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Introduction

| will talk about next-to-leading order calculations in QCD
Radiative corrections split into virtual corrections and real emission corrections

« At NLO final states are modelled more realistically

« Dependencies to unphysical scales are less severe than at leading order

- Typically, NLO predictions are in excellent agreement with data

« LO predictions can be tuned by choosing appropriate scales
(but: What is "appropriate"?, How do cuts affect those predictions?)
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Introduction

Sabine Lammers (DO collaboration) Ulndiana, DPF2009 Detroit
comparison of different MC event generators with DO data (Run Il, 1fbo-")
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Precision comparisons will continue with larger dataset, W/Z+3 jet NLO calculations

Performance by Z+jet normalization | Z+jet angles Z+jet pr
MCFM NLO V '/ V
Alpgen/MLM + Pythia v
Alpgen/MLM + Herwig v
Sherpa/CKKW v
HERWIG
PYTHIA
T +jets Measarements af DO - July 30, 2009 21
B
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Outline

* |ntroduction

* Virtual corrections
» Basic ideas of unitarity based methods
» OPP algorithm
» D-dimensional generalized unitarity
» Massive fermions, top quark amplitudes

* Top quark phenomenology
» Top quark pair production and leptonic decay at NLO
» Various distributions for LHC & Tevatron,
Impact of NLO corrections to the decay
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Virtual Corrections
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Challenges

« Accuracy: numerical stable reduction of tensor integrals
(avoid division by small numbers)

 Efficiency: fast evaluation on a computer
(partonic cross section needs to be integrated
over phase space & folded with pdfs)
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Approaches

The traditional way to do a 1-loop calculation:

 generate all Feynman diagrams
* reduction of tensor integrals to scalar integrals
* reduction to minimal set of spin and color structures

This talk: D-Dimensional Generalized Unitarity

« completely orthogonal approach
* basic ingredients are tree level amplitudes
* better scaling with increasing number of external legs
» method is ready for phenomenology
application: Top Quark Pair Production
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Basic ideas

D-Dimensional Generalized

Unitarity
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Basic ideas

cut four propagators
cuts in D#4 dimensions [Britto,cCachazo,Feng]

[van Neerven]
[Bern, Morgan]
[Giele,Kunszt,Melnikov]

D-Dimensional Generalized

Unitarity

[Bern,Dixon,Dunbar,Kosower]

optical theorem

ae (Y= ) /i Y=

B S

2
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Organization of the calculation

Color ordering

[Bern,Dixon,Kosower]:  Al-loop _ E C; APrim-
{/

)
/ \ color ordered

color factor primitive amplitude

primitive amplitude: - fixed ordering of external legs

« color factors are stripped off
APTIN (1220 4,.5,,3,) =

2 4

« gauge invariant

« minimal set of building blocks
D
1 3
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Tensor integral reduction

traditional approach: (improved) Passarino-Veltman reduction

[E1Tis,Giele,Kunszt]

OPP algorithm: * meshes very well with the cut-based unitarity method

[Ossola,Papadopoulos,Pittaul . . .
2006« g tensor integral reduction at the integrand level

: Num (¥, {p;
Aprim _ /dD€ um( 7{p }) D, — (f—l—pk)Q—m%

Dq..Dn

B i
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Tensor integral reduction

traditional approach: (improved) Passarino-Veltman reduction

[E1Tis,Giele,Kunszt]

OPP algorithm: * meshes very well with the cut-based unitarity method

[Ossola,Papadopoulos,Pittaul

2006« g tensor integral reduction at the integrand level

: Num(4, { p;
APrim _ /dDg um( 7{p }) D, — (f—l—pk)Q _m%

Dq..Dn

for the moment:
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OPP algorithm

1. partial fractioning:

master formula

Num(¢, {p:}) _ 3y digni(6) 3 Ciji(£)
D1..Dy MleDiDjDle &= DiD,D;

+y 2l

’L
[]7]

2. choose vector basis that spans physical space {p;} + transverse space {n;}
and express all momenta in this basis,

= coefficients can be decomposed into integral coefficients and spurious terms

— - Py lu’l r -
c(l) =c + cl_,rx(nl Lokl ) Inip; =0
N -
cx [ d”/ !
D1Do D3 vanish after loop integration
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OPP algorithm

