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IR singularities

On-shell parton scattering amplitudes in gauge
theories contain IR divergences from soft and
collinear loop momenta

IR singularities cancel between real and

virtual contributions Bloch, Nordsieck 1937
Kinoshita 1962; Lee, Nauenberg 1964

Nevertheless Interesting:

resummation of large Sudakov logarithms
remaining after cancellation of divergences

(relevant tor LHC physics!)

check on multi-loop calculations



IR singularities in QED

Singularities arise from soft photon emission

(for me#0); eitkonal approximation:

- = = Pu_
D f— N'”u(p)p-k

IR divergent part 1s a multiplicative factor

Higher-order terms obtained by exponentiating

leading-order SOP[ COntribUtiOn. Yennie, Frautschi, Suura 1961
Weinberg 1965



IR singularities in QCD
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“In [Yang-Mills theory] a soft photon emitted from an external
line can itself emit a pair of soft charged massless particles,
which themselves emit soft photons, and so on, building up a
cascade of soft massless particles each of which contributes an
infra-red divergence. The elimination of such complicated
interlocking infra-red divergences would certainly be a
Herculean task, and might not even be possible. ™ |

Weinberg, Phys. Rev. 140B (1965) |




IR singularities in QCD

Much more complicated

soft and collinear singularities

gluons carry color charge, hence soft
emissions do not simply exponentiate

but only a restricted set of higher-order

contributions can appear (non-abelian
exponentiation theorem) Gatheral 1983; Frenkel, Taylor 1984

For long time, explicit form of IR poles was
only understood at two-loop order  catani 1998



Overview of the talk

IR singularities of gauge theory on-shell amplitudes

can be absorbed into multiplicative Z-factor,
governed by an anomalous dimension I

conjecture: for massless theories I' involves only
two-parton color-correlations

Constraints on I' from non-abelian exponentiation,
soft-collinear factorization, collinear limits

Order-by-order analysis to 3-loops, exclusion of
higher Casimir contributions at 4 loops

Phenomenological application: higher-log
resummation for n-jet processes.



Color-space formalism

Represent amplitudes as vectors in color space:
‘Cl, ot T Cn> Catani, Seymour 1996

!

color index of first parton
Color generator for it" parton T |c1, ¢z, ..., cy)
acts like a matrix:

fabe for gluons

t* for quarks,

product T; - T'; = Z Ll (commutative)
° a ° °

charge conservation ) T =0 implies:

I o N

(2,9) 2
=5 = -————--___J Cror Ca




Catani's two-loop tormula (1998)

(“... beautitul, yet mysterious ...”)
Specifies IR singularities of dimensionally

regularized n-parton amplitudes at two loops:

2
s T (O‘) I@(e) + ... | IMu(e, {p})) = finite
: amplitude 1s vector in color space
with e e€VE | R e
O = Fr=g 2 (& T ‘)%; > (—>
=SEEREE==D
&)= - (1 (_ ) 2 (K"_ g_z) 1) (2¢) \ (pi ‘|‘pj)2
= e (2)
10 (0 ) ralo

Later derivation using factorization properties

and IR evolution equation for form factor
Sterman, Tejeda-Yeomans 2003



All-order generalization

IR divergences in d=4-2¢ can be absorbed into a

multiplicative factor Z (a matrix in color space),

which derives from an anomalous-dimension
TB, Neubert 2009

matrix: e

/
Ma({p} ) =1lim Z (e, {p}, 1) IMn(e, {p})) J
|

- oo g -

Z(e. () =Pew | [ LT ]
Jp M i i

Corresponding RG evolution equation:

dlfl,u -Maipt ) = Tlph p) IMalips 1))

=> can be used to resum Sudakov logarithms



All-order generalization

Anomalous dimension 1s conjectured to be
extremely simple:

anom. dimensions,
color charges 1

known to three-loop order

v S e N
I‘({Z_?}Mu) — Z 1-;21-} Wcusp(as) In a B | Z /77;(058)

(4.5) / ’
sum OVver pairs J

1#] of partons (pi -+ Dy )2 i

simple structure, reminiscent of QED

IR poles determined by color charges and

momenta of external partons

color dipole correlations, like at one-loop order



Z factor to three loops

d-dimensional p-function

Explicit result: /

Z(Ev {B}mu):/d(j 26—;(04)/04 F({B}7U7a)+/dj/ 9e —F/ﬁ(ig)/o/

0 - 0

where
9,

Tl = Oln

({p} s O‘S = f}/cusp Ofs Z C

Perturbative expansion:

1l coethic k !
T I = T, - (043)2 38, > I, — 46,T : T, all coetticients known
n = e =
47T 4e2 ' 2¢ 47 16¢3 1662 Ae /

e (%)3 1185 Ty 56T + 861 T — 1265 T'g = I, — 6501 — 6061 o I's
47

T 72€3 36¢€2 6e
=> exponentiation yields Z factor at three loops!

