimension matrix
in more detail and found that (7) is the simplest solution to a set of constraints they have
derived [29]. However, they concluded that the most general solution could be considerably
more complicated. Indeed, we emphasize that as a consequence of our result some amazing
cancellations must occur in multi-loop calculations of scattering amplitudes. At L-loop order
Feynman diagrams can involve up to 2L parton legs, while the most non-trivial graphs without
subdivergences can still connect (L+1) partons. We predict that these complicated diagrams
can be decomposed into two-particle terms, whose color and momentum structure resembles
that of one-loop diagrams. At two-loop order, these cancellations were found by explicit
calculation in [30, 31]. More recently, the analysis was extended to the subclass of three-
loop graphs containing fermion loops [32]. In Section 6.2 we will present a simple symmetry
argument explaining these results.

To derive the perturbative expansion of the Z-factor from the formal solution (6) we use

6

TB, Neubert 2009

2 IR factorization and RG invariance

The key observation of our letter [3] was that the IR singularities of on-shell amplitudes in
massless QCD are in one-to-one correspondence to the UV poles of operator matrix elements
in SCET. These poles can therefore be subtracted by means of a multiplicative renormaliza-
tion factor Z, which is a matrix in color space. Specifically, we have shown that the finite
remainders of the scattering amplitudes can be obtained from the IR divergent, dimensionally
regularized amplitudes via the relation

|Mn({p}, µ)〉 = lim
ε→0

Z
−1(ε, {p}, µ) |Mn(ε, {p})〉 . (1)

Here {p} ≡ {p1, . . . , pn} represents the set of the momentum vectors of the n partons, and
µ denotes the factorization scale. The quantity |Mn(ε, {p})〉 on the right-hand side is a
UV-renormalized, on-shell n-parton scattering amplitude with IR singularities regularized in
d = 4 − 2ε dimensions. After coupling constant renormalization, these amplitudes are UV
finite. Apart from trivial spinor factors and polarization vectors for the external particles, the
minimally subtracted scattering amplitudes |Mn({p}, µ)〉 on the left-hand side of (1) coincide
with Wilson coefficients of n-jet operators in SCET [3], to be defined later:

|Mn({p}, µ)〉 = |Cn({p}, µ)〉 × [on-shell spinors and polarization vectors] . (2)

We postpone a more detailed discussion of the effective theory to Section 3 and proceed to
study the implications of this observation.

To analyze the general case of an arbitrary n-parton amplitude, it is convenient to use the
color-space formalism of [21, 22], in which amplitudes are treated as n-dimensional vectors
in color space. Ti is the color generator associated with the i-th parton in the scattering
amplitude, which acts as an SU(Nc) matrix on the color indices of that parton. Specifically,
one assigns (T a

i )αβ = taαβ for a final-state quark or initial-state anti-quark, (T a
i )αβ = −taβα for

a final-state anti-quark or initial-state quark, and (T a
i )bc = −ifabc for a gluon. We also use

the notation Ti · Tj ≡ T a
i T a

j summed over a. Generators associated with different particles
trivially commute, Ti · Tj = Tj · Ti for i %= j, while T 2

i = Ci is given in terms of the quadratic
Casimir operator of the corresponding color representation, i.e., Cq = Cq̄ = CF for quarks or
anti-quarks and Cg = CA for gluons. Because they conserve color, the scattering amplitudes
fulfill the relation ∑

i

T
a
i |Mn(ε, {p})〉 = 0 . (3)

It follows from (1) that the minimally subtracted scattering amplitudes satisfy the RG
equation

d

d lnµ
|Mn({p}, µ)〉 = Γ({p}, µ) |Mn({p}, µ)〉 , (4)

where the anomalous dimension is related to the Z-factor by

Γ({p}, µ) = −Z
−1(ε, {p}, µ)

d

d ln µ
Z(ε, {p}, µ) . (5)

5

finite



All-order generalization
✦ Anomalous dimension is conjectured to be 

extremely simple:

✦ simple structure, reminiscent of QED
✦ IR poles determined by color charges and 

momenta of external partons 
✦ color dipole correlations, like at one-loop order

The formal solution to this equation can be written in the form

Z(ε, {p}, µ) = P exp

[∫ ∞

µ

dµ′

µ′ Γ({p}, µ′)

]
, (6)

where the path-ordering symbol P means that matrices are ordered from left to right according
to decreasing values of µ′. The upper integration value follows from asymptotic freedom and
the fact that Z = 1 + O(αs).

In the Section 4, we will discuss theoretical arguments supporting an all-order conjecture
for the anomalous-dimension matrix presented in [3], which states that it has the simple form

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs) , (7)

where sij ≡ 2σij pi · pj + i0, and the sign factor σij = +1 if the momenta pi and pj are both
incoming or outgoing, and σij = −1 otherwise. Here and below the sums run over the n
external partons. The notation (i1, ..., ik) refers to unordered tuples of distinct parton indices.
Our result features only pairwise correlations among the color charges and momenta of different
partons. These are the familiar color-dipole correlations arising already at one-loop order from
a single soft gluon exchange. The fact that higher-order quantum effects do not induce more
complicated structures and multi-particle correlations indicates a semi-classical origin of IR
singularities. Besides wave-function-renormalization-type subtractions accomplished by the
single-particle terms γi, the only quantum aspect appearing in (7) is a universal anomalous-
dimension function γcusp related to the cusp anomalous dimension of Wilson loops with light-
like segments [23–25]. The three anomalous-dimension functions entering our result are defined
by relation (7). They can be extracted from the known IR divergences of the on-shell quark
and gluon form factors, which have been calculated to three-loop order [26–28]. The explicit
three-loop expressions are given in Appendix A.

Concerning the form of (7), we note that a conjecture that an analogous expression for
the soft anomalous-dimension matrix (see Section 4.4 below) might hold to all orders was
mentioned in passing in the introduction of [12], without presenting any supporting arguments.
In a very recent paper, Gardi and Magnea have analyzed the soft anomalous-dimension matrix
in more detail and found that (7) is the simplest solution to a set of constraints they have
derived [29]. However, they concluded that the most general solution could be considerably
more complicated. Indeed, we emphasize that as a consequence of our result some amazing
cancellations must occur in multi-loop calculations of scattering amplitudes. At L-loop order
Feynman diagrams can involve up to 2L parton legs, while the most non-trivial graphs without
subdivergences can still connect (L+1) partons. We predict that these complicated diagrams
can be decomposed into two-particle terms, whose color and momentum structure resembles
that of one-loop diagrams. At two-loop order, these cancellations were found by explicit
calculation in [30, 31]. More recently, the analysis was extended to the subclass of three-
loop graphs containing fermion loops [32]. In Section 6.2 we will present a simple symmetry
argument explaining these results.

To derive the perturbative expansion of the Z-factor from the formal solution (6) we use
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sum over pairs
i≠j of partons

color charges
anom. dimensions, 

known to three-loop order 

(pi + pj)2



Z factor to three loops

✦ Explicit result:

✦ Perturbative expansion:

lnZ =
αs

4π

(
Γ′

0

4ε2
+

Γ0

2ε

)
+

(αs

4π

)2
[
−3β0Γ′

0

16ε3
+

Γ′
1 − 4β0Γ0

16ε2
+

Γ1

4ε

]

+
(αs

4π

)3
[

11β2
0 Γ′

0

72ε4
− 5β0Γ′

1 + 8β1Γ′
0 − 12β2

0 Γ0

72ε3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ε2
+

Γ2

6ε

]
+ . . .

d-dimensional β-function

where

⇒ exponentiation yields Z factor at three loops!

all coefficients known!

the generalized expression

dαs

d lnµ
= β(αs, ε) = β(αs) − 2ε αs (8)

for the β-function in d = 4 − 2ε dimensions, where αs ≡ αs(µ) is the renormalized coupling
constant. The simple form of (7) implies that the matrix structure of the anomalous dimension
is the same at all scales, i.e., [Γ({p}, µ1),Γ({p}, µ2)] = 0. The path-ordering symbol can
thus be dropped in (6), and we can directly obtain an expression for the logarithm of the
renormalization factor. Writing Γ({p}, µ, αs(µ)) instead of Γ({p}, µ) to distinguish the explicit
scale dependence from the implicit one induced via the running coupling, we obtain

ln Z(ε, {p}, µ) =

αs∫

0

dα

α

1

2ε − β(α)/α

[

Γ({p}, µ, α) +

α∫

0

dα′

α′

Γ′(α′)

2ε − β(α′)/α′

]

, (9)

where αs ≡ αs(µ), and we have defined

Γ′(αs) ≡
∂

∂ ln µ
Γ({p}, µ, αs) = −γcusp(αs)

∑

i

Ci . (10)

Note that this is a momentum-independent function, which is diagonal in color space. We
have used that, when acting on color-singlet states, the unweighted sum over color generators
can be simplified, because relation (3) implies that

∑

(i,j)

Ti · Tj = −
∑

i

T
2
i = −

∑

i

Ci . (11)

Since the scattering amplitudes are color conserving, this relation can be used in our case.
Note that a different but equivalent form of relation (9) has been given in [3].

It is understood that the result (9) must be expanded in powers of αs with ε treated as a
fixed O(α0

s) quantity. Up to three-loop order this yields

ln Z =
αs

4π

(
Γ′

0

4ε2
+

Γ0

2ε

)
+

(αs

4π

)2
[
−3β0Γ′

0

16ε3
+

Γ′
1 − 4β0Γ0

16ε2
+

Γ1

4ε

]
(12)

+
(αs

4π

)3
[

11β2
0 Γ′

0

72ε4
− 5β0Γ′

1 + 8β1Γ′
0 − 12β2

0 Γ0

72ε3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ε2
+

Γ2

6ε

]

+ O(α4
s),

where we have expanded the anomalous dimensions and β-function as

Γ =
∞∑

n=0

Γn

(αs

4π

)n+1
, Γ′ =

∞∑

n=0

Γ′
n

(αs

4π

)n+1
, β = −2αs

∞∑

n=0

βn

(αs

4π

)n+1
. (13)

Exponentiating the result (12) and taking into account that the different expansion coefficients
Γn commute, it is straightforward to derive an explicit expression for Z. For the convenience
of the reader, we present the result along with the relevant expansion coefficients of the
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Checks
✦ Expression for IR pole terms agrees with all 

known perturbative results:
✦ 3-loop quark and gluon form factors, which 

determine the functions
✦ 2-loop 3-jet qqg amplitude
✦ 2-loop 4-jet amplitudes
✦ 3-loop 4-jet amplitudes in N=4 super Yang-

Mills theory in planar limit

Moch, Vermaseren, Vogt  2005

Garland, Gehrmann et al. 2002

Anastasiou, Glover et al. 2001 
Bern, De Freitas, Dixon 2002, 2003

Bern et al. 2005, 2007

γq,g(αs)



Catani’s result

✦ Comparison with Catani’s formula at two loops 
yields explicit expression for 1/ε pole term:

✦ Non-trivial color structure only arises since his 
operators are not defined in a minimal scheme

✦ First derived by Mert Aybat, Dixon, Sterman ‘06 , confirming 
earlier conjecture Bern, Dixon, Kosower ‘04 

anomalous dimensions in Appendix A. Note that the highest pole in the O(αn
s ) term of lnZ

is 1/εn+1, instead of 1/ε2n for the Z-factor itself. The exponentiation of the higher pole terms
was observed previously in [33].

The IR singularities of two-loop scattering amplitudes were first predicted by Catani a
decade ago [20]. The one- and two-loop coefficients of our Z-matrix are closely related to his
subtraction operators I(1) and I(2). Catani’s formula states that the product

[
1 − αs

2π
I

(1)(ε) −
(αs

2π

)2
I

(2)(ε) + . . .

]
|Mn(ε, {p})〉 (14)

is free of IR poles through O(α2
s). The subtraction operators I(n)(ε) ≡ I(n)(ε, {p}, µ) are

defined as

I
(1)(ε) =

eεγE

Γ(1 − ε)

∑

i

(
1

ε2
− γi

0

2ε

1

T 2
i

)∑

j !=i

Ti · Tj

2

(
µ2

−sij

)ε

,

I
(2)(ε) =

e−εγE Γ(1 − 2ε)

Γ(1 − ε)

(
γcusp

1

8
+

β0

2ε

)
I

(1)(2ε) − 1

2
I

(1)(ε)

(
I

(1)(ε) +
β0

ε

)
+ H

(2)
R.S.(ε) .

(15)

The conditions linking these objects to ours are

2I(1) !
= Z1 + finite , 4I(2) !

= Z2 − 2I(1)
Z1 + finite , (16)

where Zn denotes the coefficient of (αs/4π)n in the Z-factor. The first relation is indeed

satisfied. The second one can be used to derive an explicit expression for the quantity H
(2)
R.S.

encoding the genuine two-loop coefficient of the 1/ε pole in (15), which was not obtained in
[20]. We find

H
(2)
R.S.(ε) =

1

16ε

∑

i

(
γi

1 −
1

4
γcusp

1 γi
0 +

π2

16
β0 Ci

)

+
ifabc

24ε

∑

(i,j,k)

T
a
i T

b
j T

c
k ln

−sij

−sjk

ln
−sjk

−ski

ln
−ski

−sij

,

(17)

which apart from the last term is diagonal in color space and universal in the sense that it
is a sum over contributions from each individual parton. Note that only the first term in
this result is of a form suggested by (9). The remaining terms in the first line arise because
the two-loop corrections involving the cusp anomalous dimension or the β-function are not
implemented in an optimal way in (15). More importantly, the term in the second line of (17)
arises only because the operator I(1) in [20] is not defined in a minimal subtraction scheme,
but also includes O(εn) terms with n ≥ 0. As a result, the antisymmetric terms in the product
I(1)Z1 in the second relation in (16) contain the structure

1

16ε

∑

(i,j)

∑

(k,l)

ln
µ2

−sij

ln2 µ2

−skl

[
Ti · Tj , Tk · Tl

]
, (18)
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Effective theory analysis and 
factorization constraints

This form may be derived from either the Berends–Giele recurrence relations [17], or else [18]

from the Koba–Nielsen open-string amplitude [19]. Either derivation shows that this factorization

holds only for on-shell (that is, physically polarized) legs a, b, but in arbitrary dimension. The

following arguments will thus go through equally well in the four-dimensional helicity scheme, the

conventional dimensional regularization scheme, or the original ’t Hooft–Veltman scheme.

b

a

a || b
b

a

a+b

Figure 1. A schematic depiction of the collinear factorization of tree-level amplitudes, with

the amplitudes labelled clockwise.