1. partial fractioning:

master formula

Num(¢, {p:}) _ 3y digni(6) 3 Ciji(£)
D1..Dy MleDiDjDle &= DiD,D;

+> o

[4]5]

3. assuming that we know the LHS, i.e. Num(4, {p; }),

we can evaluate this equation for different values of £ , so that
the determination of the coefficients is a purely algebraic problem
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OPP algorithm

1. partial fractioning:

master formula

Num(4, {p;}) Z dijri(€) n Z Ciji(£)
D;..Dy it DDy Dy A D;D; Dy,
1|7 1

+Z aZ(

’L
[]7]

3. assuming that we know the LHS, i.e. Num(4, {p; }),

we can evaluate this equation for different values of £ , so that
the determination of the coefficients is a purely algebraic problem

4. OPP tell us that we should choose £ such that some denominators vanish
= this leads to an efficient recursive determination of the coefficients
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OPP algorithm

Example: 4 particle process

master formula for N=4
Num(ﬁ, {pz}) _ CZ1234 (6) ¢ Z Eijk;(f)
Dy...Dy D1D>DsD, . D;D; Dy,
bij (¢) a;(¢)
+ D Ayt 2
1<i<j<4 D;D; l<i<d ~°

Step 1:  multiply byD1D>Ds D, and choose ¢ suchthatDy=Dy=D3=D;=0

= there are two complex solutions ¢

Num (44, {p;}) = di234(f+)
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OPP algorithm

Example: 4 particle process

master formula for N=4
Num(é, {pz}) _ CZ1234 (6) ¢ Z Eijk(f)
Dq...Dy D1Do D3 Dy e, D;D;Dy,
b;i (4 a; (¢
£ ot X
1<i<j<4 VI 1<i<4 t

Step 1:  multiply byD1D>Ds D, and choose ¢ suchthatDy=Dy=D3=D;s=0
= there are two complex solutions ¢
Num(fs, {p;}) = di2sa(ls) = di23a + dV1234(f) £.ny
=» evaluate equation for two solutions ¢ and solve for d334, d1234

Markus Schulze, Johns Hopkins University
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Step 2:

OPP algorithm

Example: 4 particle process

Num(, {pi})  di2za(¢) _
Dl...D4 D1D2D3D4

C; bi; i (£)
S g X ety H

1<i<j<k<4 1<i<j<4 DD 1<i<4

multiply by D1 D5 D3 and choose ¢ such that D1 =Dy=D3=0

=» there are infinite complex solutions for ¢

Num(&{pi}) 671234(5) _
Ds D, = C123(f)

Markus Schulze, Johns Hopkins University _
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OPP algorithm

Example: 4 particle process

Step 2:

Num(, {pi})  di2za(¢) _
Dl...D4 D1D2D3D4
Ciit (£ b;: (4
3 ik (£) S i(£)
= D;D; Dy, —~ D;D;
1<i1<y<k<4 1<i<y<4

a;(£)
D;

>

1<i<4

multiply by D1 D5 D3 and choose ¢ such that D1 =Dy=D3=0

Markus Schulze,

=» there are infinite complex solutions for ¢
Num f, i J 14 _
(D4{p 2 — 12;;;( ) = C123(£) = c123
+Ciog (11.4) + &gz (12.£) 4 Ciaz (n1.0)(n2.€) + Eog (11.£)* (n2.f)
+Cro3 (n1.€)(n2.0)% + g3 (n1.£)* — (n2.€)?)
E B 13/33
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OPP algorithm

Step 3...:  solve for all coefficients recursively

Finally: take the loop integral over 1\119111%(2615{5 27}4)

= all spurious terms vanish

. Num(¥, {p;
AP :/dDE D( l{? ) = diogaling, + Z cijidis
1..-4 1<i<j<k<4
+ ) byl + ) ailf
1<i<y<4 1<1<4

- coefficients d;;ki, Cijk, bij, a; have been calculated

. : N : - QCD 1-loop package
scalar integrals 4;, ; can be taken from an integral library (Ellis, Zanderighi
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OPP algorithm

Step 3...:

QUESTION:
How do we evaluate

Num(é, {pz})
in the reduction steps ?