B,




Checks

Expression for IR pole terms agrees with all
known perturbative results:

3-loop quark and gluon form factors, which

determine the functions Y%7 (a;)
Moch, Vermaseren, Vogt 2005

2-100p 3 -j et qqg amphtude Garland, Gehrmann et al. 2002

. . Anastasiou, Glover et al. 2001
2'100]? 4'J et amphtudes Ben-Peliriee Do 007005

3-loop 4-jet amplitudes in N=4 super Yang-

Mills theory 1n planar limit Bern et al. 2005, 2007



Catani’s result

Comparison with Catani’s formula at two loops

yields explicit expression for 1/€ pole term:

2 5 g I cls i 7T2
Hf({)s(e) = Z (’h e e Eﬁo Ci)
| Z‘fabc

a b e
L S ram

SR T e R

In In
(5.j.%) e

Non-trivial color structure only arises since his
operators are not defined 1in a minimal scheme

First derived by mert Aybat, Dixon, Sterman ‘06, confirming
earlier COnjeCtur € Bern, Dixon, Kosower ‘04



Eftective theory analysis and
factorization constraints



Misconception

Conventional thinking 1s that UV and IR

divergences are of totally different nature:

UV divergences absorbed into

renormalization of parameters of theory;
structure constrained by RG equations

IR divergences arise in unphysical
calculations; cancel between virtual A
corrections and real emissions

In fact, IR divergences can be mapped onto
UV divergences of operators 1n effective

field theory!




Re-interpretation of IR divergences

In our case, I i1s the anomalous-dimension
matrix of n-jet operators in SCET, and Z 1s the
associated matrix of renormalization factors

Will discuss structure of SCET for n-jet

processes and constraints on anomalous

dimension I arising from
charge conservation > . T; = 0
soft-collinear factorization
non-abelian exponentiation

consistency with collinear limits
TB, Neubert, arXiv:0903.1126



Soft-Collinear Eftective Theory

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002

An effective theory for processes for processes
with energetic particles.

o . MX
Expansion in ——

2F x Wi
Sudakov resummation a” In*" =
2 B x

74



Soft-Collinear Factorization

/-

2EX ~ TIrp :%V

nonperturbative!

2EX

d—H - I35

18



Soft-collinear factorization: » jet case
Sen 1983; Kidonakis, Oderda, Sterman 1998

Hard function H depends on

large momentum transfers s;;
between jets

Soft function S depends
M?ZM?
i

on scales AZ; =
J
Sij

Jet functions Ji = J; (M;?)



SCET for n-jet processes
n ditferent types of collinear quark and gluon

hields (— jet functions J;), interacting only via

soft fields (soft function S)

operator definitions for J; and S

Hard contributions (Q ~ Vs) are integrated out
and absorbed into Wilson coefﬁcients:

I'en
E Cn Z O Bauer, Schwartz 2006

Scale dependence == by RGE:

T 1Ca({} ) = Tl D) el {2} 1)

=

anomalous-dimension matrix




On-shell parton scattering amplitudes

Hard functions C, can be obtained by setting

the jet masses to zero: jet and soft functions
become scaleless, loop corrections vanish.

renormalization factor

One ObtalnS: = (minimal subtraction of IR poles)

Co({p}, 1) = lim Z7 (e, {p}, ) IMu(e, {p}))

TB, Neubert 2009

where r_ dln Z

dln p

IR poles of scattering amplitudes mapped onto
UV poles of n-jet SCET operators

Multiplicative subtraction, controlled by RG



Factorization constraint on I

Operator matrix elements must evolve 1n the

same way as hard matching coethcients, such
that physical observables are scale independent

Factorization of matrix element then implies

, M?M?
Crath=——

trivial color structure

e

D(si;) = Tu(A%) + Y T(MP) 1]

—— R —

M; dependence must cancel!

suggests logarithmic dependence on sj; and M;?