The tree splitting amplitude is given by the appropriate limit of the three-point Berends-Giele

current,

Splittreeσ (aλa , bλb) =
1√
2sab

[

ε(λa)
a · ε(λb)

b (kb − ka) · ε(σ)
−Σ + 2ka · ε

(λb)
b ε(λa)

a · ε(σ)
−Σ − 2kb · ε(λa)

a ε(λb)
b · ε(σ)

−Σ

]

,

(3.3)

where Σ denotes the fused leg, kΣ = ka + kb.

In the limit, eqn. (3.1) then yields,

∑

ph. pol. σ

Splittree−σ (aλa , bλb)

∫

dLIPS4−2ε("1,−"2)

× Atree
n−m+2("1, c, . . . , d,−"2)A

tree
m+1("2, d+1, . . . , (a + b)σ, . . . , c−1,−"1)

=
∑

ph. pol. σ

Splittree−σ (aλa , bλb) A1-loop
n−1 (1, . . . , (a + b)σ, . . . , n)

∣

∣

∣

tc···d cut
.

(3.4)

As noted in section 2, we need not consider cuts where the momenta are on opposite sides of

the cut (in which case they are both necessarily adjacent to it). The above derivation breaks down,

as expected, if a and b are the only legs on one side of the cut; but all contributions except those

detectable in the singular channel take the form presented in eqn. (3.4). This leaves us with the

singular channel, which I consider next.

7

1

2

1

2
1+2

1||2



Misconception
✦ Conventional thinking is that UV and IR 

divergences are of totally different nature:
✦ UV divergences absorbed into 

renormalization of parameters of theory; 
structure constrained by RG equations

✦ IR divergences arise in unphysical 
calculations; cancel between virtual 
corrections and real emissions

✦ In fact, IR divergences can be mapped onto 
UV divergences of operators in effective 
field theory! IR

UV

Λ



Re-interpretation of IR divergences
✦ In our case, Γ is the anomalous-dimension 

matrix of n-jet operators in SCET, and Z is the  
associated matrix of renormalization factors

✦ Will discuss structure of SCET for n-jet 
processes and constraints on anomalous 
dimension Γ arising from
✦ charge conservation 
✦ soft-collinear factorization
✦ non-abelian exponentiation
✦ consistency with collinear limits

∑
i Ti = 0

TB, Neubert, arXiv:0903.1126



Soft-Collinear Effective Theory

✦ An effective theory for processes for processes 
with energetic particles.

✦ Expansion in
✦ Sudakov resummation

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002

!−

ν̄

Xu

B
Vub
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MX

2EX

αn
s ln2n

(
MX

2 EX

)



Soft-Collinear Factorization

dΓ = H · J ⊗ S

!−

ν̄

B
J

S

H

2EX ∼ mb

MX ! mD

ΛS =
M2

X

2EX
nonperturbative!
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Soft-collinear factorization: n jet case

Jet functions Ji = Ji (Mi2)

H

J J

J J

Hard function H depends on 
large momentum transfers sij 
between jets

S

Soft function S depends 

on scales Λ2
ij =

M2
i M2

j

sij

Sen 1983; Kidonakis, Oderda, Sterman 1998



anomalous-dimension matrix

SCET for n-jet processes
✦ n different types of collinear quark and gluon 

fields (→ jet functions Ji), interacting only via 
soft fields (soft function S)
✦ operator definitions for Ji   and S

✦ Hard contributions (Q ~ √s) are integrated out 
and absorbed into Wilson coefficients:

✦ Scale dependence controlled by RGE:

Hn =
∑

i

Cn,i(µ) Oren
n,i (µ)

d

d lnµ
|Cn({p}, µ)〉 = Γ(µ, {p}) |Cn({p}, µ)〉

Bauer, Schwartz 2006



On-shell parton scattering amplitudes

✦ Hard functions Cn can be obtained by setting 
the jet masses to zero: jet and soft functions 
become scaleless, loop corrections vanish.

✦ One obtains:

✦ IR poles of scattering amplitudes mapped onto 
UV poles of n-jet SCET operators

✦ Multiplicative subtraction, controlled by RG

where 
Γ = −d lnZ

d lnµ

|Cn({p}, µ)〉 = lim
ε→0

Z−1(ε, {p}, µ) |Mn(ε, {p})〉

renormalization factor
(minimal subtraction of IR poles)

TB, Neubert 2009



Factorization constraint on Γ
✦ Operator matrix elements must evolve in the 

same way as hard matching coefficients, such 
that physical observables are scale independent

✦ Factorization of matrix element then implies 

(with                     ):

✦ suggests logarithmic dependence on sij and Mi2 

✦ Γ and ΓS must have same color structure

Mi dependence must cancel!

trivial color structureΛ2
ij =

M2
i M2

j

sij

Γ(sij) = Γs(Λ2
ij) +

∑

i

Γi
c(M

2
i )1



Soft function

✦ SCET decoupling transformation removes soft 
interactions among collinear fields and absorbs 
them into soft Wilson lines 

✦ For n-jet operator one gets:

Si = P exp
[
ig

∫ 0

−∞
dt ni · Aa(tni)T a

i

]

S({n}, µ) = 〈0|S1(0) . . .Sn(0)|0〉 = exp(S̃({n}, µ))

ni ~ pi light-like reference vector

...

n1

n2

n3

n4

n5

nn

Figure 1: Graphical representation of the soft operator S({n}, µ) corresponding to an n-parton
scattering amplitude. The n light-like Wilson lines start at the origin and run to infinity. The
dots represent open color indices.

constrained by the simplicity of soft gluon interactions, which only probe the direction of the
Wilson lines and their color charge. When the color indices are contracted in color-singlet
combinations, then S({n}, µ) turns into products of closed Wilson loops, which touch or
intersect each other at the origin. The renormalization properties of such Wilson loops have
been studied extensively in the literature, see e.g. [8, 9, 23, 52–55] and references therein.
We will use several results obtained in these studies and generalize them to the case of the
Wilson-line operator in (32). We will also indicate where known properties of Wilson loops
correspond to certain features of the effective theory and vice versa.

For on-shell amplitudes, the loop integrals in the effective theory have both IR and UV
divergences and vanish in dimensional regularization. This makes the correspondence be-
tween the Wilson coefficients in (30) and the amplitudes manifest. However, because of these
cancellations we cannot use on-shell amplitudes to obtain the anomalous dimensions of the
SCET operators. To separate out the UV divergences we need to consider IR-finite quantities.
The simplest possibility is to consider slightly off-shell n-parton amputated Green’s functions
Gn({p}). However, in this case we encounter a subtlety. While the off-shell Green’s function
in QCD and SCET are IR finite, this is no longer the case after the field redefinition (26).
Field redefinitions leave “physical” quantities such as on-shell matrix elements unchanged,
but they can change the off-shell behavior of fields. To calculate the anomalous dimensions
perturbatively from off-shell Green’s functions, one should use the original, non-decoupled
fields.2 For the case of the quark form factor, the corresponding one-loop calculation in the
effective theory was performed in [56]. Generalizing this result to n-point functions, we find

2Alternatively, one can perform the calculations using a different IR regulator, e.g. by considering finite-
length Wilson lines with n2

i != 0 [25].
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✦ The exponent     receives contributions only 
from Feynman diagrams whose color weights 
are “color-connected” (or “maximally non-
abelian”)

✦ Color-weight graphs associated with each 
Feynman diagram can be simplified using the 
Lie commutator relation: 

Non-abelian exponentiation
Gatheral 1983; Frenkel and Taylor 1984

=!

Figure 4: Diagrammatic form of the Lie commutator relation. Gluons are drawn as wavy lines
in order to distinguish color-weight graphs from Feynman diagrams.

Wilson loops, which depends on the set of all hyperbolic angles formed by the tangent vectors
at the cross point [54]. Generalizing these results to our case, where the Wilson-line operators
are matrices in color space as shown in (32), the renormalization factor must be promoted to
a soft matrix Zs acting on the product space of the color representations of the n partons.

RG invariance implies that the renormalization factor can be constructed in the usual
way from a soft anomalous-dimension matrix Γs. For the case of a single cusp, the two-loop
expression for the anomalous dimension was first obtained in [23, 24].

4.2 Non-abelian exponentiation theorem

The structure of the soft anomalous-dimension matrix is restricted by the non-abelian ex-
ponentiation theorem [8, 9], which implies that purely virtual amplitudes in the eikonal ap-
proximation (i.e., with only soft gluon interactions taken into account) can be written as
exponentials of simpler quantities, which only receive contributions from Feynman graphs
whose color weights are “maximally non-abelian” (or “color-connected”). Applied to our case,
it follows that the logarithm of the soft Zs-factor, and with it the soft anomalous-dimension
matrix Γs, only receives such contributions.

We follow the diagrammatic approach to the non-abelian exponentiation theorem devel-
oped in [9], since it is more explicit and intuitive than the iterative construction presented in
[8]. To each Feynman diagram we assign a color-weight diagram, in which vertices are replaced
by color matrices (ta)ij or structure constants −ifabc (or, more generally, by generators T a in
the appropriate representation of the gauge group), and propagators by δij for quarks and δab

for gluons or ghosts. Color diagrams may be related to one another by use of the Lie algebra
relation [T a, T b] = ifabc T c, as illustrated in Figure 4. In the adjoint representation this is
called the Jacobi identity. One defines a web as a connected sets of gluon lines, counting
crossed lines as being connected. As a special case, one defines a connected web as a connected
set of gluon lines not counting crossed lines as being connected. Examples of these definitions
are given in Figure 5. It has been shown in [9] that using the Lie commutator relation any
color-weight diagram can be written as a sum over products of connected webs. Furthermore,
only singly connected webs contribute to the color weights in the exponent.

The above definitions imply that the singly connected webs contain those diagrams that
are two-particle (rainbow) irreducible diagrams with respect to the Wilson lines [23]. Note
that in our case the gluons can be attached to more than two Wilson lines, provided there are
more than two external partons. The fact that only singly connected webs contribute to the
logarithm of the Zs-factor (and hence to the anomalous dimension), while products of webs
contribute to the Zs-factor itself, is in analogy to the usual structure of UV divergences in

17

T aT b − T bT a = ifabcT c

S̃



✦ Use this to decompose any color-weight graph 
into a sum over products of connected webs, 
defined as a connected set of gluon lines (not 
counting crossed lines as being connected)

✦ Only color structures consisting of a single 
connected web contribute to the exponent

Non-abelian exponentiation

= !

! +

Figure 5: Decomposition of a web into a sum of products of connected webs. The non-abelian
exponentiation theorem states that only the singly connected web shown in the first graph on
the right contributes to the color weights in the exponent of the amplitude.

quantum field theory, as described by Zimmermann’s forest formula. An illustration is shown
in Figure 6. The inner connected web inside the box gives rise to a subdivergence. Formal
arguments explaining the systematics of UV divergences for arbitrary Wilson loops can be
found in [54].

4.3 Light-like Wilson lines

For large values of the cusp angle β12 in (39), the anomalous dimension Γ(β12) associated
with a cusp (or cross) point grows linearly with β12, which in this case is approximately
equal to ln(2n1 · n2/

√
n2

1 n2
2) [23]. In the limit where one or both segments forming the

cusp approach a light-like direction, the cusp angle diverges (β12 → ∞). In dimensional
regularization this divergence gives rise to a single logarithm of the renormalization scale in
the anomalous dimension. If both segments lie on the light-cone, then [25]

Γ(β12)
n2

1,2→0
→ Γi

cusp(αs) ln
µ2

Λ2
s

+ . . . , (40)

where we refer to Γi
cusp(αs) as the cusp anomalous dimension in the color representation of

parton i. Its two-loop expression was obtained long ago in [57, 58] and [23, 24], while the
three-loop result was derived in [13]. The above equation is formal and meant to show the
dependence on the renormalization scale only. We will explain later how a soft scale Λs with
the proper dimensions appears in the argument of the logarithm.

In conventional applications of the RG, large (single) logarithms of scale ratios entering
perturbative results for multi-scale problems can be resummed with the help of anomalous
dimensions that are functions of the coupling constant, much like the β-function. This resums
terms of the form (αsL)n in the perturbative series, where L is the logarithm of the relevant
scale ratio. However, the presence of overlapping soft and collinear singularities in on-shell
scattering amplitudes of massless partons generates Sudakov double logarithms of the form
(αsL2)n in perturbation theory. They can be resummed with the help of anomalous dimen-
sions which themselves contain a single logarithm L of the large scale ratio. The logarithmic
dependence of the anomalous dimension in (40) is an essential feature in this context.
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Figure 5: Decomposition of a web into a sum of products of connected webs. The non-abelian
exponentiation theorem states that only the singly connected web shown in the first graph on
the right contributes to the color weights in the exponent of the amplitude.

quantum field theory, as described by Zimmermann’s forest formula. An illustration is shown
in Figure 6. The inner connected web inside the box gives rise to a subdivergence. Formal
arguments explaining the systematics of UV divergences for arbitrary Wilson loops can be
found in [54].

4.3 Light-like Wilson lines

For large values of the cusp angle β12 in (39), the anomalous dimension Γ(β12) associated
with a cusp (or cross) point grows linearly with β12, which in this case is approximately
equal to ln(2n1 · n2/

√
n2

1 n2
2) [23]. In the limit where one or both segments forming the

cusp approach a light-like direction, the cusp angle diverges (β12 → ∞). In dimensional
regularization this divergence gives rise to a single logarithm of the renormalization scale in
the anomalous dimension. If both segments lie on the light-cone, then [25]

Γ(β12)
n2

1,2→0
→ Γi

cusp(αs) ln
µ2

Λ2
s

+ . . . , (40)

where we refer to Γi
cusp(αs) as the cusp anomalous dimension in the color representation of

parton i. Its two-loop expression was obtained long ago in [57, 58] and [23, 24], while the
three-loop result was derived in [13]. The above equation is formal and meant to show the
dependence on the renormalization scale only. We will explain later how a soft scale Λs with
the proper dimensions appears in the argument of the logarithm.