Finally:

Aprim _

. coOts dijki, Cijk, Dij, a; have been calculated

» Cular integrals I ; can be taken from an integral liorary ~©CP 1-100p package

[Ellis, Zanderighi]
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Unitarity

remember: we extract the coefficients by considering only those
loop momenta for which certain sets of inverse propagators vanish

= virtual particles go on-shell

Markus Schulze, Johns Hopkins University _
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Unitarity

remember: we extract the coefficients by considering only those

loop momenta for which certain sets of propagators functions vanish

this is where
OPP + Unitarity
mesh

= virtual particles go on-shell

= equivalent to unitarity cuts

SN o g
b

Num(¥, {p;}) — A4, {p;})

Markus Schulze, Johns Hopkins University
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Unitarity

n-nn- -

remember Step 1:

Num(4+, {p;}) = dizsa(l+) = digss + di234 ()

this is \

orr | AT pi) x ABR(, {pi}) x ATt {pi}) x AFe(t, {pi})

Num(¥, {p;}) — A4, {p;})

E . e
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Unitarity

= our basic ingredients are tree level amplitudes
with complex on-shell momenta
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D-Dimensional Unitarity

Rational terms
rational terms

/
the full truth: ~ Al100P — Z c; 1, @
J

QCD needs regularization: D =4 — 2¢ (Dim. Reg.)

rational terms: originate from € -dependent terms
In integral coefficients

Dim. Reg. requires £ to be a complex parameter
= hard for numerical implementation

solution:

Using our knowledge about the particular structure of D-dependence
of a one loop amplitude, we can construct copies of QCD in integer-
dimensionsional (D>4) spaces to interpolate theresultin D =4 — 2¢.

Markus Schulze, Johns Hopkins University _
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D-dimensional unitarity

there are two sources of D-dependence

dimensionality of number of spin and
loop momentum polarization states
= D-dep. from loop integration = D-dep. from contraction of metric

tensors or gamma matrices

extra dimensions in £ enter isotropically: dependence on Dis linear:
2\ 7 D
A(ED) — A(€47€2)7 07 = 27:5 67,2 .A(DS) = Ay + (DS — 4)./41
= loop momentum can be restricted = evaluate at Ds=6 and D,=S8
to 5-dimensional subspace to obtain the full D, -dependence

=> + OPP needs to be extended to
pentagon contributions
« some additional master integrals
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D-dimensional unitarity

recap: Shopping list for
D-dimensional generalized unitarity

all we need: tree level amplitudes for complex on-shell momenta with

 spinors, gamma matrices and polarization vectors in D=6, 8 dimensions
* loop momenta restricted to 5-dimensional subspace

« external momenta restricted to 4-dimensional subspace

=> this allows us to fully reconstruct a one-loop amplitude in
dimensional regularized QCD

Markus Schulze, Johns Hopkins University _

19/33




Massive Fermions

Unitarity and self-energy corrections on massive quarks lines:
( general issue for unitarity based methods! )

double cut:

regular contribution external self-energy contribution!

|
. p? = m? (7%
pt:mt(@zﬁ% |
%% !
|

leads to on-shell propagator in tree amplitude

solution: e discard terms that lead to those cuts
(truncate BG recurrence relations)

« add wave function renormalization
constants 07, later
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Massive Fermions

Implementation:

* Rocket-like Fortran90 program:

0 —>tt+ N gluons at 1-loop QCD

(including N-terms with

0— tE —+ Q(j -+ N glUOnS massive top quark loop)

- all one needs for: pp — tt, pp — tt + jet

« fully numerical implementation:

helicity amplitudes via Berends-Giele recurrence relations

« caching of Berends-Giele-currents

 control over numerical stability: switch to quadruple precision if necessary

* helicity formalism allows us to implement top decay matrix elements
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Top Quark

Phenomenology
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Top Quark Pheno

Top quark phenomenology is rich:

large cross section

top quark mass, spin, charge, branching fractions

spin correlations, forward-backward asymmetry

sensitive to new physics

Furthermore:
« top pairs are standard candles at LHC (constrain gluon pdf at large x)