I' and I's must have same color structure



Soft function

SCET decoupling transformation removes soft

interactions among collinear fields and absorbs
them 1nto soft Wilson lines

n; ~ pi 1ight—1ike reference vector

= 0 =
Si == Pexp Zg/ dtnz : Aa(tnz) Tia //;L

For n-jet operator one gets: ‘\V

O
,_)H
|S

i
il

S(in}, 1) = (0[51(0) ... 5,(0)|0) = exp(



Non-abelian exponentiation
Gatheral 1983; Frenkel and Taylor 1984

The exponent S receives contributions only
from Feynman diagrams whose color weights
are “color-connected” (or “maximally non-

abelian”)

Color-weight graphs associated with each
Feynman diagram can be simplified using the
[ie commutator relation:

.

TaTb = TbTa = Z-fabcTc




Non-abelian exponentiation

Use this to decompose any color-weight graph
into a sum over products of connected webs,
defined as a connected set of gluon lines (not
counting crossed lines as being connected)

e RERRERi

single connected web
o o . »
maximally nonabelian

Only color structures consisting of a single
connected web contribute to the exponent S



Renormalization of Wilson loops

Wilson loops containing singular points (cusps

or cross points) require UV subtractions
Polyakov 1980; Brandt, Neri, Sato 1981

For single cusp formed by tangent vectors nj
and ng, renormalization factor depends on

e =l
cusp angle p12 defined as 4. o=
ny s

More generally, sets of related Wilson loops
mix under renormalization, with Z. matrix
depending on all relevant cusp angles

= = =



Laght-like Wilson lines

For large values of cusp angle 312, anomalous
dimension associated with a cusp or cross

point grows linearly with P12, which is then

approximately equal to In(2n;- ny/ \/ i )
Korchemsky, Radyushkin 1987
Cusp angle diverges when one or both

segments approach the light-cone:
2 2

L s H
F(ﬁlg) = (Oés) ] E==

cusp 11 A2
Korchimskaya, Korchemsky 1992
Presence of single logarithm characteristic for

Sudakov problems (double logs)




Laght-like Wilson lines

Introducing IR regulators p;*#0 to define the
soft and collinear scales, we obtain:

) ‘

s

2
—Sij U hard log
G;j = In :
=il
2
soft log = I 2
—p-

collinear log



Soft anomalous-dimension matrix

Decompositions:

D({p}, 1) = Do) + 3 TilLiy 1)

FE(LZ) = _Ff:usp(&s) LZ s /YZ(CVS>

Key equation: see also: Gardi, Magnea, arXiv:0901.1091
{
LML) (o]

8 L cusp
g ]

Suggests linearity in cusp angles [3; and

significantly restricts color structures



Soft anomalous-dimension matrix

Only exception would be a more complicated
dependence on conformal cross ratios, which
are iIndependent of collinear scales:

(—8ij) (—5k)
(—sik) (=551)

Gardi, Magnea 2009
Any polynomial dependence on such ratios

= = e

can be excluded using other arguments, such
as consistency with collinear limits



Consistency with collinear limits

When two partons become collinear, an n-point

amplitude M, reduces to an (12-1)-parton amplitude

times a Spllttlng function: Berends, Giele 1989; Mangano, Parke 1991
Kosower 1999; Catani, de Florian, Rodrigo 2003

M, ({p1, 02,03, - - -, Pn})) = SP{P1,P2}) Mu—1({ P, D3, - s0n})) + .. }

FSP({plap2}a :u) — F({plv e 7pn}7 :u) - F({P7 p3 .- ’p”}’ 'LL)‘TP—>T1—|—T2 |
— ______—J

I'sp, must be independent of momenta and colors of
TB, Neubert 2009

partons J, ..., n



Consistency check

The form we propose 1s consistent with
factorization in the collinear limit:

FSP({plap2}7 ILL) =5 F({pla S 7pn}7 M) B F({P7 p3... 7p72}7 M)‘TP*T1+T2

2

Csp({p1, 02} 1) = Yeusp |T1 - T2 In A; S e AT B e e AR B e e Z)]
it [

+9' + 92 =", momentum fraction of parton 1

But this would not work it I' would involve
terms of higher powers 1n color generators T;

or momentum variables

A very strong constraint (new) !