In conventional applications of the RG, large (single) logarithms of scale ratios entering
perturbative results for multi-scale problems can be resummed with the help of anomalous
dimensions that are functions of the coupling constant, much like the β-function. This resums
terms of the form (αsL)n in the perturbative series, where L is the logarithm of the relevant
scale ratio. However, the presence of overlapping soft and collinear singularities in on-shell
scattering amplitudes of massless partons generates Sudakov double logarithms of the form
(αsL2)n in perturbation theory. They can be resummed with the help of anomalous dimen-
sions which themselves contain a single logarithm L of the large scale ratio. The logarithmic
dependence of the anomalous dimension in (40) is an essential feature in this context.
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Renormalization of Wilson loops

✦ Wilson loops containing singular points (cusps 
or cross points) require UV subtractions

✦ For single cusp formed by tangent vectors n1 
and n2, renormalization factor depends on 
cusp angle β12 defined as

✦ More generally, sets of related Wilson loops 
mix under renormalization, with Zs matrix 
depending on all relevant cusp angles

Figure 3: Color-singlet contractions of four Wilson lines in the fundamental representation.
The resulting Wilson-loop operators mix under renormalization.

that the ratio of any two such variables is an O(1) quantity. In principle, arbitrary functions
of combinations of such ratios can arise in the expressions for the scattering amplitudes. The
situation is, however, very different for the IR-singular terms in the amplitudes. RG invariance
of the effective theory requires that the anomalous dimensions of the hard matching coeffi-
cients |Cn({p}, µ)〉, which according to (2) correspond to the on-shell scattering amplitudes,
must be decomposable into sums of collinear and soft contributions. This requires a rewriting
of the hard momentum variables sij in terms of soft and collinear variables. The very fact that
such a rewriting must exist restricts the functional dependence of the anomalous dimension
on the sij variables to be single logarithmic. Moreover, the structure of the effective theory
enforces that terms depending on the collinear variables cannot lead to correlations between
different partons and must be diagonal in color space. Correlations can only arise through soft
gluon exchange. The universal structure of these interactions implies that any dependence
on the identity of the external partons can only arise via their momenta and color charges,
but not through spin information. We will also discuss constraints on the color structure of
the soft anomalous-dimension matrix implied by the non-abelian exponentiation theorem and
other considerations.

4.1 Renormalization of Wilson loops

A well-known property of Wilson loops is that they require UV subtractions beyond the renor-
malization of the coupling constant in cases where the integration path is not smooth, but
contains one or more singular points [52–54]. These divergences can be removed multiplica-
tively. The simplest case is that of a Wilson loops with a single cusp, i.e., a point where the
tangent vector changes its direction abruptly. If the cusp is formed by two time-like segments
with tangent vectors n1 and n2, then these UV divergences are removed by a factor Z(β12),
which is a function of the hyperbolic cusp angle β12 defined by

coshβ12 =
n1 · n2√

n2
1 n2

2

, (39)

where for simplicity we have assumed that n1 points into the cusp and n2 points out of it. If
the Wilson loop has more than one cusp, then each of them contributes an analogous Z-factor.

A more complicated situation arises if, as in our case, different Wilson lines cross each
other at a point. Then Wilson loops tracing out the same space-time curves except for the
cross point mix under renormalization. An example are the two Wilson-loop operators shown
in Figure 3, which illustrates this fact for the case of a four-jet operator corresponding to
qq̄ → qq̄ scattering. The renormalization factor Z({β}) is then a matrix on the space of such
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Figure 3: Color-singlet contractions of four Wilson lines in the fundamental representation.
The resulting Wilson-loop operators mix under renormalization.

that the ratio of any two such variables is an O(1) quantity. In principle, arbitrary functions
of combinations of such ratios can arise in the expressions for the scattering amplitudes. The
situation is, however, very different for the IR-singular terms in the amplitudes. RG invariance
of the effective theory requires that the anomalous dimensions of the hard matching coeffi-
cients |Cn({p}, µ)〉, which according to (2) correspond to the on-shell scattering amplitudes,
must be decomposable into sums of collinear and soft contributions. This requires a rewriting
of the hard momentum variables sij in terms of soft and collinear variables. The very fact that
such a rewriting must exist restricts the functional dependence of the anomalous dimension
on the sij variables to be single logarithmic. Moreover, the structure of the effective theory
enforces that terms depending on the collinear variables cannot lead to correlations between
different partons and must be diagonal in color space. Correlations can only arise through soft
gluon exchange. The universal structure of these interactions implies that any dependence
on the identity of the external partons can only arise via their momenta and color charges,
but not through spin information. We will also discuss constraints on the color structure of
the soft anomalous-dimension matrix implied by the non-abelian exponentiation theorem and
other considerations.

4.1 Renormalization of Wilson loops

A well-known property of Wilson loops is that they require UV subtractions beyond the renor-
malization of the coupling constant in cases where the integration path is not smooth, but
contains one or more singular points [52–54]. These divergences can be removed multiplica-
tively. The simplest case is that of a Wilson loops with a single cusp, i.e., a point where the
tangent vector changes its direction abruptly. If the cusp is formed by two time-like segments
with tangent vectors n1 and n2, then these UV divergences are removed by a factor Z(β12),
which is a function of the hyperbolic cusp angle β12 defined by

coshβ12 =
n1 · n2√

n2
1 n2

2

, (39)

where for simplicity we have assumed that n1 points into the cusp and n2 points out of it. If
the Wilson loop has more than one cusp, then each of them contributes an analogous Z-factor.

A more complicated situation arises if, as in our case, different Wilson lines cross each
other at a point. Then Wilson loops tracing out the same space-time curves except for the
cross point mix under renormalization. An example are the two Wilson-loop operators shown
in Figure 3, which illustrates this fact for the case of a four-jet operator corresponding to
qq̄ → qq̄ scattering. The renormalization factor Z({β}) is then a matrix on the space of such
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Light-like Wilson lines

✦ For large values of cusp angle β12, anomalous 
dimension associated with a cusp or cross 
point grows linearly with β12, which is then 
approximately equal to

✦ Cusp angle diverges when one or both 
segments approach the light-cone:

✦ Presence of single logarithm characteristic for 
Sudakov problems (double logs) 

= +

+ +

Figure 5: Decomposition of a web into a sum of products of connected webs. The non-abelian
exponentiation theorem states that only the single connected web shown in the first graph on
the right contributes to the color weights in the exponent of the amplitude.

quantum field theory, as described by Zimmermann’s forest formula. An illustration is shown
in Figure 6. The inner connected web inside the box gives rise to a subdivergence. Formal
arguments explaining the systematics of UV divergences for arbitrary Wilson loops can be
found in [54].

4.3 Light-like Wilson lines

For large values of the cusp angle β12 in (39), the anomalous dimension Γ(β12) associated
with a cusp (or cross) point grows linearly with β12, which in this case is approximately
equal to ln(2n1 · n2/

√
n2

1 n2
2) [23]. In the limit where one or both segments forming the

cusp approach a light-like direction, the cusp angle diverges (β12 → ∞). In dimensional
regularization this divergence gives rise to a single logarithm of the renormalization scale in
the anomalous dimension. If both segments lie on the light-cone, then [25]

Γ(β12)
n2

1,2→0
→ Γi

cusp(αs) ln
µ2

Λ2
s

+ . . . , (40)

where we refer to Γi
cusp(αs) as the cusp anomalous dimension in the color representation of

parton i. Its two-loop expression was obtained long ago in [57, 58] and [23, 24], while the
three-loop result was derived in [13]. The above equation is formal and meant to show the
dependence on the renormalization scale only. We will explain later how a soft scale Λs with
the proper dimensions appears in the argument of the logarithm.

In conventional applications of the RG, large (single) logarithms of scale ratios entering
perturbative results for multi-scale problems can be resummed with the help of anomalous
dimensions that are functions of the coupling constant, much like the β-function. This resums
terms of the form (αsL)n in the perturbative series, where L is the logarithm of the relevant
scale ratio. However, the presence of overlapping soft and collinear singularities in on-shell
scattering amplitudes of massless partons generates Sudakov double logarithms of the form
(αsL2)n in perturbation theory. They can be resummed with the help of anomalous dimen-
sions which themselves contain a single logarithm L of the large scale ratio. The logarithmic
dependence of the anomalous dimension in (40) is an essential feature in this context.
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Light-like Wilson lines

✦ Introducing IR regulators pi
2≠0 to define the 

soft and collinear scales, we obtain:

it is necessary to either consider physical quantities, which are IR finite, or to introduce an
IR regulator scale in order to define the collinear and soft scales. Using a regulator introduces
some arbitrariness and scheme dependence into the calculation of the individual contributions,
which however vanishes in their sum (see also [29, 31]). For concreteness, we introduce a small
off-shellness (−p2

i ) > 0 for the external partons, taking the limit p2
i → 0 wherever possible.

The decomposition of a generic hard logarithm then reads

ln
µ2

−sij

= ln
µ2

−2σij pi · pj

= ln
µ2

−p2
i

+ ln
µ2

−p2
j

− ln
−2σij pi · pj µ2

(−p2
i )(−p2

j )
. (43)

This is precisely the structure of collinear and soft logarithms found in [56]. Measuring all
scales in units of the hard scale, we have the power counting pi · pj ∼ 1 for the hard scales,
p2

i ∼ p2
j ∼ λ for the collinear scales, and p2

i p2
j/pi · pj ∼ λ2 for the soft scales, in accordance

with the general discussion in Section 3.1.
In our discussion below we will assume that such a regularization is employed. We then

introduce the notations3

βij = ln
−2σij pi · pj µ2

(−p2
i )(−p2

j)
, Li = ln

µ2

−p2
i

(44)

for the logarithms of the soft and collinear scales, respectively. The definition of βij generalizes
that of the cusp angle in (39) to the case of light-like Wilson lines. The role of the soft scale
in (40) is played by Λ2

s = (−p2
i )(−p2

j )/(−2σij pi · pj). Relation (43) can now be rewritten as

βij = Li + Lj − ln
µ2

−sij

. (45)

4.4 General structure of the soft anomalous-dimension matrix

We are now ready to analyze the structure of the anomalous-dimension matrix of n-jet SCET
operators. From Section 3.2 we write the decomposition into soft and collinear pieces as

Γ({p}, µ) = Γs({β}, µ) +
∑

i

Γi
c(Li, µ) , (46)

where the collinear terms are diagonal in color space. The total anomalous dimension depends
on the n(n−1)/2 kinematical variables sij, while its soft counterpart depends on the n(n−1)/2
cusp angles βij, as indicated. The collinear pieces are single-particle terms, each depending on
a single collinear scale Li. The general form of the collinear part of the anomalous dimension
is known to be of the form [56]

Γi
c(Li) = −Γi

cusp(αs) Li + γi
c(αs) . (47)

We now substitute for the cusp angles entering the soft anomalous-dimension matrix the
expression on the right-hand side of (45). This yields Γs({s}, {L}, µ) as a function of the

3At leading power in the effective theory, the product 2pi · pj in the argument of the first logarithm is
replaced by 1

2
ni · nj n̄i · pi n̄j · pj , see (33).
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Soft anomalous-dimension matrix

✦ Decompositions:

✦ Key equation:

✦ Suggests linearity in cusp angles βij and 
significantly restricts color structures
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∑
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on the n(n−1)/2 kinematical variables sij, while its soft counterpart depends on the n(n−1)/2
cusp angles βij, as indicated. The collinear pieces are single-particle terms, each depending on
a single collinear scale Li. The general form of the collinear part of the anomalous dimension
is known to be of the form [56]

Γi
c(Li) = −Γi

cusp(αs) Li + γi
c(αs) . (47)

We now substitute for the cusp angles entering the soft anomalous-dimension matrix the
expression on the right-hand side of (45). This yields Γs({s}, {L}, µ) as a function of the

3At leading power in the effective theory, the product 2pi · pj in the argument of the first logarithm is
replaced by 1
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on the n(n−1)/2 kinematical variables sij, while its soft counterpart depends on the n(n−1)/2
cusp angles βij, as indicated. The collinear pieces are single-particle terms, each depending on
a single collinear scale Li. The general form of the collinear part of the anomalous dimension
is known to be of the form [56]

Γi
c(Li) = −Γi
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We now substitute for the cusp angles entering the soft anomalous-dimension matrix the
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variables sij and Li. The dependence on the collinear scales must cancel when we combine
the soft and collinear contributions to the total anomalous-dimension matrix. We thus obtain
the relation

∂Γs({s}, {L}, µ)

∂Li

= Γi
cusp(αs) , (48)

where the expression on the right-hand side is a unit matrix in color space. This relation
provides an important constraint on the momentum and color structures that can appear in the
soft anomalous-dimension matrix. A corresponding relation has been derived independently
in [29].

Because the kinematical invariants sij can be assumed to be linearly independent, relation
(48) implies that Γs depends only linearly on the cusp angles βij , see (45). The only exception
would be a more complicated dependence on combinations of cusp angles, in which the collinear
logarithms cancel. The simplest such combination is

βijkl = βij + βkl − βik − βjl = ln
(−sij)(−skl)

(−sik)(−sjl)
, (49)

which coincides with the logarithm of the conformal cross ratio ρijkl defined in [29]. This
quantity obeys the symmetry properties

βijkl = βjilk = −βikjl = −βljki = βklij . (50)

It is easy to show that any combination of cusp angles that is independent of collinear loga-
rithms can be expressed via such cross ratios.

Our strategy in Section 6 will be to analyze the structure of the soft anomalous-dimension
matrix first, since it is constrained by the non-abelian exponentiation theorem and the con-
straint (48). The universality of soft gluon interactions implies that the soft contributions only
probe the momentum directions and color charges of the external partons, but not their po-
larization states. Dependence on the parton identities thus only enters via the cusp variables
βij and non-trivial color-conserving structures built out of Ti generators. If our conjecture (7)
is correct, then (47) implies that the soft anomalous-dimension matrix should be given by

Γs({β}, µ) = −
∑

(i,j)

Ti · Tj

2
γcusp(αs) βij +

∑

i

γi
s(αs) , (51)

where
γi(αs) = γi

c(αs) + γi
s(αs) . (52)

Using relation (11) we may indeed confirm that

∂Γs

∂Li

= −
∑

j !=i

Ti · Tj γcusp(αs) = Ci γcusp(αs) ≡ Γi
cusp(αs) , (53)

in accordance with the constraint (48). Note that this result implies Casimir-scaling for the
cusp anomalous dimension, since Γg

cusp(αs)/Γq
cusp(αs) = CA/CF . We will come back to the

significance of this observation in Section 6.4.
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Soft anomalous-dimension matrix

✦ Only exception would be a more complicated 
dependence on conformal cross ratios, which 
are independent of collinear scales:

✦ Any polynomial dependence on such ratios 
can be excluded using other arguments, such 
as consistency with collinear limits

variables sij and Li. The dependence on the collinear scales must cancel when we combine
the soft and collinear contributions to the total anomalous-dimension matrix. We thus obtain
the relation

∂Γs({s}, {L}, µ)

∂Li

= Γi
cusp(αs) , (48)

where the expression on the right-hand side is a unit matrix in color space. This relation
provides an important constraint on the momentum and color structures that can appear in the
soft anomalous-dimension matrix. A corresponding relation has been derived independently
in [29].