» background to Higgs searches

Markus Schulze, Johns Hopkins University _
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Top Quark Pheno

tt production beyond leading order QCD:

first analytic calculation: [Nason, Dawson, Ellis, 1990] total tf production cross section
+ various threshold corrections, electroweak corrections,...
[Bernreuther, Brandenburg, Si, Uwer, 2001] production+decay
programs: MCFM: NLO ¢t production, no top decay

(LO ¢t production, LO top decay )
PowHeg, MC@NLO: NLO ¢¢ production, LO top decay

our program: NLO ¢t production and NLO leptonic decay

JHEP 0908:049, 2009
arXiv:0907.3090 [hep-ph]

flexible MC program:

 accounts for all spin correlations
« allows for arbitrary cuts

Markus Schulze, Johns Hopkins University _
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Top Quark Pheno

NLO ¢t production and NLO leptonic decay

top production: e« virtual corrections using
D-dimensional generalized unitarity

* real corrections using dipole subtraction method

leptonic top decay: < on-shell approximation, error (’)(i—i)
« retain all spin correlations
* include virtual and real corrections to decay
 neglect non-factorizable contributions

R s
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Results:

Predictions for: ¢ Tevatron
e LHC @ 10TeV

Realistic final states: di-lepton final state

require two b-jets ( kr-clustering with R = 0.4 )

Cuts:  ph7% > 20 GeV
pEP > 20 GeV

piss > 40 GeV

Markus Schulze, Johns Hopkins Universi_
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Results:

K - factor

Tevatron

1.5 t .
__ﬁ_____L____1____—_____L____1____j—————L______jfii_____L____

0.5 |

NLO/LO

100 200 300 400 500 600
pr(0T) [GeV |

K-factors are not constant!
Tevatron: NLO change pT-distribution significantly

LHC: smaller change but non-negligible
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Results:

lepton rapidity distribution

LO LO

1 600

- Tevatron

| | LHC

1 500

{1 400 =
1 10

1 300

] &

1 200

4 100

nr) n(e")

« NLO corrections to rapidity distribution are important

* NLO correction to decay shifts rapidity distributions significantly
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Results:

lepton rapidity distribution

LO LO

1 600

' Tevatron ls | LHC

1 500

NLO (LO decay) NLO (LO decay)

1 400
1 10
1 300
1 200

1 100

« NLO corrections to rapidity distribution are important

* NLO correction to decay shifts rapidity distributions significantly
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Results:

lepton rapidity distribution

LO LO

1 600

- Tevatron

NLO NLO

ls | LHC

1 500

NLO (LO decay) NLO (LO decay)

1 400
1 10
1 300
1 200

1 100

« NLO corrections to rapidity distribution are important

* NLO correction to decay shifts rapidity distributions significantly
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Results:
invariant mass of lepton and b-jet 12, = (p(¢™) + p(b-jet))2
LHC
10" |

3
:f 10°
512

107 _ NLO (LO decay)

0 50 100 150
Mgﬂ, [ GeV ]

« boundary is top mass dependent
y P P max (M. ,) = mi,, — miy
« spin studies for BSM patrticles

 NLO induces a talil
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muaon

]e: l(h}a .

Vi

neutrino

Results:

spin correlations R—

 large mass and short life time prevent hadronization effects to
wash out spin information

= top spin correlations induced by production process are conserved

 spin correlations of top quarks are passed to decay products

= leptons prefer to fly parallel or anti-parallel wrt. each other

Markus Schulze, Johns Hopkins University _
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Results:

spin correlations

close to threshold:
q > < q S-wave production
=) / =) (L=0)
Flr=y

= leptons preferably anti-parallel
Vas
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typical observable:

l do‘ SOE"'_E_:
o dcos(p,+,-)

angle between the directions of flight of
leptons in the corresponding top rest frame

Vas
g+4/
leptons preferably anti-parallel leptons preferably parallel /-
E_
| 0 N
1 0.6
..... NLO
= 1 0.5
Tevatron . - NLO (LO decay)
---- — 0.4 -1 -0.5 0 0.5 1
-1 -0.5 0 0.5 1

cos(pe+e-)
cos(pere-)

 substantial angular correlations, even at NLO

* NLO effects at Tevatron are significant

Markus Schulze, Johns Hopkins University _ 31/33



0.9 |
08 b |

0.7

04 F

03 F

0.2

0.6 F

0.5 F

simpler observable:

1 do Yo+ p-:

opening angle of the leptons in the

— laboratory frame
o dcos(v,4,-) y
LO e 4B e L.O
NLO NLO

Tevatron

NLO (LO decay)

NLO (LO decay)

s I B

 top quark rest frames need not to be reconstructed

 angular correlations remain, stronger NLO effects at LHC

0.5 1 -1 -0.5 0
cos(tere-)

Markus Schulze, Johns Hopkins University _
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Summary

D-dimensional generalized unitarity...