Diagrammatic analysis of the soft

anomalous-dimension matrix



Existing results

Our conjecture implies for the soft anomalous-
dimension matrix:

I‘S({ﬁ}, ,u) === Z o 21—} ’Ycusp(@s> ﬁij = sz(&s)

(4,3)
This form was confirmed at two loops by

showing that diagrams connecting three

parton legs vanish
Mert Aybat, Dixon, Sterman 2006

Also holds for
three-loop fermionic

contributions
Dixon 2009




Order-by-order analysis
One loop (recall 2. T-T = —Z; T! = —Z; Ci )

(4,9)

one leg: T? = C, =
two legs: T, T,
Two loops
one leg; _j fabe o T e — C/;CZ-
two legs: R T = % T, T, (only new structure)

l\/\/\O\/\/\Q
three legsz S TR R

=> vanishes, since no antisymmetric momentum
structure 1n 1,),k consistent with soft-collinear

explains cancellations observed 1n:

factorization exists!
Mert Aybat, Dixon, Sterman 2006; Dixon 2009



Three-loop order

e b0

(only new structure)

Six new structures consistent with non-abelhian
exponentiation exist, two of which are
compatible with soft-collinear tactorization:

AI‘?)({]_?}?,U) S _fl(zfus) Z fadefbce 1-;@ 1—;b ch Tld = (_S’ij)(_skl)

— (=5 )(=551)
o it \
(4,7:k) more generally, arbitrary odd

function of conformal cross ratio



Three-loop order

Neither of these 1s compatible with collinear

limits: the sphitting function would depend on
colors and momenta of the additional partons

Consider, e.g., the second term:

ATs,({p1, 02}, )] o, = 275 1% [ B RO o e B e i LA Tﬂ)+]
L) T

2
A i ey e e U B T T R T _“S”+
A L

=

dependence on color invariants and
momenta of additional partons (1#1,2)




Arbitrary dependence on conformal cross ratios
(—8i)(—5k1)
(=sir)(=551) |

ATs({p} 1) = Z R g T T s o — o)
(Ii/7j7k7l)

Most general form [ Bijui =In

compatible with soft-collinear factorization

inconsistent with collinear limit unless the

term vanishes 1n all collinear limaits.
(Conformal ratios vanish or diverge in the
collinear limit.)

Unclear whether it appears, but contribution
1s not excluded by our arguments.



Four-loops and beyond

Interesting new webs involving higher Casimir

invariants first arise at four loops

d%de 1’;& Tyb ch CI}d == d%bcd (1‘;& 1’}1) ch CZ'vld) e
doo-an — [ (TS TS .. T, ]
One linear combination of such terms would

be compatible with soft-collinear factorization,
but does not have the correct collinear limit



Casimir scaling

Applied to the two-jet case (form factors), our
formula thus implies Casimir scaling of the
cusp anomalous dimension:

[ oo (@ ) 'Y oo (Ots) '\
cusp cusp L
Ch Cr Yeusp (s ) i

CheCked eXpliCitly at three lOOPS Moch, Vermaseren, Vogt 2004

But contradicts expectations from AdS/CFT

correspondence (high-spin operators in

Armoni 2006

strong-coupling limit
& 2 < ) Alday, Maldacena 2007

A real conflict?



Wanted: 3- and 4-loop checks

Full three-loop 4-jet amplitudes in N=4 super

Yang-Mills theory were expressed in terms of
small number of scalar integrals Bern ot al, 2008

Once these can be calculated, this will prowvide
stringent test of our arguments (note recent

calculation of three-loop form-factor integrals)
Baikov et al. 2009;
Heinrich, Huber, Kosower, Smirnov 2009

Calculation of four-loop cusp anomalous
dimension would provide non-trivial test of
Casimir scaling, which 1s then no longer

guaranteed by non-abelian exponentiation



Heavy particles

Have extended our analysis to amplitudes
which include massive partons

Effective theory 1s combination of HOET (for
heavy partons) and SCET (massless partons)

Soft function contains both massless and
timelike Wilson lines

St e e S e
vi are four-velocities of the massive partons

n;are hight-cone reference vectors



Anomalous dimension

Both the tull and the effective theory know

about the 4-velocities of the massive partons

Therefore much weaker constraints hold for
the massive case:

no soft-collinear factorization
no constraint from (quasi-)collinear limits

For the purely massive case, all structures
allowed by non-abelian exponentiation at a
given order will be present!