Because the kinematical invariants sij can be assumed to be linearly independent, relation
(48) implies that Γs depends only linearly on the cusp angles βij , see (45). The only exception
would be a more complicated dependence on combinations of cusp angles, in which the collinear
logarithms cancel. The simplest such combination is

βijkl = βij + βkl − βik − βjl = ln
(−sij)(−skl)

(−sik)(−sjl)
, (49)

which coincides with the logarithm of the conformal cross ratio ρijkl defined in [29]. This
quantity obeys the symmetry properties

βijkl = βjilk = −βikjl = −βljki = βklij . (50)

It is easy to show that any combination of cusp angles that is independent of collinear loga-
rithms can be expressed via such cross ratios.

Our strategy in Section 6 will be to analyze the structure of the soft anomalous-dimension
matrix first, since it is constrained by the non-abelian exponentiation theorem and the con-
straint (48). The universality of soft gluon interactions implies that the soft contributions only
probe the momentum directions and color charges of the external partons, but not their po-
larization states. Dependence on the parton identities thus only enters via the cusp variables
βij and non-trivial color-conserving structures built out of Ti generators. If our conjecture (7)
is correct, then (47) implies that the soft anomalous-dimension matrix should be given by

Γs({β}, µ) = −
∑

(i,j)

Ti · Tj

2
γcusp(αs) βij +

∑

i

γi
s(αs) , (51)

where
γi(αs) = γi

c(αs) + γi
s(αs) . (52)

Using relation (11) we may indeed confirm that

∂Γs

∂Li

= −
∑

j !=i

Ti · Tj γcusp(αs) = Ci γcusp(αs) ≡ Γi
cusp(αs) , (53)

in accordance with the constraint (48). Note that this result implies Casimir-scaling for the
cusp anomalous dimension, since Γg

cusp(αs)/Γq
cusp(αs) = CA/CF . We will come back to the

significance of this observation in Section 6.4.
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Consistency with collinear limits
✦ When two partons become collinear, an n-point 

amplitude Mn reduces to an (n-1)-parton amplitude 
times a splitting function:

✦ ΓSp must be independent of momenta and colors of 
partons 3, ..., n

5 Consistency with collinear limits

Before turning to a diagrammatic study of the anomalous-dimension matrix we discuss one
more non-trivial constraint it must obey, which derives from the known behavior of scattering
amplitudes in the limit where two or more external partons become collinear.

In the limit where the momenta of two of the external partons become collinear, an n-parton
scattering amplitude factorizes into the product of an (n − 1)-parton scattering amplitude
times a universal, process-independent splitting function. This was first shown at tree level
in [63, 64], and extended to one-loop order in [65]. An all-order proof was given in [66].
Strictly speaking, the proof was constructed for leading-color amplitudes only, but the crucial
ingredients are unitarity and analyticity, and it should be possible to extend it to the general
case. Collinear factorization holds at the level of the leading singular terms. It is often
studied for color-ordered amplitudes, for which the color information is stripped off. The
color-stripped splitting functions for the splitting of a parent parton P into collinear partons
a and b are usually denoted by SplitσP

(aσa , bσb) in the literature, where σi denote the helicities
of the partons. These functions have been calculated at tree level (see, e.g., [67]) and to
one-loop order [68]. In contrast, we will study collinear factorization using the color-space
formalism, extending the work of [69] beyond the one-loop approximation. The splitting
functions, which we denote by Sp({pa, pb}), are then matrices in color space, which depend
on the color generators and momenta of the partons involved in the splitting process. For
Catani’s formula (15), the consistency with collinear limits was shown in [34].

Consider, for concreteness, the limit where the partons 1 and 2 become collinear and merge
into an unresolved parton P . We assign momenta p1 = zP and p2 = (1 − z)P and consider
the collinear limit P 2 → 0. In this limit the scattering amplitude factorizes in the form

|Mn({p1, p2, p3, . . . , pn})〉 = Sp({p1, p2}) |Mn−1({P, p3, . . . , pn})〉 + . . . . (54)

The splitting function encodes the singular behavior of the amplitude |Mn〉 as p1||p2, and the
factorization holds up to terms that are regular in the collinear limit. Analogous relations
describe the behavior in limits where more than two partons become collinear. However, it is
sufficient for our purposes to focus on the simplest case.

The factorization formula (54) holds both for the dimensionally regularized scattering
amplitudes |Mn(ε, {p})〉 as well as for the minimally subtracted amplitudes |Mn({p}, µ)〉 in
(1). Since we know that the divergences of the amplitude can be absorbed into a Z-factor,
equation (54) implies a constraint on the divergences of the splitting function. It can be
written as

lim
ε→0

Z
−1(ε, {p1, . . . , pn}, µ)Sp(ε, {p1, p2}) Z(ε, {P, p3 . . . , pn}) = Sp({p1, p2}, µ) , (55)

where the renormalized splitting function on the right-hand side is finite for ε → 0. From (5)
it then follows that the renormalized splitting function fulfills the RG equation

d

d lnµ
Sp({p1, p2}, µ) = Γ({p1, . . . , pn}, µ)Sp({p1, p2}, µ)

− Sp({p1, p2}, µ)Γ({P, p3 . . . , pn}, µ) .

(56)
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This form may be derived from either the Berends–Giele recurrence relations [17], or else [18]

from the Koba–Nielsen open-string amplitude [19]. Either derivation shows that this factorization

holds only for on-shell (that is, physically polarized) legs a, b, but in arbitrary dimension. The

following arguments will thus go through equally well in the four-dimensional helicity scheme, the

conventional dimensional regularization scheme, or the original ’t Hooft–Veltman scheme.

b

a

a || b
b

a

a+b

Figure 1. A schematic depiction of the collinear factorization of tree-level amplitudes, with

the amplitudes labelled clockwise.

The tree splitting amplitude is given by the appropriate limit of the three-point Berends-Giele

current,

Splittreeσ (aλa , bλb) =
1√
2sab

[

ε(λa)
a · ε(λb)

b (kb − ka) · ε(σ)
−Σ + 2ka · ε

(λb)
b ε(λa)

a · ε(σ)
−Σ − 2kb · ε(λa)

a ε(λb)
b · ε(σ)

−Σ

]

,

(3.3)

where Σ denotes the fused leg, kΣ = ka + kb.

In the limit, eqn. (3.1) then yields,

∑

ph. pol. σ

Splittree−σ (aλa , bλb)

∫

dLIPS4−2ε("1,−"2)

× Atree
n−m+2("1, c, . . . , d,−"2)A

tree
m+1("2, d+1, . . . , (a + b)σ, . . . , c−1,−"1)

=
∑

ph. pol. σ

Splittree−σ (aλa , bλb) A1-loop
n−1 (1, . . . , (a + b)σ, . . . , n)

∣

∣

∣

tc···d cut
.

(3.4)

As noted in section 2, we need not consider cuts where the momenta are on opposite sides of

the cut (in which case they are both necessarily adjacent to it). The above derivation breaks down,

as expected, if a and b are the only legs on one side of the cut; but all contributions except those

detectable in the singular channel take the form presented in eqn. (3.4). This leaves us with the

singular channel, which I consider next.

7

1

2

1

2
1+2

1||2

Analogous equations hold for the higher splitting functions Sp({p1, . . . , pm}, µ), which describe
the limits where more than two partons become collinear. To bring the RG equation into a
more useful form, we note that charge conservation implies

(T1 + T2)Sp({p1, p2}, µ) = Sp({p1, p2}, µ) TP , (57)

where TP is the color generator associated with the parent parton P . Since the splitting
function commutes with the generators of partons not involved in the splitting process, we
can thus commute the anomalous dimension in the second term to the left to obtain

d

d lnµ
Sp({p1, p2}, µ) = ΓSp({p1, p2}, µ)Sp({p1, p2}, µ) , (58)

where we have defined

ΓSp({p1, p2}, µ) = Γ({p1, . . . , pn}, µ) − Γ({P, p3 . . . , pn}, µ)
∣∣
TP→T1+T2

. (59)

The fact that the anomalous dimension of the splitting function must be independent of the
colors and momenta of the partons not involved in the splitting process, which is a conse-
quence of the factorization formula (54), imposes a non-trivial constraint on the form of the
anomalous-dimension matrix. We will explore its implications in Section 6.6.

Assuming the form (7) for the anomalous-dimension matrix Γ, we find that the anomalous
dimension of the splitting function has the form

ΓSp({p1, p2}, µ) = γcusp

[
T1 · T2 ln

µ2

−s12
+ T1 · (T1 + T2) ln z + T2 · (T1 + T2) ln(1 − z)

]

+ γ1 + γ2 − γP , (60)

where γP is the anomalous dimension associated with the unresolved parton P . Note that the
momentum-dependent terms in the result are insensitive to the flavor of the partons involved
in the splitting process. The divergent part of the one-loop splitting function for m partons in
the color-space formalism was given in [69]. Expanding the result obtained there for the case
m = 2, we find

Sp1−loop(ε, {p1, p2}) =
αs

4π

[(
2

ε2
+

2

ε
ln

µ2

−s12

)
T1 · T2

+
2

ε

[
T1 · (T1 + T2) ln z + T2 · (T1 + T2) ln(1 − z)

]

+
1

2ε

(
γ1

0 + γ2
0 − γa

0

)
+ O(ε0)

]
Sptree({p1, p2}) ,

(61)

which is in agreement with the result obtained by solving the RG equation (58).
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Consistency check

✦ The form we propose is consistent with 
factorization in the collinear limit:

✦ But this would not work if Γ would involve 
terms of higher powers in color generators Ti  
or momentum variables

✦ A very strong constraint (new)! 
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where γP is the anomalous dimension associated with the unresolved parton P . Note that the
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which is in agreement with the result obtained by solving the RG equation (58).
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Analogous equations hold for the higher splitting functions Sp({p1, . . . , pm}, µ), which describe
the limits where more than two partons become collinear. To bring the RG equation into a
more useful form, we note that charge conservation implies

(T1 + T2)Sp({p1, p2}, µ) = Sp({p1, p2}, µ) TP , (57)

where TP is the color generator associated with the parent parton P . Since the splitting
function commutes with the generators of partons not involved in the splitting process, we
can thus commute the anomalous dimension in the second term to the left to obtain
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The fact that the anomalous dimension of the splitting function must be independent of the
colors and momenta of the partons not involved in the splitting process, which is a conse-
quence of the factorization formula (54), imposes a non-trivial constraint on the form of the
anomalous-dimension matrix. We will explore its implications in Section 6.6.

Assuming the form (7) for the anomalous-dimension matrix Γ, we find that the anomalous
dimension of the splitting function has the form

ΓSp({p1, p2}, µ) = γcusp

[
T1 · T2 ln

µ2

−s12
+ T1 · (T1 + T2) ln z + T2 · (T1 + T2) ln(1 − z)

]

+ γ1 + γ2 − γP , (60)

where γP is the anomalous dimension associated with the unresolved parton P . Note that the
momentum-dependent terms in the result are insensitive to the flavor of the partons involved
in the splitting process. The divergent part of the one-loop splitting function for m partons in
the color-space formalism was given in [69]. Expanding the result obtained there for the case
m = 2, we find

Sp1−loop(ε, {p1, p2}) =
αs

4π

[(
2

ε2
+

2

ε
ln

µ2

−s12

)
T1 · T2

+
2

ε

[
T1 · (T1 + T2) ln z + T2 · (T1 + T2) ln(1 − z)

]

+
1

2ε

(
γ1

0 + γ2
0 − γa

0

)
+ O(ε0)

]
Sptree({p1, p2}) ,

(61)

which is in agreement with the result obtained by solving the RG equation (58).
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Diagrammatic analysis of the soft 
anomalous-dimension matrix

variables sij and Li. The dependence on the collinear scales must cancel when we combine
the soft and collinear contributions to the total anomalous-dimension matrix. We thus obtain
the relation

∂Γs({s}, {L}, µ)

∂Li

= Γi
cusp(αs) , (48)

where the expression on the right-hand side is a unit matrix in color space. This relation
provides an important constraint on the momentum and color structures that can appear in the
soft anomalous-dimension matrix. A corresponding relation has been derived independently
in [29].

Because the kinematical invariants sij can be assumed to be linearly independent, relation
(48) implies that Γs depends only linearly on the cusp angles βij , see (45). The only exception
would be a more complicated dependence on combinations of cusp angles, in which the collinear
logarithms cancel. The simplest such combination is

βijkl = βij + βkl − βik − βjl = ln
(−sij)(−skl)

(−sik)(−sjl)
, (49)

which coincides with the logarithm of the conformal cross ratio ρijkl defined in [29]. This
quantity obeys the symmetry properties

βijkl = βjilk = −βikjl = −βljki = βklij . (50)

It is easy to show that any combination of cusp angles that is independent of collinear loga-
rithms can be expressed via such cross ratios.

Our strategy in Section 6 will be to analyze the structure of the soft anomalous-dimension
matrix first, since it is constrained by the non-abelian exponentiation theorem and the con-
straint (48). The universality of soft gluon interactions implies that the soft contributions only
probe the momentum directions and color charges of the external partons, but not their po-
larization states. Dependence on the parton identities thus only enters via the cusp variables
βij and non-trivial color-conserving structures built out of Ti generators. If our conjecture (7)
is correct, then (47) implies that the soft anomalous-dimension matrix should be given by

Γs({β}, µ) = −
∑

(i,j)

Ti · Tj

2
γcusp(αs) βij +

∑

i

γi
s(αs) , (51)

where
γi(αs) = γi

c(αs) + γi
s(αs) . (52)

Using relation (11) we may indeed confirm that

∂Γs

∂Li

= −
∑

j !=i

Ti · Tj γcusp(αs) = Ci γcusp(αs) ≡ Γi
cusp(αs) , (53)

in accordance with the constraint (48). Note that this result implies Casimir-scaling for the
cusp anomalous dimension, since Γg

cusp(αs)/Γq
cusp(αs) = CA/CF . We will come back to the

significance of this observation in Section 6.4.
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Existing results

✦ Our conjecture implies for the soft anomalous-
dimension matrix:

✦ This form was confirmed at two loops by 
showing that diagrams connecting three 
parton legs vanish

✦ Also holds for                                             
three-loop fermionic                       
contributions
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FIG. 1: Diagrams whose ultraviolet poles determine the soft
anomalous dimension at two loops. The crossed vertex rep-
resents the point at which the Wilson lines are linked. The
straight lines represent eikonal propagators. Referring to the
number of Wilson lines linked by gluons, in the text we refer
to these as 3E diagrams (a-c) and 2E diagrams (d-f).