... Is a robust and transparent method to calculate 1-loop corrections
... basic ingredients are on-shell tree amplitudes

... Is ready for phenomenology

Top quark pair production

flexible MC program for NLO ¢t production and NLO leptonic decay

... accounts for all spin correlations

... Interesting distributions sensitive to spin correlations

Markus Schulze, Johns Hopkins University _
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Extras



Giele, Kunszt, Melnikov
JHEP 0804:049,2008.

arXiv:0801.2237 [hep-ph]

dimensional space time, the number of spin eigenstates changes. For example, massless spin-
one particles in D, dimensions have Dy — 2 spin eigenstates while spinors in D, dimensions
have 2(Ps=2)/2 gpin eigenstates. In the latter case, D, should be even.

The spin density matrix for a massless spin-one particle with momentum [ and polariza-

tion vectors eEf) is given by

- Luby + byl
Y et = —gf + 2L, )
i=1

where b, is an arbitrary light-cone gauge vector associated with a particular choice of po-
larization vectors. Similarly, the spin density matrix for a fermion with momentum [/ and

mass m is given by

92(Ds—2)/2 D
Z WD (0@ (1) = J+m = Zlu’y" +m. (6)
i=1 p=1

While, as we see from these examples, the number of spin eigenstates depends explicitly on
the space-time dimensionality, the loop-momentum [ itself has implicit D-dependence. We
can define the loop momentum as a D-dimensional vector, with the requirement D < D; [35].
We now extend the notion of dimensional dependence of the one-loop scattering amplitude

in Eq. (@) by taking the sources of all unobserved particles in D,-dimensional space-time

D (Ds) (L, .
Aw,py({pi}. {1i}) :/i(i)DZ/QN dl(d{f.z?jc{iiz},l). .

The numerator function N'P9)({p;},{J;};1) depends explicitly on D, through the number

of spin eigenstates of virtual particles. However, the dependence of the numerator function
on the loop momentum dimensionality D emerges in a peculiar way. Since external particles
are kept in four dimensions, the dependence of the numerator function on D — 4 components

of the loop momentum [ appears only through its dependence on [2. Specifically
. - D
P=T-P=B-0-8B-8B-)8, (8)
i=5

where [ and { denote four- and (D—4)-dimensional components of the vector [. It is apparent
from Eq. ([B) that there is no preferred direction in the (D — 4)-dimensional subspace of the
D-dimensional loop momentum space.

A simple, but important observation is that in one-loop calculations, the dependence of

scattering amplitudes on Dy is linear. This happens because, for such dependence to appear,
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we need to have a closed loop of contracted metric tensors and/or Dirac matrices coming
from vertices and propagators. Since only a single loop can appear in one-loop calculations,
we find

NP1 = No(l) + (Ds — AN (1). 9)

We emphasize that there is no explicit dependence on either Dy or D in functions N .
For numerical calculations we need to separate the two functions Ny;. To do so, we
compute the left hand side of Eq. (@) for Dy = Dy and Dy = D, and, after taking appropriate

linear combinations, obtain
N (l) — (DZ 7 4)N(Dl)(l) — (Dl 7 4)N(D2)(l)
0 l)2 _ D1 ’

_ NI - NP
- D,—D,

Ni(1) (10)

Because both D; and D, are integers, amplitudes are numerically well-defined. We will
comment more on possible choices of D, in the forthcoming sections; here suffice it to say
that if fermions are present in the loop, we have to choose even D; and Ds.

