
  

Generalized unitarity and W+3 jet production at 
the Tevatron

Kirill Melnikov

Johns Hopkins University 

Based  on collaboration with K. Ellis, W. Giele, Z.Kunszt, 
G. Zanderighi

Fermilab, July  2nd, 2009



  

Outline

● Introduction

● Review of generalized D-dimensional unitarity

● Implementation

● W+3 jets at the Tevatron

● Conclusions 



  

Introduction

● New Physics is naturally searched for in hard collisions

● Hard collisions are well described by perturbative QCD

● Leading order computations typically do a good job provided that sensible 
choices of factorization and renormalization scales are made

● Reasonably accurate predictions emerge with next-to-leading order 
computations since 

● ``correct''  scales are dynamically generated   

●  final states are relatively realistic

● NLO QCD predictions are indeed employed  where available, for 
comparison with data. Typically, for hard processes, they describe data 
excellently



  

Introduction

● NLO QCD predictions are unavailable for many processes  of interest

● For example, production of electroweak gauge bosons (Z,W) and 3 and 4 
jets is measured at the Tevatron but NLO QCD predictions to those 
processes are unknown (except, since recently,  for W+3 jet)

● There is a sharp cut-off

● processes with less than three particles in the final state are relatively 
easy

● processes with more than three particles in the final state are  very 
difficult

● However, it is  very useful to have NLO QCD description of high-multiplicity 
final states because 

● multi-particle final states become more abundant  at the LHC

● such final states are backgrounds to generic BSM searches 

● NLO QCD corrections are more relevant for high multiplicities



  

Introduction

● A typical  NLO computation consists of two parts 

● one-loop virtual corrections 

● real emission corrections

● At the level of 2 -> 4 and higher-multiplicity processes,  both of these parts 
are difficult. Indeed, for 2  -> 4

● one-loop corrections include high-rank one-loop six-point functions

● real emission corrections require 2-> 5 tree-level computations. Such 
computations  approach the limit of complexity that  dedicated tree-level 
integrators (Alpgen, Amegic, Madgraph) can handle

● In recent years,  a breakthrough occurred in understanding of how one-loop 
corrections to multi-particle processes can be computed. Two parallel 
developments 

● optimization of traditional Passarino-Veltman reduction techniques

●  development of new computational methods related to unitarity



  

Introduction

● Any one-loop amplitude can be written as a linear combination of (known) 
scalar integrals.   We require reduction coefficients.                                         
                                                                                                                            
                   

● Key observations 

● unitarity constrains reduction coefficients

● tree amplitudes are involved in the constraint                                              
                                                                                                                      
                                                                                                                      
                                                                                                                      
                                                       

● It turns out that such  equations can be used very efficiently to find all 
reduction coefficients



  

Introduction

● Unitarity as a tool for generic one-loop computations was introduced  about 
15 years ago. Here is brief historical summary

● Bern, Dixon and Kosower (BDK) have been advocating  importance  of 
unitarity for one-loop computations; they demonstrated its usefulness  by 
computing one-loop matrix elements for Z(W)+2 jets and for 5-parton 
scattering in QCD

● The computational method emerged in the past three years

– quadrupole cuts freeze loop momentum and give box coefficients 
directly (Cachazo, Britto, Feng)

– Ossola-Pittau-Papadopoulos (OPP)  tensor integral reduction 
technique

– The OPP procedure  meshes well with unitarity  (Ellis, Kunszt, Giele)

– D-dimensional unitarity (Giele, Kunszt, K.M.)



  

OPP reduction

● OPP  suggested an interesting method to reduce tensor integrals to 
scalar integrals for a one-loop  N-point function



  

OPP reduction

● Rules for writing down the reduction coefficients are simple.  Consider c(k) 
which appears in the reduction to a three-point function

● A three-point function is described by two external momenta; those 
momenta define a two-dimensional subspace of a 4-dim space                       
                                                                                                                            
                

● The loop momentum k is split accordingly                 

● Then c(k) = c0 + all possible traceless tensors, up to rank 3, defined on   

● Note that 

● highest rank of a contributing tensor is fixed by the fact that we deal with 
renormalizable theory

● traceless-ness is required because otherwise numerator function can be 
reduced further



  

OPP reduction
● Consider reduction of a two-point function as an example
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OPP reduction
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OPP reduction
● Consider a reduction of a two-point function as an example



  

OPP reduction
● We conclude that

● We compute                                                                                          

by  averaging over directions of      . Then  both                       do not 
contribute.

● Hence

 

● The easiest way to compute                              is to choose     such that both 
         vanish since this automatically removes all the tadpole terms 

● Such loop momentum can always be found if complex values of k are 
allowed

   



  

OPP reduction

● This procedure is very general 

● reduction coefficients d(k), c(k),b(k), a(k)  can be decomposed  into 
irreducible representations of rotation group in their  particular  (1-dim, 2-
dim, 3-dim,4-dim) transverse spaces

● since tensors are traceless, integrals over directions of the loop 
momenta vanish; hence  ``spin zero'' , k-independent components of  
d(k), c(k), b(k), a(k) are  the  reduction coefficients

● solutions are projected on a particular  master integral  by choosing 
momentum  k in a way that  a particular combination of inverse 
propagators vanishes.  All possible combinations of inverse propagators 
should be considered to project on all possible master integrals.