Examples of the diagrams involved in the calculation
of the two-loop anomalous dimension are shown in Fig.
1. In momentum space, the propagators and vertices
from Wilson lines are given by eikonal expressions [9].
The corresponding two-loop corrections to the anomalous
dimensions are found in the usual way [11] from the two-
loop UV single poles of these diagrams after one-loop
renormalization.

The result (4) for massless partons is a consequence of
the vanishing of the single poles of those two-loop “3E”
diagrams in which color is exchanged coherently between
three eikonal lines in the figures. The arguments of Ref.
[11] do not, however, generalize directly to massive Wil-
son lines, with velocity vectors β2

i != 0. While an ana-

lytic determination of Γ(2)
S would, of course, be desirable,

numerical determination is also of interest, and is cer-
tainly adequate to determine how far Eq. (4) generalizes
to the production of massive particles. We provide the
necessary analysis below, and show that when the β2

i are
nonzero, Eq. (4) no longer holds. A generalization of Eq.
(4), however, given by Eq. (30) below, does holds for two-
to-two processes for special momentum configurations.

Much of our analysis will be carried out in position,
rather than momentum space. In the following, we will
take every parton as massive, and use the scale invariance

of Wilson lines to set β2
i = 1. Because we are calculating

renormalization constants, we can carry out our analysis
in Euclidean space. Indeed, a numerical result in Eu-
clidean space is adequate to establish that the matrix
does not follow Eq. (4) in Minkowski space. Otherwise,
analytic continuation through Wick rotation would im-
ply that the same result would hold in Euclidean space
as well.

We begin with the diagram, Fig. 1a, in which three
eikonal lines are coupled by gluons that are linked at
a three-gluon coupling [11]. In the configuration space
evaluation of this diagram, we must integrate the posi-
tion of the three-gluon vertex over all space. The three
propagators each have one end fixed at this vertex and
the other end fixed at a point λiβi along the ith Wilson
line. Each parameter λi is integrated from the composite
vertex to infinity. This diagram vanishes in Minkowski
space for massless Wilson lines [11].

Suppressing color factors, we represent the 3E diagram
Fig. 1a as

F (2)
3g (βI) =

∫

dDx
3

∏

i=1

∫ ∞

0
dλiV (x,βI) . (5)

Here βI = {β1, β2, β3} denotes the set of three massive
velocities of the lines to which the gluons attach, while
the propagators and numerator factors of the integrand
are given by a sum over six terms,

V (x,βI) =
3

∑

i,j,k=1

εijkvijk(x,βI) . (6)

Each of these terms involves the derivative of one of the
propagators, according to the usual gauge theory rules
for the three-vector coupling,

vijk(x,βI) = −i(gµε)4βi · βj ∆(x − λjβj)∆(x − λkβk)

× βk · ∂x∆(x − λiβi) , (7)

where ∆ represents the position-space scalar propagator,

∆(x − λiβi) = − Γ(1 − ε)

4π2−ε

1

(x − λiβi)
2(1−ε)

. (8)

We work in Feynman gauge. The contribution of this
(scaleless) diagram to the anomalous dimension matrix
is found from the residue of its simple ultraviolet pole.
We note that all diagrams found from products of Wil-
son lines are scaleless overall, and are defined by their
renormalization constants [11].

At fixed x, for massive eikonals the λ integrals in Eq.
(5) are all finite in four dimensions. After these integrals
are carried out, the βi-dependence enters only through
the combination

ζi ≡
βi · x√

x2
, (9)



Order-by-order analysis

✦ One loop (recall                                     )
✦ one leg: 
✦ two legs: 

✦ Two loops
✦ one leg:
✦ two legs:
✦ three legs:

⇒ vanishes, since no antisymmetric momentum 
structure in i,j,k consistent with soft-collinear 
factorization exists!

(a) (b)

(c)

Figure 7: One-loop (a), two-loop (b), and three-loop (c) connected webs contributing to the
soft anomalous-dimension matrix. The dots represent color generators, which appear when
the gluons are attached to Wilson lines. In each set, only the first web gives rise to a new
color structure.

6 Diagrammatic analysis

We now present a detailed diagrammatic study of the general structure of the soft anomalous-
dimension matrix up to three-loop order, implementing the constraints that follow from the
non-abelian exponentiation theorem and RG invariance of the effective theory. At two-loop
order we will recover the form found in [30, 31] from a simple symmetry argument. In these
papers only the cusp piece of the soft anomalous-dimension matrix was studied, which is
legitimate given that the non-logarithmic terms can be shown to be diagonal in color space.
We find that this property is no longer trivial beyond two-loop order.

The non-abelian exponentiation theorem restricts the color structures that can potentially
appear in the soft anomalous-dimension matrix. They are obtained by considering singly
connected webs, whose ends can be attached in arbitrary ways to the n Wilson lines in the
soft operator in (32). In general, singly connected webs at L-loop order carry between 2 and
(L + 1) color generators T . In Figure 7 we show the webs appearing up to three-loop order.
The dashed blobs represent self-energy or vertex functions, which have color structure δab and
−ifabc. The color structures of the three- and four-gluon vertices can be expressed in terms
of fabc symbols.

In our analysis in this section we only use basic properties of the Lie algebra of the gauge
group, which can be summarized as

[T a, T b] = ifabc
T

c , fabcfabd = CA δcd ,

tradj.

(
T

a
T

b
T

c
)

= ifadef begf cgd =
iCA

2
fabc .

(62)

The last relation follows from the Jacobi identity, i.e., the first relation in the adjoint repre-
sentation. While our explicit analysis refers to SU(N) non-abelian gauge theories, its validity
extends to other gauge groups as well.
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6.1 One-loop analysis

In this case the relevant web consists of a single gluon, as shown in Figure 7(a). If it is attached
to two different Wilson lines i and j, then the resulting color structure is Ti · Tj . In this case
non-trivial momentum dependence can arise, which can lead to a factor βij . Recall that only
linear dependence on the cusp angle is allowed. For terms without momentum dependence,
the sum over parton legs reduces the color structure to a diagonal one, since relation (11) can
be applied in this case. Likewise, if the ends of the exchanged gluon are attached to a single
Wilson line i, then the color structure is T 2

i = Ci. It follows that at one-loop order the soft
anomalous-dimension matrix is indeed of the form (51).

6.2 Two-loop analysis

In this case two webs need to be considered, which are depicted in Figure 7(b). The connected
web containing the gluon self-energy has the same color structure as a single gluon exchange,
and hence it does not lead to any new structures in the result (51). The color structure of
the three-gluon web is proportional to −ifabc times three color generators, one for each leg.
There are thus three possibilities, which we consider separately.

If all gluons are attached to a single Wilson line, then the resulting color structure is

−ifabc
T

a
i T

b
i T

c
i =

CACi

2
. (63)

In this case no momentum dependence can arise. If the gluons are attached to two different
Wilson lines i and j, then the resulting color structure is (recall that generators belonging to
different partons commute)

−ifabc
T

a
i T

b
i T

c
j =

CA

2
Ti · Tj . (64)

In this case momentum dependence can arise, since two partons are involved in the loop
diagram. It is thus possible to get a factor βij or a constant. In any case we obtain the same
structures as at one-loop order. Finally, if the gluons are attached to three different Wilson
lines i, j, and k, then the resulting color structure

−ifabc
T

a
i T

b
j T

c
k (65)

is totally anti-symmetric in the parton indices, and it would therefore need to multiply a
totally anti-symmetric momentum-dependent structure formed out of the three kinematical
invariants βij , βjk, and βki. However, no such structure exists that would be consistent with
our constraint (48). In particular, the structure

(βij − βjk)(βjk − βki)(βki − βij)

=

(
ln

−sij

−sjk

+ Li − Lk

) (
ln

−sjk

−ski

+ Lj − Li

) (
ln

−ski

−sij

+ Lk − Lj

)
,

(66)

which is reminiscent of that appearing in (17), cannot be written as a sum of hard and
collinear contributions. Recall that this structure arises in Catani’s subtraction operator I(2)
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the generalized expression

dαs

d lnµ
= β(αs, ε) = β(αs) − 2ε αs (8)

for the β-function in d = 4 − 2ε dimensions, where αs ≡ αs(µ) is the renormalized coupling
constant. The simple form of (7) implies that the matrix structure of the anomalous dimension
is the same at all scales, i.e., [Γ({p}, µ1),Γ({p}, µ2)] = 0. The path-ordering symbol can
thus be dropped in (6), and we can directly obtain an expression for the logarithm of the
renormalization factor. Writing Γ({p}, µ, αs(µ)) instead of Γ({p}, µ) to distinguish the explicit
scale dependence from the implicit one induced via the running coupling, we obtain

ln Z(ε, {p}, µ) =

αs∫

0

dα

α

1

2ε − β(α)/α

[

Γ({p}, µ, α) +

α∫

0

dα′

α′

Γ′(α′)

2ε − β(α′)/α′

]

, (9)

where αs ≡ αs(µ), and we have defined

Γ′(αs) ≡
∂

∂ ln µ
Γ({p}, µ, αs) = −γcusp(αs)

∑

i

Ci . (10)

Note that this is a momentum-independent function, which is diagonal in color space. We
have used that, when acting on color-singlet states, the unweighted sum over color generators
can be simplified, because relation (3) implies that

∑

(i,j)

Ti · Tj = −
∑

i

T
2
i = −

∑

i

Ci . (11)

Since the scattering amplitudes are color conserving, this relation can be used in our case.
Note that a different but equivalent form of relation (9) has been given in [3].

It is understood that the result (9) must be expanded in powers of αs with ε treated as a
fixed O(α0

s) quantity. Up to three-loop order this yields

ln Z =
αs

4π

(
Γ′

0

4ε2
+

Γ0

2ε

)
+

(αs

4π

)2
[
−3β0Γ′

0

16ε3
+

Γ′
1 − 4β0Γ0

16ε2
+

Γ1

4ε

]
(12)

+
(αs

4π

)3
[

11β2
0 Γ′

0

72ε4
− 5β0Γ′

1 + 8β1Γ′
0 − 12β2

0 Γ0

72ε3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ε2
+

Γ2

6ε

]

+ O(α4
s),

where we have expanded the anomalous dimensions and β-function as

Γ =
∞∑

n=0

Γn

(αs

4π

)n+1
, Γ′ =

∞∑

n=0

Γ′
n

(αs

4π

)n+1
, β = −2αs

∞∑

n=0

βn

(αs

4π

)n+1
. (13)

Exponentiating the result (12) and taking into account that the different expansion coefficients
Γn commute, it is straightforward to derive an explicit expression for Z. For the convenience
of the reader, we present the result along with the relevant expansion coefficients of the

7

T i · T j

T 2
i = Ci

(a) (b)

(c)

Figure 7: One-loop (a), two-loop (b), and three-loop (c) connected webs contributing to the
soft anomalous-dimension matrix. The dots represent color generators, which appear when
the gluons are attached to Wilson lines. In each set, only the first web gives rise to a new
color structure.

6 Diagrammatic analysis

We now present a detailed diagrammatic study of the general structure of the soft anomalous-
dimension matrix up to three-loop order, implementing the constraints that follow from the
non-abelian exponentiation theorem and RG invariance of the effective theory. At two-loop
order we will recover the form found in [30, 31] from a simple symmetry argument. In these
papers only the cusp piece of the soft anomalous-dimension matrix was studied, which is
legitimate given that the non-logarithmic terms can be shown to be diagonal in color space.
We find that this property is no longer trivial beyond two-loop order.

The non-abelian exponentiation theorem restricts the color structures that can potentially
appear in the soft anomalous-dimension matrix. They are obtained by considering single
connected webs, whose ends can be attached in arbitrary ways to the n Wilson lines in the
soft operator in (32). In general, single connected webs at L-loop order carry between 2 and
(L + 1) color generators T . In Figure 7 we show the webs appearing up to three-loop order.
The dashed blobs represent self-energy or vertex functions, which have color structure δab and
−ifabc. The color structures of the three- and four-gluon vertices can be expressed in terms
of fabc symbols.
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The non-abelian exponentiation theorem restricts the color structures that can potentially
appear in the soft anomalous-dimension matrix. They are obtained by considering single
connected webs, whose ends can be attached in arbitrary ways to the n Wilson lines in the
soft operator in (32). In general, single connected webs at L-loop order carry between 2 and
(L + 1) color generators T . In Figure 7 we show the webs appearing up to three-loop order.
The dashed blobs represent self-energy or vertex functions, which have color structure δab and
−ifabc. The color structures of the three- and four-gluon vertices can be expressed in terms
of fabc symbols.

In our analysis in this section we only use basic properties of the Lie algebra of the gauge
group, which can be summarized as

[T a, T b] = ifabc
T

c , fabcfabd = CA δcd ,

tradj.

(
T

a
T

b
T

c
)

= ifadef begf cgd =
iCA

2
fabc .

(62)

The last relation follows from the Jacobi identity, i.e., the first relation in the adjoint repre-
sentation. While our explicit analysis refers to SU(N) non-abelian gauge theories, its validity
extends to other gauge groups as well.
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Three-loop order
✦ Single webs:

✦ Six new structures consistent with non-abelian 
exponentiation exist, two of which are 
compatible with soft-collinear factorization:

It follows that using arguments based on factorization and non-abelian exponentiation alone,
one cannot exclude color and momentum structures in the soft anomalous-dimension matrix
that are more complicated that those in (51).
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where the subscript “3” indicates that these structures could first arise at three-loop order. At
this order the functions f̄i(αs) are given by simple numerical coefficients (free of color factors)
times (αs/π)3. To determine these coefficients, it would suffice to calculate an arbitrary
four-parton amplitude at three-loop order. In Section 6.5 we provide circumstantial evidence
suggesting that both coefficients vanish, so the original conjecture would in fact continue to
hold at three-loop order. It is important to note that even in the more general case no explicit
µ dependence enters in (78), so that

∂

∂ ln µ
∆Γ3({p}, µ) = 0 , (79)

and hence there is no contribution of this structure to the function Γ′(αs) in (10). It follows
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Γq
cusp(αs)

CF

=
Γg

cusp(αs)

CA

= γcusp(αs) , (80)
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Figure 7: One-loop (a), two-loop (b), and three-loop (c) connected webs contributing to the
soft anomalous-dimension matrix. The dots represent color generators, which appear when
the gluons are attached to Wilson lines. In each set, only the first web gives rise to a new
color structure.
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legitimate given that the non-logarithmic terms can be shown to be diagonal in color space.
We find that this property is no longer trivial beyond two-loop order.
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Three-loop order
✦ Neither of these is compatible with collinear 

limits: the splitting function would depend on 
colors and momenta of the additional partons 

✦ Consider, e.g., the second term:

6.6 Two-parton collinear limits

We will now rederive the conditions (91), (93), and (95) from an independent consideration.
To this end, we analyze the behavior of the extra terms in ∆Γ3 given in (78) in the two-particle
collinear limit and check whether they are compatible with collinear factorization. For the
contributions of the new structures to the anomalous dimension of the splitting function, we
obtain
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Both contributions are incompatible with the factorization of collinear singularities, because
the splitting function and its anomalous dimension must not depend on the colors and mo-
menta of the remaining partons not involved in the splitting process. We must therefore
require that f̄1(αs) = f̄2(αs) = 0, in accordance with (91) and (93). We note for completeness
that an analogous study excludes the possibility of a non-trivial function of the conformal
cross ratio βijkl appearing in (72).