Anomalous dimension to two loops

k to two |
One- and two-parton terms: i

I‘({E}7 {m)ﬁ 'u) ‘2—parton

T, . T 12 :
massless partons = Z 5= Yeusp(ats) In = 7 (ors)
(4,9)
o / N\
L=t
s Z 9 ’Y(zusp(ﬁIJa O‘s) 7 Z 'YI(CVS)
Tk 1
massive partons //( ) M HGW!
+ 3 Tr - T Yeusp(as) In o
=== J ¢

Generalizes structure found fOI‘ massless case

Reproduces IR poles of QCD amplitudes after

appropriate matching of coupling constants



Anomalous dimension to two loops

Also 3-parton correlations appear in massive
case ’ Mitov, Sterman, Sung 2009

VJj VJ

b S ) . S, W
(% 9 VI .
’ © ’ N
’ 1 5 , Y
’ A ’ \
’ S N \
1 8 N 1
1 0 ) 1
! . o - . s ' . - . y
1 . ! . 0 ' . 1 . d
' . % ) . .
~ 1 ~ 1
. .
; g
A) A}
1 1
A) \
; ;
\ g
/ ”
» 3
> 0
s .
' ’
2 .
p p
S S
.

nk;~‘~\ ——’, 7 nk\\~_ ‘—’, ng

n ’I”Lj

General structure [with 8;; = arccosh(vy - vy)]:

I‘({Z_?}’ {m}"u)‘3—parton l
:ifabc Z TﬁTgT]%Fl(ﬁfjaﬁjK)ﬁKI) 1
(I,J,K)

. —~ N —O0 ?} ¢
+Zfa’bc>J>JTﬁT3T,§f2(6IJ,ln JkUJ pk)
TR —O0Jk VU * Dk

:
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Sudakov resummation with SCET

Many collider physics applications of SCET in
the past few years. Resummations up to N°LL,
however only for two jet observables, e.g.

thrust distribution 1n e¢*¢™ T8 Schwarts 08

DI’ ell-Yan rapldlty diSt. TB, Neubert, Xu ‘07

- i 3 - 12 b 153 et A B (2 A e e B
1nc1u81ve ng gS pI’OdllCthIl Ahrens, TB, Neubert, Yang ‘08

Our result for anomalous dimension allows us

to perform higher-log resummations also for
more /2-jet processes



2-jet example: thrust 7°

. : 2 2
T = max 2.i|Pi- 1 3 1-T= M +2]\42
n Zz Pl Q)

Prediction for event-shape variable thrust dominated by

perturbative uncertainty. NLO Ellis et al. ‘81, NNLO
corrections Gehrmann et al. ‘07.

Traditional methods allowed resummation to NI, Catani
et al. ‘93 but not beyond.

Using factorization theorem in SCET we were able to derive
NNNLL resummed distribution TB and Schwartz, 08.

Need only existing perturbative input. Analytic result, no

unphysical Landau-pole singularities. Match to NNLO.



a. extraction from thrust

Fit to ALEPH and OPAL data gives

as(my) = 0.1172 + 0.0010(stat) £ 0.0008(sys) £ 0.0012(had) £ 0.0012(pert)

= 0.1172 = 0.0022. from comparing Ariadne Herwig and Pythia

t

TB and Schwartz, ‘08

Most precise Os at high energy, pert unc. no longer

dominant. Hadronisation uncertainty becomes limiting

factor.

Abbate, Fickinger, Hoang, Mateu, and Stewart have performed

a global fit to all available thrust data using. Extract both as
and hadronisation corrections. Find /arge hadronisation

corrections, preliminary value of o

a,(M,)=0.1142+£0.0008+0.0011

(pert) (stat+syst+had)

49



Beyond LL for n-jet processes

The necessary ingredients are

hard functions: from fixed-order results for on-
shell amplitudes. New unitarity methods allow
calculation of one-loop amplitudes with many

legs (— NNLL resummation)

jet function: imaginary part of two-point

function, inclusive jet function 1s known to two

loops.

soft function: matrix element of Wilson |

1nes,

one-loop calculation 1s comparatively simple.

Then resum log’s of ditferent scales using RG

evolution.



Ultimate goal: automatization

3
D //%2 g in the longer term, this will
W hopetully lead to automated

P
R

higher-log resummations ftor
jet rates

= — + goes beyond parton showers,

' jet rates which are only accurate at
LL, even after matching

predicts jets, not individual
partons



Conclusions

IR divergences of arbitrary gauge-theory amplitudes can
be derived from SCET anomalous-dimension matrix I

Stringent constraints on I arise from non-abelian
exponentiation (general case), and soft-collinear
factorization & collinear limits (massless case only)

Conjectured form of pure color-dipole correlations
demonstrated to hold at 3- and (partial) 4-loop order,

assuming polynomial dependence on [k

In massive case, previously observed properties of 2-loop
three-parton correlations understood from symmetry
properties in effective theory

On track to perform higher-log resummations for
° ° P g g ° °
generic n-jet processes at LHC using RG evolution