● construction is iterative: we first compute d(k), then c(k), etc.



  

Generalized unitarity

● OPP procedure applied to full one-loop amplitudes rather than Feynman 
integrals leads to unitarity. Indeed, any one-loop amplitude can be written as 
                                                                                                                            
                                                                                                                            
                                                                                                                            
                                                         

● We express  this amplitude as a linear combination of master integrals and 
find reduction coefficients  following the OPP procedure

● The OPP procedure determines reduction coefficient from a set of loop 
momenta for  which certain combinations of inverse Feynman propagators  
vanish. If this happens,  certain (virtual) particles go  on their mass shells 
and the one-loop amplitude factorizes into products of tree amplitudes            
                                                                                                                            
         

● These amplitudes are entirely conventional but, as a rule, have to be 
evaluated at complex on-shell momenta



  

Generalized unitarity 

● If we use four-dimensional loop momentum to calculate cuts and on-shell 
conditions we  obtain the cut-constructible part of the amplitude

● The neglected part is known as the rational part 

● A general  approach for calculating the rational part is based on numerical 
implementation of exact D-dimensional unitarity.  It is  independent  of 
theoretical details such as  particle's flavors, masses etc.

● The question is how to implement D-dimensional unitarity numerically. This 
is a valid question since  conventional dimensional regularization requires 
working in D=4-2e space, and taking e->0 at the end of the calculation;  it is 
hard to imagine how this can be implemented in a numerical program.



  

Generalized unitarity
● We find that for one-loop computations conventional dimensional 

regularization is equivalent to the following construction

● consider quantum field theory (QCD, EW, etc.) in integer Ds-dimensional 
space,   Ds > 4. 

● allow all external particles to propagate in  a 4-dimensional space 
embedded into  Ds-dimensional space

● allow loop momentum to have support on the 5-dimensional space 
embedded in  Ds-dimensional space. The 4-dimensional space, where 
external particles live,  is a subspace of the 5-dimensional loop 
momentum space

● We find that  knowledge of tree-level S-matrix for Ds=8 and Ds=6 and for 
complex on-shell momenta is sufficient to completely reconstruct any one-
loop amplitude in any renormalizable four-dimensional quantum field theory

● Since calculations  in integer-dimensional spaces are required, everryting is 
very similar to conventional 4-dimensional computations

● Important building blocks for efficient computations of on-shell scattering 
amplitudes such as Berends-Giele recurrence relations, are continued to D 
> 4 in a straightforward way



  

Implementation 

● Here is how it works                                                                                           
  

● employ  color decomposition to have                                                  
external particles ordered                                                                             
                  

● specify all possible cuts (a cut is a collection of propagators that may 
vanish simultaneously) by examining the highest level integral that 
contributes to a given process/color ordering

● each cut produces sums of products of tree amplitudes that can               
 be computed for arbitrary D, Ds  and complex momenta

● from that, coefficients of master integrals are reconstructed



  

Implementation

● A number of attempts to employ unitarity and OPP ideas for one-loop 
computations (Blackhat, OPP, Lazopoulos, Giele & Winter)

●  FORTRAN 90 program Rocket

● Currently, Rocket can compute the following one-loop amplitudes

● N-gluon scattering amplitudes

● two quark (massless and massive)+ N-gluon scattering amplitudes

● W boson + two quarks + N-gluons 

● W boson + four quarks + 1 gluon

● tt+Ngluons, ttqq+N gluons (Schulze)

● Rocket was interfaced with MCFM to compute W +3 jet production cross-
section at the Tevatron

  



  

W+3 jet

● We would like to have a proof of concept that new methods for NLO QCD  
computations can compete with traditional methods

● We find NLO QCD corrections to W + 3 jets to be a case worth exploring 
because

● measured at the Tevatron with reasonable accuracy 

● relevant for phenomenology (background to tt, single top, Higgs 
searches, SUSY searches)

● large number (1480) of diagrams that contribute to virtual corrections

● high-rank six point functions (in fact highest rank,  studied so far)

●  all one-loop amplitudes required for this calculation are implemented in  
Rocket

NLO QCD corrections to W+3 jet at the Tevatron were also recently 
computed by Blackhat/Sherpa collaboration (Berger, Bern, Febres 
Cordero, Dixon, Forde, Ita, Kosower, Maitre / Gleisberg)



  

W+jets
● CDF performed careful studies of W+jet production  

● Measurements are compared with theoretical predictions that include

● ALPGEN interfaced with parton showers (MLM, etc.) 