An analogous calculation shows that the new structure proportional to the function g1(αs)
in (88), which would lead to a violation of Casimir scaling of the cusp anomalous dimension,
is incompatible with the two-particle collinear limits. Considering the terms proportional to
ln[µ2/(−s12)] for example, we find that
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The sum over D12ii color structures cannot be expressed in terms of the color generators of
partons 1 and 2 alone. Hence, we must require that g1(αs) = 0, in agreement with (95).

6.7 Extension to higher orders

The argument presented in the previous sections establish our conjecture (7) at three-loop or-
der and moreover exclude a certain class of modifications at four-loop order. It would certainly
be worthwhile to test the rigor of these arguments with explicit multi-loop calculations, as we
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dependence on color invariants and 
momenta of additional partons (i≠1,2)
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Both contributions are incompatible with the factorization of collinear singularities, because
the splitting function and its anomalous dimension must not depend on the colors and mo-
menta of the remaining partons not involved in the splitting process. We must therefore
require that f̄1(αs) = f̄2(αs) = 0, in accordance with (91) and (93). We note for completeness
that an analogous study excludes the possibility of a non-trivial function of the conformal
cross ratio βijkl appearing in (72).

An analogous calculation shows that the new structure proportional to the function g1(αs)
in (88), which would lead to a violation of Casimir scaling of the cusp anomalous dimension,
is incompatible with the two-particle collinear limits. Considering the terms proportional to
ln[µ2/(−s12)] for example, we find that
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The sum over D12ii color structures cannot be expressed in terms of the color generators of
partons 1 and 2 alone. Hence, we must require that g1(αs) = 0, in agreement with (95).

6.7 Extension to higher orders

The argument presented in the previous sections establish our conjecture (7) at three-loop or-
der and moreover exclude a certain class of modifications at four-loop order. It would certainly
be worthwhile to test the rigor of these arguments with explicit multi-loop calculations, as we
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Both contributions are incompatible with the factorization of collinear singularities, because
the splitting function and its anomalous dimension must not depend on the colors and mo-
menta of the remaining partons not involved in the splitting process. We must therefore
require that f̄1(αs) = f̄2(αs) = 0, in accordance with (91) and (93). We note for completeness
that an analogous study excludes the possibility of a non-trivial function of the conformal
cross ratio βijkl appearing in (72).

An analogous calculation shows that the new structure proportional to the function g1(αs)
in (88), which would lead to a violation of Casimir scaling of the cusp anomalous dimension,
is incompatible with the two-particle collinear limits. Considering the terms proportional to
ln[µ2/(−s12)] for example, we find that
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The sum over D12ii color structures cannot be expressed in terms of the color generators of
partons 1 and 2 alone. Hence, we must require that g1(αs) = 0, in agreement with (95).

6.7 Extension to higher orders

The argument presented in the previous sections establish our conjecture (7) at three-loop or-
der and moreover exclude a certain class of modifications at four-loop order. It would certainly
be worthwhile to test the rigor of these arguments with explicit multi-loop calculations, as we
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Arbitrary dependence on conformal cross ratios

✦ Most general form [                            ]

✦ compatible with soft-collinear factorization
✦ inconsistent with collinear limit unless the 

term vanishes in all collinear limits. 
(Conformal ratios vanish or diverge in the 
collinear limit.)

✦ Unclear whether it appears, but contribution 
is not excluded by our arguments.

We now substitute for the cusp angles entering the soft anomalous-dimension matrix the
expression on the right-hand side of (45). This yields Γs({s}, {L}, µ) as a function of the
variables sij and Li. The dependence on the collinear scales must cancel when we combine
the soft and collinear contributions to the total anomalous-dimension matrix. We thus obtain
the relation

∂Γs({s}, {L}, µ)

∂Li
= Γi

cusp(αs) , (48)

where the expression on the right-hand side is a unit matrix in color space. This relation
provides an important constraint on the momentum and color structures that can appear in the
soft anomalous-dimension matrix. A corresponding relation has been derived independently
in [29].

Because the kinematical invariants sij can be assumed to be linearly independent, relation
(48) implies that Γs depends only linearly on the cusp angles βij , see (45). The only exception
would be a more complicated dependence on combinations of cusp angles, in which the collinear
logarithms cancel. The simplest such combination is

βijkl = βij + βkl − βik − βjl = ln
(−sij)(−skl)

(−sik)(−sjl)
, (49)

which coincides with the logarithm of the conformal cross ratio ρijkl defined in [29]. For
simplicity, we will use the term “conformal cross ratio” in the following also when referring to
βijkl. This quantity obeys the symmetry properties

βijkl = βjilk = −βikjl = −βljki = βklij . (50)

It is easy to show that any combination of cusp angles that is independent of collinear loga-
rithms can be expressed via such cross ratios. Moreover, given four parton momenta, there
exist two linearly independent conformal cross ratios, since

βijkl + βiklj + βiljk = 0 , (51)

and all other index permutations can be obtained using the symmetry properties in (50).
Our strategy in Section 6 will be to analyze the structure of the soft anomalous-dimension

matrix first, since it is constrained by the non-abelian exponentiation theorem and the con-
straint (48). The universality of soft gluon interactions implies that the soft contributions only
probe the momentum directions and color charges of the external partons, but not their po-
larization states. Dependence on the parton identities thus only enters via the cusp variables
βij and non-trivial color-conserving structures built out of Ti generators. If our conjecture (7)
is correct, then (47) implies that the soft anomalous-dimension matrix should be given by

Γs({β}, µ) = −
∑

(i,j)

Ti · Tj

2
γcusp(αs) βij +

∑

i

γi
s(αs) , (52)

where
γi(αs) = γi

c(αs) + γi
s(αs) . (53)
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Four-loops and beyond

✦ Interesting new webs involving higher Casimir 
invariants first arise at four loops

✦ One linear combination of such terms would 
be compatible with soft-collinear factorization, 
but does not have the correct collinear limit

Figure 8: Four-loop connected webs involving higher Casimir invariants.
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the possible contributions to the soft anomalous-dimension matrix linear in cusp angles have
the following structures: βij Diijj and βij Diiij (gluon attachments to two different Wilson
lines), βjk Diijk and (βij + βik)Diijk (attachments to three different Wilson lines), or βij Dijkl

(attachments to four different Wilson lines). Here we have exploited the fact that Dijkl is
totally symmetric in its indices. Using color conservation to evaluate the sums over free
parton indices, the result can be reduced to

∆Γcusp
s =

∑

(i,j)

βij

[
Diijj g1(αs) + Diiij g2(αs)

]
+

∑

(i,j,k)

βij Dijkk g3(αs) , (84)

where the superscript “cusp” indicates that we only focus on new structures linear in cusp
angles. The coefficient functions contain in general two terms of the form gi(αs) = nf gF

i (αs)+
I4(A) gA

i (αs), see Figure 8. They start at O(α4
s).

Let us now evaluate the condition (48), which implies
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(85)
Only the first term on the right-hand side is of the required form and can be absorbed into
the jet-function anomalous dimension, so that the factorization constraint (48) implies

g3(αs) = g1(αs) =
g2(αs)

2
. (86)

The higher-Casimir cusp terms must thus have the form
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It is remarkable that the factorization constraint determines the structure of this term uniquely
up to an overall coefficient function.

The corresponding contribution to the four-loop anomalous-dimension matrix of n-jet
SCET operators is given by
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∆Γcusp
s =

∑

(i,j)

βij

[
Diijj g1(αs) + Diiij g2(αs)

]
+

∑

(i,j,k)

βij Dijkk g3(αs) , (84)

where the superscript “cusp” indicates that we only focus on new structures linear in cusp
angles. The coefficient functions contain in general two terms of the form gi(αs) = nf gF

i (αs)+
I4(A) gA

i (αs), see Figure 8. They start at O(α4
s).

Let us now evaluate the condition (48), which implies

∂∆Γcusp
s

∂Li

= −C4(F, Ri) g2(αs) +
∑

j !=i

[
2Diijj

(
g1(αs) − g3(αs)

)
+ Dijjj

(
g2(αs) − 2g3(αs)

)]
.

(85)
Only the first term on the right-hand side is of the required form and can be absorbed into
the jet-function anomalous dimension, so that the factorization constraint (48) implies

g3(αs) = g1(αs) =
g2(αs)

2
. (86)

The higher-Casimir cusp terms must thus have the form

∆Γcusp
s = g1(αs)

[∑

(i,j)

βij

(
Diijj + 2Diiij

)
+

∑

(i,j,k)

βij Dijkk

]
. (87)

It is remarkable that the factorization constraint determines the structure of this term uniquely
up to an overall coefficient function.

The corresponding contribution to the four-loop anomalous-dimension matrix of n-jet
SCET operators is given by

∆Γcusp
4 = −g1(αs)

[∑

(i,j)

ln
µ2

−sij

(
Diijj + 2Diiij

)
+

∑

(i,j,k)

ln
µ2

−sij

Dijkk

]
. (88)
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see (41) and (53). This relation is indeed satisfied at three-loop order [13]. To this order
Casimir scaling is a consequence of non-abelian exponentiation, as can be seen from our
analysis above: restricted to the two-jet case, all possible color structures arising up to three-
loop order are proportional to Ci. Beyond three loops non-abelian exponentiation no longer
automatically implies Casimir scaling [9], and there are arguments based on calculations using
the AdS/CFT correspondence [14–16] suggesting a violation at higher orders [17–19]. The
new color structures would involve higher Casimir invariants such as those appearing in the
four-loop β-function of non-abelian gauge theory [70].

For the case of N = 4 SYM in the strong coupling limit, λ = g2
sNc → ∞, a violation

of Casimir scaling was found in [17] by considering a Wilson loop in a k-dimensional anti-
symmetric representation of SU(Nc) in the limit where Nc and k go to infinity at fixed ratio
Nc/k. Since the calculation was performed in the strong-coupling limit, it does not predict
if and at which order in the weak-coupling expansion the effect would appear. On the other
hand, it is not implausible that it might appear at some order in perturbation theory, since
the perturbative resummation of ladder diagrams contributing to Wilson loops in N = 4 SYM
indeed produces, when reexpanded for large λ, the e

√
λ behavior characteristic for the strong-

coupling limit [71]. Also, in [72, 73] an all-order form of the cusp anomalous dimension of
planar N = 4 SYM was proposed, which is given by the solution of a certain integral equation.
This conjecture has been checked by four-loop calculations in the weak-coupling limit [74] and
to second order in the strong-coupling expansion using AdS/CFT and a two-loop superstring
calculation [75].

Higher Casimir invariants can be constructed by considering symmetrized traces

da1a2...an

R = tr
[
(T a1

R T
a2
R . . . T

an

R )+

]
(81)

of generators in a representation R. Any such trace contracted with n generators defines a
Casimir invariant, since

Cn(R, R′) = da1a2...an

R T
a1
R′ T

a2
R′ . . . T

an

R′ (82)

commutes with all generators in the representation R of the group. If R is irreducible, then
Schur’s lemma implies that Cn(R, R′) is proportional to the unit matrix. These Casimir
invariants are, however, not all independent. To obtain an independent set of Casimir oper-
ators it is sufficient to consider symmetric traces in the fundamental representation to define
the d-symbols, since da1a2...an

R = In(R) da1a2...an

F with a representation-dependent index In(R).
Furthermore, the invariants can be redefined, da1...an → da1...an

⊥ , such that they fulfill the or-
thogonality conditions da1...al...an

⊥ da1...al

⊥ = 0 [76, 77]. For SU(N) groups, N − 1 independent
invariants can be constructed in this way. More details on the evaluation of group-theory
factors appearing in Feynman diagrams can be found in [78].

Let us now consider possible contributions of these new color structures to the cusp part of
the soft anomalous-dimension matrix. The case n = 3 is irrelevant, since I3(A) = 0 and traces
over three color matrices in the fundamental representation do not arise in QCD. Traces of four
color generators do arise, however, from the diagrams shown in Figure 8. The corresponding
single connected webs can contribute to the soft anomalous-dimension matrix starting at four-
loop order. Our goal is to study the most general contributions of these webs proportional to
a cusp logarithm. A complete classification of potential new color and momentum structures
that could arise at four-loop order is left for future work.
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Casimir scaling

✦ Applied to the two-jet case (form factors), our 
formula thus implies Casimir scaling of the 
cusp anomalous dimension:

✦ Checked explicitly at three loops 
✦ But contradicts expectations from AdS/CFT 

correspondence (high-spin operators in 
strong-coupling limit)

✦ A real conflict?

It follows that using arguments based on factorization and non-abelian exponentiation alone,
one cannot exclude color and momentum structures in the soft anomalous-dimension matrix
that are more complicated that those in (51).

To summarize what we have learned so far, we note that our conjecture (7) for the struc-
ture of the anomalous-dimension matrix for n-jet SCET operators might have to be modified
starting at three-loop order. Inverting the relations between color structures that led to (73)
and expressing the result in terms of structures containing maximal numbers of color genera-
tors, we find that the most general form of the additional terms to the anomalous-dimension
matrix Γ in (7) is

∆Γ3({p}, µ) = − f̄1(αs)

4

∑

(i,j,k,l)

fadef bce
T

a
i T

b
j T

c
k T

d
l ln

(−sij)(−skl)

(−sik)(−sjl)

− f̄2(αs)
∑

(i,j,k)

fadef bce
(
T

a
i T

b
i

)
+

T
c
j T

d
k ,

(78)

where the subscript “3” indicates that these structures could first arise at three-loop order. At
this order the functions f̄i(αs) are given by simple numerical coefficients (free of color factors)
times (αs/π)3. To determine these coefficients, it would suffice to calculate an arbitrary
four-parton amplitude at three-loop order. In Section 6.5 we provide circumstantial evidence
suggesting that both coefficients vanish, so the original conjecture would in fact continue to
hold at three-loop order. It is important to note that even in the more general case no explicit
µ dependence enters in (78), so that

∂

∂ ln µ
∆Γ3({p}, µ) = 0 , (79)

and hence there is no contribution of this structure to the function Γ′(αs) in (10). It follows
that in (12) a modification would first enter in the Γ2/ε term at three-loop order. Equivalently,
the structure of the cusp logarithms in the anomalous-dimension matrix remains unaffected
up to and including three loops, while the non-cusp terms remain unaffected at least to two-
loop order. Based on our result (7), and irrespective of whether the additional terms in
(78) vanish or not, it is therefore possible to resum large Sudakov logarithms in n-parton
scattering processes at next-to-next-to-leading-logarithmic accuracy. This will be sufficient
for all practical matters for a long time to come. When combined with one-loop matching
calculations, it allows us to consistently implement and merge resummation with next-to-
leading order perturbative calculations.