Having established the D,-dependence of the amplitude, we discuss analytic continuation
for sources of unobserved particles. We can interpolate D; either to Dy — 4—2¢ (the t"Hooft-
Veltman (HV) scheme) ‘j] or to Dy — 4 (the four-dimensional helicity (FDH) scheme) [35].
The latter scheme is of particular interest in supersymmetric (SUSY) calculations since all
SUSY Ward identities are preserved. We see from Eq. [@) that the difference between the
two schemes is simply —2eN;.

We now substitute Eq.( Q) into Eq. (). Upon doing so, we obtain explicit expressions
for one-loop amplitudes in HV and FDH schemes. We derive

l)2 — 4 D1 —4
A7 = (5 ) Avera = (3,5, Ao

AHV _ FDH _ < 2¢

m) (A(p,p,=p1) = Ap,p.=D2)) - (11)
We emphasize that Dy = D; 5 amplitudes on the r.h.s. of Eq. ([[T]) are conventional one-loop
scattering amplitudes whose numerator functions are computed in higher-dimensional space-
time, i.e. all internal metric tensors and Dirac gamma matrices are in integer Dy = D

dimensions. The loop integration is in D < D, dimensions. It is important that explicit de-

pendence on the regularization parameter e = (4 — D)/2 is not present in these amplitudes.
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function. Hence the integrand of the N-particle amplitude in Eq. () can be parameterized

as
—(Dg —=(Ds)
N@) (1) _ %) + iy igisi (1)
d1d2 e dN fixfin] dil digdi3di4di5 e di1di2di3di4
_(Ds) ( S) —(Ds)
220 (1) 5 (1) aP) (1)
+ 111213 1102 + 11 . 13
Z dil dizdi3 11 ( )

L. ) 7
[ialia] "

[i1 i3] [i1]ia]
where the dependence on the external momenta and sources are suppressed. From four-
dimensional unitarity we know that computation of each cut of the scattering amplitude is
simplified if convenient parameterization of the residue is chosen. We now discuss how these

parameterizations change when D -dimensional unitarity cuts are considered.

A. Pentuple residue

To calculate the pentuple residue, we choose momentum [ such that five inverse propa-

gators in Eq. ([3) vanish. We define

(Ds) [
(D) - N ))
€ Litkmn) = ReSiipmn | ——= | . 14
z;kmn( Jk ) Jk <d1 .. dN ( )
The momentum l;ji,,, satisfies the following set of equations d;(lijxmn) = -+ = dn(lijemn) =

0. The solution is given by

—VZ+m?
lemn - ‘/5M + a5 . 4+ a (Z ahnh) ) (15)
D

where m,, is the mass in the propagator d,, which is chosen to be as d,, = I>—m?2 by adjusting
the reference vector gy. The parameters ay, can be chosen freely. The four-dimensional vector
V¥ depends only on external momenta and propagator masses. It is explicitly constructed
using the Vermaseren-van Neerven basis as outlined in Ref. [24]. The D — 4 components
of the vector l;jxmy are necessarily non-vanishing; for simplicity we may choose l;jxm, to be
five-dimensional, independent of Dy. We will see below that this is sufficient to determine
pentuple residue.

To restrict the functional form of the pentuple residue ;g (1) we apply the same reason-

ing as in four-dimensional unitarity case, supplemented with the requirement that _fj,jn)m(l)
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depends only on even powers of s,; this requirement is a necessary consequence of the discus-
sion around Eq. (B). These considerations lead to the conclusion that the pentuple residue

is independent of the loop momentum

e (1) = elhe ), (16)

ijkmn zjkmn
To calculate e in the FDH scheme, we employ Eq. (I@) and obtain
Dy, —4 NPI(]) D, —4 NP2)(])
o _ [ D2=d N p o (NTEON Pz A g (MDY gy
ezjkmn <D2 — D1> €Sijkmn <d1 S dN) <D2 — D1> OSijkmn <d1 - dN> ( )

The calculation of the residues of the amplitude on the r.h.s. of Eq. (1), is simplified by

their factorization into products of tree amplitudes
NPs)(
Resijkmn( ) > MU pists - -0y —b) X MU pists - ki —lk) - (18)
XM(lk;pk+la ceyPmy — m) X M( ms Pm+1s - - -5 Pns _ln) X M(ln;pn-‘rl---api; _ll)

Here, the summation is over all different quantum numbers of the cut lines. In particular, we
have to sum over polarization vectors of the cut lines. This generates explicit Dy dependence
of the residue, as described in the previous section. Note that the complex momenta I}’ =

" + g}, are on-shell due to the unitarity constraint d, = 0.