● SHERPA

● NLO QCD results for W+1 and W+2 jets (MCFM)

● General conclusion is that everything works, but NLO QCD predictions work 
best. No NLO QCD results for W+3 jets and  W+4jets were/are available



  

 W+jets

● CDF measures transverse energy distributions of the three hardest jets and 
compares this with theoretical predictions 

● Such a comparison is helpful for understanding how well tree-level matrix 
elements matched to parton showers  model                                                    
hardest, next-to-hardest, etc. parton                                                        
emissions

● An obvious conclusion from the comparison                                                     
is that NLO QCD describes emissions of up                                                     
to two partons very well, including region of                                                      
relatively low transverse momentum                                                                  
              

● Somewhat surprising is that matrix elements                                                  
+ parton showers underestimate data at low                                                 
transverse momentum                                                         

● All this suggests that NLO QCD description                                                      
 of W+3 jets and W+4 jets is a way to go



  

W+3 jets

● I focus now on W+3 jets

● The total inclusive cross-section (W+ and W-, electron decay mode, pb)         
                                                                                                                            
                                                                                                                            
                              

● Jets are defined using JETCLU cone algorithm. This algorithm is not infra-
red safe; we can use it for LO QCD computations but not for NLO 
computations

● It is not clear which IR safe jet algorithm would best correspond to JETCLU, 
and differences between different jet algorithms at the level of ten to fifteen 
percent are typical

● Given experimental uncertainty and jet algorithm mismatch, theoretical 
prediction at the level of 10 to 20 percent accuracy is a sensible goal but 
higher precision is harder to justify 

● Of course, reaching 10-20 percent requires NLO QCD since theory 
uncertainty at LO is close to a factor 3



  

W+3 jets
● At 10-20 percent precision level, we can simplify the problem by working at 

leading color approximation                                                                    

● Studies at leading order show that this approximation overestimates the full 
result by about ten percent.  This ``ten percent overestimate''  seems to be 
very robust – it does not depend on choices of scales, choices of 
observables, etc.   Therefore, we can take our next-to-leading order result 
and re-weight it by the leading order full color to leading color ratio 

● Other comments

●  virtual corrections are computed  on a fixed grid

● leading color approximation and symmetry of phase-space is used to 
reduce the number of independent structures that need to be computed

● symmetrization requires a modification of Catani-Seymour dipole 
subtraction procedure

● calculations are performed for three dynamical  scales  with the     
central value 

● we use SIScone and anti-kt jet algorithm, on-shell W-bosons, CKM 
matrix is set to unity

 



  

W+3 jets

● Predictions for total cross-section become much more accurate at NLO

LO uncertainty is a factor 2.5, NLO uncertainty is about 20 percent

Difference between SIScone and anti-kt is 20 percent at LO and 10 
percent at NLO



  

W+3 jets

● Kinematic distributions 

Characteristic change in shape of transverse energy distributions – NLO 
results are smaller than LO at high transverse energy  and (may be) 
larger than LO results for low transverse energy



  

W+3 jets
● To understand this recall that the leading order predictions are computed 

with the renormalization/factorization scale 

● Typical transverse momentum of the W-boson is 40-80 GeV; it is rarely 
produced with  a much higher transverse momentum

● Parton emissions are governed by the strong coupling constant at the scale 
of the relative transverse momentum of parton branchings  

● when jets are hard, transverse momentum of the W is smaller than jet 
momenta → leading order prediction is systematically higher;

● when jets are soft, it is the other way around and LO predictions are 
smaller  

● If the computation is performed at fixed, non-dynamical scale, the same 
effect should and does occur

● Good  choice of scale for leading order computations should increase like 
transverse momentum of jets in the region of high 

● Bauer and Lange analyzed W +n jets final state using SCET focusing on 
transverse energy and transverse mass  distributions.                                     
They suggest to use

 



  

W+3 jets
● However, we should keep in mind that ``good scale'' depends on an 

observable we look at; for example  

● as already mentioned, NLO transverse momentum distribution of the 
softest jet  at low        may  exceed the LO result computed with fixed or 
dynamical scale

● lepton rapidity distribution does not exhibit significant shape changes  
variations  



  

Conclusions

● Generalized D-dimensional unitarity is a  robust method for one-loop 
computations; it builds up complete one-loop amplitudes from on-shell tree-
level amplitudes 

● Very general method; applicable to massless and massive scattering 
amplitudes

● I described how D-dim unitarity can be used to compute NLO QCD 
corrections to W+3 jet production at the Tevatron. We use leading color 
approximation. We observe

● substantial reduction in scale dependence at NLO QCD 

● instructive  shape changes in  NLO distributions compared to LO 
distributions; seem to imply negative corrections at high  transverse 
momenta relative to LO predictions with fixed scale

● these shape changes suggest better scale choices in leading order 
computations 

● Ten percent difference between different IR-safe jet algorithms at NLO; for 
better theory/experiment comparison, identical jet algorithms should be used 
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