6.4 Higher Casimir contributions to the cusp anomalous dimension

For the special case of two-jet operators, the simple form (7) implies Casimir-scaling of the
cusp anomalous dimension, i.e., the cusp anomalous dimensions of quarks and gluons are
related to each other by the ratio of the quadratic Casimir operators Ci:

Γq
cusp(αs)

CF

=
Γg

cusp(αs)

CA

= γcusp(αs) , (80)

29 Moch, Vermaseren, Vogt 2004

Armoni 2006
Alday, Maldacena 2007



Wanted: 3- and 4-loop checks

✦ Full three-loop 4-jet amplitudes in N=4 super 
Yang-Mills theory were expressed in terms of 
small number of scalar integrals

✦ Once these can be calculated, this will provide 
stringent test of our arguments (note recent 
calculation of three-loop form-factor integrals)

✦ Calculation of four-loop cusp anomalous 
dimension would provide non-trivial test of 
Casimir scaling, which is then no longer 
guaranteed by non-abelian exponentiation

Bern et al. 2008

Baikov et al. 2009; 
Heinrich, Huber, Kosower, Smirnov 2009



Heavy particles

✦ Have extended our analysis to amplitudes 
which include massive partons

✦ Effective theory is combination of HQET (for 
heavy partons) and SCET (massless partons)

✦ Soft function contains both massless and 
timelike Wilson lines

✦ vi  are four-velocities of the massive partons
✦ ni are light-cone reference vectors

2

particles in addition to the light-like directions of mass-
less partons gives rise to additional color and kinemati-
cal structures, which are absent in the case of massless
partons. As a result, the structure of IR poles becomes
increasingly more complicated in higher orders of pertur-
bation theory. We present, for the first time, a general
formula for the IR singularities of dimensionally regular-
ized two-loop scattering amplitudes with arbitrary num-
bers of massive and massless partons and arbitrary values
of the parton masses. It generalizes the one-loop result
of [20]. For amplitudes with n ≥ 4 partons, our result
contains two new functions with certain symmetry prop-
erties, for which at present no analytical expressions are
available.

We begin by considering the case where the parton
masses are of the same magnitude as the typical mo-
mentum transfer between the partons. In this case the
appropriate low-energy effective theory is a combination
of SCET and heavy-quark effective theory (HQET) [28],
which is applicable since the relative velocities of the
heavy partons are of O(1) in this case. With the general
result at hand, we then explore the limit where the par-
ton masses are taken to be much smaller than the hard
momentum transfers between the partons. We conclude
that if the two new functions do not vanish in this limit,
then the QCD factorization formula of [22, 23] would
need to be modified.

II. SOFT-COLLINEAR FACTORIZATION

We denote by |Mn(ε, {p}, {m})〉, with {p} ≡
{p1, . . . , pn} and {m} ≡ {m1, . . . , mn}, a UV-
renormalized, on-shell n-parton scattering amplitude
with IR singularities regularized in d = 4 − 2ε dimen-
sions. This quantity is a function of the Lorentz invari-
ants sij ≡ 2σij pi · pj + i0 and p2

i = m2
i , where the sign

factor σij = +1 if the momenta pi and pj are both in-
coming or outgoing, and σij = −1 otherwise. We assume
that all of these invariants are of the same order and refer
to them as hard scales. For massive partons (mi %= 0),
we define 4-velocities vi = pi/mi, whose components are
of O(1). We have v2

i = 1 and define the abbreviations
wij ≡ −σij vi · vj − i0. We use the color-space formal-
ism of [29, 30], in which n-particle amplitudes are treated
as n-dimensional vectors in color space. Ti is the color
generator associated with the i-th parton and acts as a
matrix on its color index. The product Ti · Tj ≡ T a

i T a
j

is summed over a. Generators associated with different
particles trivially commute, Ti · Tj = Tj · Ti for i %= j,
while T 2

i = Ci is given in terms of the quadratic Casimir
operator of the corresponding color representation, i.e.,
Cq = Cq̄ = CF for quarks and Cg = CA for gluons.

We have shown in [7, 12] that the IR poles of such am-
plitudes can be removed by a multiplicative renormaliza-
tion factor Z−1(ε, {p}, {m}, µ), which acts as a matrix
on the color indices of the partons. This quantity obeys

the renormalization-group equation

Z
−1 d

d lnµ
Z(ε, {p}, {m}, µ) = −Γ({p}, {m}, µ) , (1)

where Γ is the anomalous-dimension matrix of effective-
theory operators built out of collinear SCET fields for the
massless partons and soft HQET fields for the massive
ones. The formal solution of this equation is

Z(ε, {p}, {m}, µ) = P exp

[
∫ ∞

µ

dµ′

µ′
Γ({p}, {m}, µ′)

]

,

(2)
where the path-ordering symbol P means that matrices
are ordered from left to right according to decreasing val-
ues of µ′. The Z-factor appearing in the renormalization
of effective-theory operators describes the IR behavior of
on-shell amplitudes, because these amplitudes are closely
related to the bare Wilson coefficients of the correspond-
ing operators. This connection is discussed in detail in
[12]. Compared to the massless case discussed there, we
encounter one complication: Since virtual corrections due
to heavy quarks are integrated out in the effective theory,
the strong coupling constant entering the Z-factor in the
low-energy theory is defined in a theory with massless
quark flavors only, while the massive amplitudes in QCD
also receive contributions from heavy-quark loops. The
Z-factor we obtain from the effective theory describes
the IR singularities of massive QCD amplitudes after the
coupling constant is matched onto the effective theory
with massless flavors. The corresponding matching rela-
tion will be given below.

The interactions between collinear and soft fields can
be decoupled by means of a field redefinition [9], after
which soft interactions manifest themselves as interac-
tions between a set of light-like and time-like soft Wilson
lines representing the massless and massive particles, re-
spectively. Generalizing the discussion of [12], the rele-
vant soft operator in the present case is

S({n}, {v}, µ) = 〈0|Sn1
. . . Snk

Svk+1
. . . Svn

|0〉 , (3)

where partons 1, . . . , k are massless, and the remaining
n − k partons are massive.

From now on, we label the massive partons by capi-
tal indices I, J, . . . and the massless ones by lower-case
indices i, j, . . . . The anomalous-dimension matrix of the
effective-theory operators can be written as a sum over
soft and collinear contributions [12],

Γ({p}, {m}, µ) = Γs({β}, µ) +
∑

i

Γi
c(Li, µ) , (4)

where Γs is the soft anomalous-dimension matrix govern-
ing the UV poles of the Wilson-line operator in (3). The
collinear contributions Γi

c only arise for massless partons
and are diagonal in color space. Note that color conser-
vation implies the relation

∑

i

Ti +
∑

I

TI = 0 (5)



Anomalous dimension

✦ Both the full and the effective theory know 
about the 4-velocities of the massive partons

✦ Therefore much weaker constraints hold for 
the massive case: 
✦ no soft-collinear factorization
✦ no constraint from (quasi-)collinear limits

✦ For the purely massive case, all structures 
allowed by non-abelian exponentiation at a 
given order will be present!



Anomalous dimension to two loops

✦ One- and two-parton terms:

✦ Generalizes structure found for massless case
✦ Reproduces IR poles of QCD amplitudes after 

appropriate matching of coupling constants

3

when acting on color-singlet states such as color-
conserving scattering amplitudes. In intermediate steps
in the calculation of the anomalous-dimension matrix one
needs to regularize IR divergences in the effective theory,
for instance by taking the massless partons slightly off
their mass shell, (−p2

i ) > 0. Following [12], we intro-
duce the notation Li = ln[µ2/(−p2

i )] for the collinear
logarithms, which need to cancel in the final result (4).
The soft anomalous-dimension matrix Γs is, in the most
general case, a function of the cusp angles βij , βIj , and
βIJ formed by the Wilson lines belonging to different
pairs of massless or massive partons. With the IR reg-
ulator as specified above, the relations expressing these
cusp angles in terms of the hard momentum transfers and
particle masses read1

βij = ln
−2σij pi · pj µ2

(−p2
i )(−p2

j)
= Li + Lj − ln

µ2

−sij
,

βIj = ln
−2σIj vI · pj µ

(−p2
j)

= Lj − ln
mIµ

−sIj
,

βIJ = arccosh(wIJ ) = arccosh
( −sIJ

2mImJ

)

.

(6)

The anomalous dimensions appearing on the right-hand
side of (4) are functions of the cusp angles βij and the
collinear logarithms Li, while that on the left-hand side
only depends on the hard scales sij and mi.

III. TWO-PARTON CORRELATIONS

We begin by considering the one- and two-particle
terms in the anomalous-dimension matrix (4). They can
be written as [31]

Γi
c(Li, µ) = −Ci γcusp(αs)Li + γi

c(αs) , (7)

and

Γs({β}, µ)
∣

∣

2−parton

= −
∑

(i,j)

Ti · Tj

2
γcusp(αs)βij −

∑

(I,J)

TI · TJ

2
γcusp(βIJ , αs)

−
∑

I,j

TI · Tj γcusp(αs)βIj +
∑

i

γi
s(αs) +

∑

I

γI(αs) ,

(8)

where the notation (i1, ..., ik) refers to unordered tuples of
distinct parton indices. The various coefficients are func-
tions of the renormalized coupling αs ≡ αs(µ) and, in
the case of γcusp(β, αs), of a cusp angle β. The fact that
only a linear dependence on the cusp angles is allowed in

1 Strictly speaking, in the effective theory only the large light-
cone components of the collinear momenta appear in the scalar
products pi · pj and vI · pj , see [12].

cases where at least one massless parton is involved has
been explained in [12, 16].

It is instructive to see how the dependence on the IR
regulators disappears in (4), when we combine the ex-
pressions in (7) and (8) and express the cusp angles in
terms of hard momentum transfers and masses as well as
collinear logarithms. We note that (after the cusp angles
have been eliminated)

∂Γs

∣

∣

2−parton

∂Lj
= −

(

∑

i"=j

Ti · Tj +
∑

I

TI · Tj

)

γcusp(αs)

= Cj γcusp(αs) = −
∂Γj

c

∂Lj
. (9)

Hence, the sum of all contributions is indeed independent
of the IR regulators. Note that this requirement fixes the
relative strength of the terms proportional to Ti ·Tj and
TI · Tj in (8). From (4) we then obtain

Γ({p}, {m}, µ)
∣

∣

2−parton

=
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+

∑

i

γi(αs)

−
∑

(I,J)

TI · TJ

2
γcusp(βIJ , αs) +

∑

I

γI(αs)

+
∑

I,j

TI · Tj γcusp(αs) ln
mIµ

−sIj
,

(10)

where γi ≡ γi
s + γi

c.
The anomalous-dimension coefficients γcusp(αs) and

γi(αs) (for i = q, g) have been determined to three-
loop order in [12] by considering the case of the mass-
less quark and gluon form factors. For example, the
one- and two-loop coefficients in the perturbative series
γcusp(αs) =

∑

n γcusp
n (αs

4π
)n+1 are

γcusp
0 = 4 , γcusp

1 =

(

268

9
−

4π2

3

)

CA −
80

9
TF nf .

(11)
In QCD only quarks can be massive, and the first two
coefficients in the expansion of γQ can be extracted
by matching our result with the known form of the
anomalous dimension of heavy-light currents Jhl in SCET
[9, 32]. We obtain

ΓJhl
(p, v, µ) = −CF γcusp(αs) ln

µ

2v · p
+ γ′(αs) , (12)

where we assume that the heavy-quark with velocity v
is incoming and the light quark with momentum p is
outgoing. The sum γ′ = γq + γQ was first obtained at
two-loop order in [33]. Using this result leads to the one-
and two-loop coefficients

γQ
0 = −2CF ,

γQ
1 = CF CA

(

2π2

3
−

98

9
− 4ζ3

)

+
40

9
CF TF nf .

(13)

new!

massless partons

massive partons

known to two loops



Anomalous dimension to two loops
✦ Also 3-parton correlations appear in massive 

case!

✦ General structure [with                                  ]:

ni

nj

nk

vI

vJ

vK

...
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vJ

vK

...
...

FIG. 1: Graphical representation of the two three-particle
terms in the anomalous-dimension matrix (27). Double lines
represent massive partons, single lines show massless ones.

where the one- and two-loop coefficients of the constant
terms are

γQ
0 − γq

0 = CF ,

γQ
1 − γq

1 = C2
F

(

3

2
− 2π2 + 24ζ3

)

+ CF CA

(

373

54
+

5π2

2
− 30ζ3

)

− CF TF nf

(

10

27
+

2π2

3

)

.

(24)

The factor ZQ associated with (23), which is obtained
after substituting the anomalous dimension ΓQ into
the general relation (18), is compatible with the re-
sults of [22, 23]. Specifically, we find that the product
Z−2

Q Z{m|0} is finite, where the quantity Z{m|0} was de-
fined in [22] as the ratio of the massive to the massless
quark form factor in the limit where the quark mass tends
to zero, and without including heavy fermion loops. Note
that our derivation assumed that the massive partons are
heavy enough to be integrated out in the low-energy the-
ory using (21). If this is not the case the treatment of
the heavy-flavor contribution is more complicated [23].

IV. THREE-PARTON CORRELATIONS

It was observed in [27] that in the case with massive
partons the anomalous-dimension matrix (4) has a more
complicated structure than in the massless case, and that
at two-loop order non-abelian diagrams connecting three
partons give rise to non-vanishing contributions. The ad-
ditional terms were found to vanish if two of the three
partons are massless,2 or if any pair of the three kine-
matic invariants formed out of the parton momenta are

2 It is noted in [27] that this observation has been made indepen-
dently by Einan Gardi.

equal. We will now show that these observations have a
simple explanation.