B. Quadrupole residue

The construction of the quadrupole residue follows the discussion of the previous subsec-

tion and generalizes the four-dimensional case studied in |23, [24]. We define
(P:(0)
=(Ds) N(Ds)(l) iviziziai
a2 (1) = Resjipn | ———2 _ Civigigiais , 19
zgkn() CSijk dldN d d d d d ( )

[i1]5]
where the last term in the r.h.s. is the necessary subtraction of the pentuple cut contribution.
We now specialize to the FDH scheme. In this case, the most general parameterization of

the quadrupole cut is given by

—FDH
dijkn (l) =d; o)

o +d%) s1)s?+d%) s (20)

zgkn e’

(1) (2)
+ dzgknsl + (dz_ﬂm ijkn

where s; = [ - n;. We used the fact that, in renormalizable quantum field theories, the

highest rank of a tensor integral that may contribute to a quadrupole residue is four and
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find

/‘dW s _ Dot

(iW)D/Q dildizdigdi4 2 11121314

/ aPy e _(D=2D-4) 5, "
(iW)D/Q dildizdi3di4 4 18983647

/ 'le L = *(D —4) 122,
(ZW)D/Q di1di2di3 2 18213

/ dPi 52 B 7(D—4)1D+2
(iﬂ-)D/Z di1diz 2 112

Using Eq. (26]), we arrive at the following representation of the scattering amplitude

Ay = § : ei1i2i3i4i5 ilizisim

[d1]i5]

(0) (D) D —4 5 (p+2) , (D —4)(D—2) (D+4)
+ Z <d11i2i3i4 ]i1i2i324 dzlzgmm 121222324 + f di1i2i3i4 ]i1i2i3i4
[i1]ia]
© o D=4 me
+ Z ( 112213 212223 T ilizig Iiligig >
[i1]i3]
0 ;o) _D=4,0) (Dt (0) 7(D)
+ Z ( 1172 ]1112 2 blllz 11112 ) + Za I : (27)
[i1]i2] i1=1

We emphasize that the explicit D-dependence on the r.h.s. of Eq. (27) is the consequence
of our choice of the basis for master integrals in Eq. (26]).

We note that the above decomposition is valid for any value of D. We can now inter-
polate the loop integration dimension D to D — 4 — 2¢. The extended basis of master
integrals that we employ provides a clear separation between cut-constructible and rational
parts of the amplitude. The cut-constructible part is given by the integrals in D-dimensions
in Eq. (27), while the rational part is given by the integrals in D + 2 and D + 4 dimen-
sions. However, it is possible to use smaller basis of master integrals by rewriting integrals

D+4) p(D+2) 7(D+2) 7(D+2)y - (D) (D)
{Imm“,1“222314,12”223 i, ) in terms of {100 L ZlZ2} using the integration-by-

parts techniques.

Since we are interested in NLO computations, we only need to consider the limit e — 0
in Eq. (27) and neglect contributions of order e. This leads to certain simplifications. First,
in this limit, we can re-write the scalar 5-point master integral as a linear combination of

four-point master integrals up to O(e) terms. If we employ this fact in Eq. Z1), we obtain

; (0) (0)  j4-2¢)
DEEQE Z Ciy--is “ Z5+ Zd” i ’1 24 Zdll “ig z1 “iq +O() (28)

[i1]is] [i1]ia] [i1]44]
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pp — tt + X pp — tt +jet + X
partonic channels: LO + 1-loop: 99,49 LO + 1-loop: 99,49, 99, 99
1-loop topologies: | 0 — ttgg 0 — ttqq 0 — ttggg 0 — ttqgg
diagrams: 31 10 354 94
primitive ampl.: 8 5 36 18
evaluation time 3.5 10-4
/prim.ampl./helicity " Msec -40 msec
[Intel Xeon 2.8GHz]

0 — ttgggg : =300 msec
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tt + jet:

Numerical stability:

tt: < no stability issues
» checked threshold effects

Al loop/Asoft

« switch to quadruple precision if necessary
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