Adapting the diagrammatic analysis of our paper [12]
to the case with non-zero parton masses, we find that
additional structures arise from two-loop order on, the
reason being that the 4-velocities of the massive partons
are known to both the full and the effective theories. In
HQET the velocities appear as labels on the effective
heavy-quark fields [28, 42]. In the full theory, they are
simply given by vi = pi/mi. While for massless partons
the rewriting from hard to soft variables always intro-
duces collinear logarithms, this is not true for massive
partons, as shown in (6). At two-loop order, the non-
abelian exponentiation theorem then allows additional
structures involving three partons. They are absent in
the massless case, because it is impossible to form a to-
tally anti-symmetric function of three cusp angles βij ,
βjk, βki that is independent of collinear logarithms upon
the substitution shown in the first line in (6) [12]. This
would violate soft-collinear factorization. However, with
massive partons this argument no longer applies. In
fact, in principle the soft anomalous-dimension matrix
can contain the structures

Γs({β}, µ)
∣

∣

3−parton

= ifabc
∑

(I,J,K)

T
a
I T

b
J T

c
K F1(βIJ , βJK , βKI)

+ ifabc
∑

(I,J)

∑

k

T
a
I T

b
J T

c
k F2(βIJ , βJk, βIk)

+ ifabc
∑

I

∑

(j,k)

T
a
I T

b
j T

c
k F3(βIj , βIk, βjk) .

(25)

The function F1 must be totally anti-symmetric in its
arguments, while F2 (F3) must be anti-symmetric in the
last (first) two arguments. Soft-collinear factorization
enforces that after elimination of the cusp angles using
(6) the result (25) must be independent of collinear log-
arithms. This in turn requires that

F2(βIJ , βJk, βIk) = f2(βIJ , βJk − βIk) ,

F3(βIj , βIk, βjk) = 0 ,
(26)

where f2(x, y) must be an odd function of y. Note that
for F3 to be independent of collinear logarithms it should
be a function of the combination (βIj + βIk − βjk), but
this is symmetric in j, k and so vanishes when contracted
with the anti-symmetric color structure. Hence only the
two possibilities illustrated in Figure 1 remain, and we are
led to the following additional structures in the complete
anomalous-dimension matrix in (4):

Γ({p}, {m}, µ)
∣

∣

3−parton

= ifabc
∑

(I,J,K)

T
a
I T

b
J T

c
K F1(βIJ , βJK , βKI) (27)

+ ifabc
∑

(I,J)

∑

k

T
a
I T

b
J T

c
k f2

(

βIJ , ln
−σJk vJ · pk

−σIk vI · pk

)

.

βIJ = arccosh(vI · vJ)
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FIG. 1: Graphical representation of the two three-particle
terms in the anomalous-dimension matrix (27). Double lines
represent massive partons, single lines show massless ones.

where the one- and two-loop coefficients of the constant
terms are

γQ
0 − γq

0 = CF ,

γQ
1 − γq

1 = C2
F

(

3

2
− 2π2 + 24ζ3

)

+ CF CA

(

373

54
+

5π2

2
− 30ζ3

)

− CF TF nf

(

10

27
+

2π2

3

)

.

(24)

The factor ZQ associated with (23), which is obtained
after substituting the anomalous dimension ΓQ into
the general relation (18), is compatible with the re-
sults of [22, 23]. Specifically, we find that the product
Z−2

Q Z{m|0} is finite, where the quantity Z{m|0} was de-
fined in [22] as the ratio of the massive to the massless
quark form factor in the limit where the quark mass tends
to zero, and without including heavy fermion loops. Note
that our derivation assumed that the massive partons are
heavy enough to be integrated out in the low-energy the-
ory using (21). If this is not the case the treatment of
the heavy-flavor contribution is more complicated [23].

IV. THREE-PARTON CORRELATIONS

It was observed in [27] that in the case with massive
partons the anomalous-dimension matrix (4) has a more
complicated structure than in the massless case, and that
at two-loop order non-abelian diagrams connecting three
partons give rise to non-vanishing contributions. The ad-
ditional terms were found to vanish if two of the three
partons are massless,2 or if any pair of the three kine-
matic invariants formed out of the parton momenta are

2 It is noted in [27] that this observation has been made indepen-
dently by Einan Gardi.

equal. We will now show that these observations have a
simple explanation.

Adapting the diagrammatic analysis of our paper [12]
to the case with non-zero parton masses, we find that
additional structures arise from two-loop order on, the
reason being that the 4-velocities of the massive partons
are known to both the full and the effective theories. In
HQET the velocities appear as labels on the effective
heavy-quark fields [28, 42]. In the full theory, they are
simply given by vi = pi/mi. While for massless partons
the rewriting from hard to soft variables always intro-
duces collinear logarithms, this is not true for massive
partons, as shown in (6). At two-loop order, the non-
abelian exponentiation theorem then allows additional
structures involving three partons. They are absent in
the massless case, because it is impossible to form a to-
tally anti-symmetric function of three cusp angles βij ,
βjk, βki that is independent of collinear logarithms upon
the substitution shown in the first line in (6) [12]. This
would violate soft-collinear factorization. However, with
massive partons this argument no longer applies. In
fact, in principle the soft anomalous-dimension matrix
can contain the structures

Γs({β}, µ)
∣

∣

3−parton

= ifabc
∑

(I,J,K)

T
a
I T

b
J T

c
K F1(βIJ , βJK , βKI)

+ ifabc
∑

(I,J)

∑

k

T
a
I T

b
J T

c
k F2(βIJ , βJk, βIk)

+ ifabc
∑

I

∑

(j,k)

T
a
I T

b
j T

c
k F3(βIj , βIk, βjk) .

(25)

The function F1 must be totally anti-symmetric in its
arguments, while F2 (F3) must be anti-symmetric in the
last (first) two arguments. Soft-collinear factorization
enforces that after elimination of the cusp angles using
(6) the result (25) must be independent of collinear log-
arithms. This in turn requires that

F2(βIJ , βJk, βIk) = f2(βIJ , βJk − βIk) ,

F3(βIj , βIk, βjk) = 0 ,
(26)

where f2(x, y) must be an odd function of y. Note that
for F3 to be independent of collinear logarithms it should
be a function of the combination (βIj + βIk − βjk), but
this is symmetric in j, k and so vanishes when contracted
with the anti-symmetric color structure. Hence only the
two possibilities illustrated in Figure 1 remain, and we are
led to the following additional structures in the complete
anomalous-dimension matrix in (4):

Γ({p}, {m}, µ)
∣

∣

3−parton

= ifabc
∑

(I,J,K)

T
a
I T

b
J T

c
K F1(βIJ , βJK , βKI) (27)

+ ifabc
∑

(I,J)

∑

k

T
a
I T

b
J T

c
k f2

(

βIJ , ln
−σJk vJ · pk

−σIk vI · pk

)

.
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Towards higher-log resummations 
for n-jet processes



Sudakov resummation with SCET

✦ Many collider physics applications of SCET in 
the past few years. Resummations up to N3LL, 
however only for two jet observables, e.g.
✦ thrust distribution in e+e− 

✦ Drell-Yan rapidity dist.
✦ inclusive Higgs production

✦ Our result for anomalous dimension allows us 
to perform higher-log resummations also for 
more n-jet processes

Idilbi, Ji, Ma and Yuan ‘06 ; 
Ahrens, TB, Neubert, Yang ‘08

TB, Neubert, Xu ‘07

TB, Schwartz ’08



2-jet example: thrust T

✦ Prediction for event-shape variable thrust dominated by 
perturbative uncertainty. NLO Ellis et al. ’81, NNLO 
corrections Gehrmann et al. ‘07.

✦ Traditional methods allowed resummation to NLL Catani 
et al. ’93 but not beyond.

✦ Using factorization theorem in SCET we were able to derive 
NNNLL resummed distribution TB and Schwartz, ‘08.

✦ Need only existing perturbative input. Analytic result, no 
unphysical Landau-pole singularities. Match to NNLO.

1 Introduction

Lepton colliders, such as the Large Electron-Positron collider lep which ran from 1989-2000
at cern, provide an optimal environment for precision studies in high energy physics. Lacking
the complications of strongly interacting initial states, which plague hadron colliders, lep has
been able to provide extremely accurate measurements of standard model quantities such as
the Z-boson mass, and its results tightly constrain beyond-the-standard model physics. The
precision lep data is also used for QCD studies, for example to determine the strong coupling
constant αs. With the variation of αs known to 4-loops, one should be able to confirm in
great detail the running of the coupling, or use it to establish a discrepancy which might
indicate new physics. Even at fixed center-of-mass energy, differential distributions for event
shapes, such as thrust probe several energy scales and are extremely sensitive to the running
coupling. Moreover, event shape variables are designed to be infrared safe, so that they can be
calculated in perturbation theory and so the theoretical predictions should be correspondingly
clean. Nevertheless, extractions of αs from event shapes at lep have until now been limited
by theoretical uncertainty from unknown higher order terms in the perturbative expansion.

One difficulty in achieving an accurate theoretical prediction from QCD has been the
complexity of the relevant fixed-order calculations. Indeed, while the next-to-leading-order
(NLO) results for event shapes have been known since 1980 [1], the relevant next-to-next-
to-leading order (NNLO) calculations were completed only in 2007 [2, 3]. In addition to the
loop integrals, the subtraction of soft and collinear divergencies in the real emission diagrams
presented a major complication. In fact, this is the first calculation where a subtraction scheme
has been successfully implemented at NNLO [4]. However, even with these new results at hand,
the corresponding extraction of αs continues to be limited by perturbative uncertainty. The
result of [5] was αs(mZ) = 0.1240 ± 0.0033, with a perturbative uncertainty of 0.0029. This
NNLO result for the strong coupling constant comes out lower than at NLO, but 2σ higher
than the PDG average αs(mZ) = 0.1176 ± 0.0020 [6]. Actually, the most precise values of αs

are currently determined not from lep but at low energies using lattice simulations [7] and
τ -decays [8]. An extensive review of αs determinations is given in [9], new determinations
since its publication include [10, 11].

To further reduce the theoretical uncertainty of event shape calculations, it is important
to resum the dominant perturbative contributions to all orders in αs. To see this, consider
thrust, which is defined as

T = max
n

∑
i |pi · n|∑

i |pi|
, (1)

where the sum is over all momentum 3-vectors pi in the event, and the maximum is over all
unit 3-vectors n. In the endpoint region, T → 1 or τ = (1−T ) → 0, no fixed-order calculation
could possibly describe the full distribution due to the appearance of large logarithms. For
example, at leading order in perturbation theory the thrust distribution has the form

1

σ0

dσ

dτ
= δ(τ) +

2αs

3π

[
−4 ln τ − 3

τ
+ . . .

]
, (2)

where the ellipsis denotes terms that are regular in the limit τ → 0. Upon integration over

1

1− T ≈ M2
1 + M2

2

Q2



✦ Fit to ALEPH and OPAL data gives

✦ Most precise αs at high energy, pert unc. no longer 
dominant. Hadronisation uncertainty becomes limiting 
factor.  

✦ Abbate, Fickinger, Hoang, Mateu, and Stewart have performed 
a global fit to all available thrust data using. Extract both αs 
and hadronisation corrections. Find large hadronisation 
corrections, preliminary value of αs

αs extraction from thrust 

fit to ALEPH data
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fit to OPAL data
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Figure 10: Best fit values for αs(mZ). From right to left the lines are the total error bars at
each energy for first order, second order, third order and fourth order, as defined in the text.
The bands are weighted averages with errors combined from all energies.

between the systematical uncertainties among the two experiments. For the hadronization
and perturbative error, we assume 100% correlation. Proceeding in this way, we find

αs(mZ) = 0.1172 ± 0.0010(stat) ± 0.0008(sys) ± 0.0012(had) ± 0.0012(pert)

= 0.1172 ± 0.0022 . (39)

This result is close to the PDG world average αs(mZ) = 0.1176 ± 0.0020 and has similar
uncertainties.

It is interesting to repeat the fit order by order. This is done in Table 4 and displayed
graphically in Figure 10. The figure shows that the results found at different energies are
consistent and illustrates the reduction of the uncertainty when including higher order terms.

5 Non-perturbative effects and power corrections

Now, let us turn to the non-perturbative effects. The effective theory calculation corresponds
to a parton-level distribution, while the experimental data involves hadrons. Because thrust
is an infrared-safe observable, the hadronization corrections are expected to be suppressed,
however they may not be negligible.

In a fixed-order calculation, one normally corrects the theoretical prediction with a parton-
to-hadron transfer matrix derived from a Monte Carlo event generator. Then the uncertainty is
calculated by comparing the output of different generators. This procedure is clearly not ideal,
since the event generators have been tuned to the same lep data we are trying to reproduce!
The situation is especially problematic when trying to correct our resummed distribution.
The Monte Carlo generators are all based on the parton-shower approximation, which only
sums the leading Sudakov double logarithms and part of the next-to-leading logarithms. In
contrast, our distribution is correct to N3LL and to NNLO in fixed-order perturbation theory.
By tuning to data, part of the missing higher order perturbative corrections get absorbed

20

from comparing Ariadne Herwig and Pythia

49

TB and Schwartz, ‘08
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Beyond LL for n-jet processes
✦ The necessary ingredients are

✦ hard functions: from fixed-order results for on-
shell amplitudes. New unitarity methods allow 
calculation of one-loop amplitudes with many 
legs (→ NNLL resummation)

✦ jet function: imaginary part of two-point 
function, inclusive jet function is known to two 
loops. 

✦ soft function:  matrix element of Wilson lines, 
one-loop calculation is comparatively simple. 

✦ Then resum log’s of different scales using RG 
evolution.



Ultimate goal: automatization

✦ in the longer term, this will 
hopefully lead to automated 
higher-log resummations for 
jet rates

✦ goes beyond parton showers, 
which are only accurate at 
LL, even after matching

✦ predicts jets, not individual 
partons

jet rates

|M
n 〉Γ

Sn

J



Conclusions
✦ IR divergences of arbitrary gauge-theory amplitudes can 

be derived from SCET anomalous-dimension matrix Γ 

✦ Stringent constraints on Γ arise from non-abelian 
exponentiation (general case), and soft-collinear 
factorization & collinear limits (massless case only)

✦ Conjectured form of pure color-dipole correlations 
demonstrated to hold at 3- and (partial) 4-loop order, 
assuming polynomial dependence on βijkl

✦ In massive case, previously observed properties of 2-loop 
three-parton correlations understood from symmetry 
properties in effective theory

✦ On track to perform higher-log resummations for   
generic n-jet processes at LHC using RG evolution


