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๏ The CMS experiment is one of the two general purpose experiments collecting data  
at the CERN LHC.

The CMS experiment

3



Rafael Coelho Lopes de Sá Wine & Cheese

2016: a wonderful year (for the LHC)

๏ The LHC just ended the 2016 proton-proton collisions with record integrated 
luminosity delivered to CMS and ATLAS (over 41fb-1)

๏ CMS recording efficiency is ~92% (over 37fb-1)

๏ The results presented here use the data since 2011 up to the first 12.9fb-1 
from 2016.
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Why study massive boson interactions?

๏ One of the main goals of the LHC is to study the mechanism of Electroweak 
Spontaneous Symmetry Breaking. 

๏ This process determines particle content of the Standard Model:

๏ The dynamics of massive bosons is a window into the physics of spontaneous 
symmetry breaking.

๏ New Physics associated to Electroweak Symmetry Breaking could alter the 
dynamics of the Higgs, W and Z bosons.
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๏ Traditionally, there have been two ways to study the physics of massive bosons:

๏ Searches for new particles decaying to massive bosons:

๏  New resonances decaying to dibosons.

๏  New particles decaying to vector bosons in association with other particles

๏ Searches for anomalous diboson production:

๏  Fiducial and differential measurements

๏  Pseudo-observables measurements

๏ First we need to establish that we can measure these final states with very high 
precision.

The two roads
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13 TeV diboson cross section measurements

๏ Diboson cross sections have been measured at the LHC at 7, 8, and 13 TeV

๏ Today we show recent results of WW, WZ, and ZZ cross sections at 13 TeV

๏ These measurements are limited by the small integrated luminosity collected in 
2015. The measurements with 2016 data will be dominated by systematic 
uncertainties.
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๏ Measurement performed in the fully leptonic WW→eνμν channel selecting events 
with a low number of jets.

WW cross section measurement at 13 TeV
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pT(e,μ) > 20 GeV
|η(e/μ)| < 2.5/2.4
m(eμ) > 12 GeV
pT(eμ) > 30 GeV
ETmiss > 20 GeV
min(proj ETmiss, proj track ETmiss) > 20 GeV
0 b-quark jets with pT > 20 GeV, |η| < 2.4
0 or 1 jet with pT > 30 GeV, |η| < 4.7

SM NNLO prediction: 120.3±3.0 pb 
[ Phys. Rev. Lett. 113 (2014) 21201 and Phys. Lett. B754 (2016) 275-280]
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WZ cross section measurement at 13 TeV

๏ Also performed in the fully leptonic channel WZ → 3ℓν

๏ Requires m(3ℓ) > 100 GeV to increase purity of the signal
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m(ℓℓ') > 4 GeV
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0 b-quark jets with pT > 20 GeV, |η| < 2.4  (GeV)

miss
Tl+E

Tm

Ev
en

ts
 / 

10
 G

eV

0

10

20

30

40

50

60

70
Data
WZ
ZZ
VVV
γZ
Vtt

Nonprompt

 (13 TeV)-12.3 fb

CMS

 (GeV)
miss
Tl+E

Tm
0 20 40 60 80 100 120 140 160 180 200

D
at

a 
/ M

C

0.5
1

1.5

Non-prompt 
backgrounds from 

data CR

SM NNLO prediction: 50.0+1.1-1.0 pb [MATRIX code]

60 < mZ < 120 GeV
W→ℓν and Z→ℓℓ BRs from PDG

Inclusive cross section 



Rafael Coelho Lopes de Sá Wine & Cheese

๏ Fully reconstructed final state ZZ→2ℓ2ℓ'

๏ The measurement is basically background-free.

Resonant Z->2ℓ2ℓ’:
80 < m(2ℓ2ℓ’) < 100 GeV

ZZ cross section measurement at 13 TeV
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pT(leading) > 20 GeV
pT(subleading) > 10 GeV
pT(e/μ) > 7/5 GeV
|η(e/μ)| < 2.5/2.4
∆R(ℓ,ℓ)>0.02, ∆R(e,μ)>0.05
40 < mZ1(ℓ,ℓ) < 120 GeV 
mZ2(ℓ’,ℓ') < 120 GeV

Non-resonant ZZ->2ℓ2ℓ’:
60 < mZ1 < 120 GeV
60 < mZ2 < 120 GeV

m4ℓ 

m4ℓ 

SM NNLO prediction for inclusive cross section: 
16.2+0.6-0.4 fb [MATRIX code]

60 < mZ < 120 GeV
Z→ℓℓ BRs from PDG

Inclusive cross section 
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Summary of recent cross section measurements
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theoσ / expσProduction Cross Section Ratio:   
0.5 1 1.5 2

CMS PreliminaryJune 2016

All results at:
http://cern.ch/go/pNj7

γγ  0.12± 0.01 ±1.06 -15.0 fb
(NLO th.), γW  0.13± 0.03 ±1.16 -15.0 fb

(NLO th.), γZ  0.05± 0.01 ±0.98 -15.0 fb
(NLO th.), γZ  0.05± 0.01 ±0.98 -119.5 fb

WW+WZ  0.14± 0.13 ±1.01 -14.9 fb
WW  0.09± 0.04 ±1.07 -14.9 fb
WW  0.08± 0.02 ±1.00 -119.4 fb
WW  0.08± 0.05 ±0.96 -12.3 fb
WZ  0.06± 0.07 ±1.08 -14.9 fb
WZ  0.07± 0.03 ±1.04 -119.6 fb
WZ  0.07± 0.07 ±0.82 -12.3 fb
ZZ  0.07± 0.13 ±0.97 -14.9 fb
ZZ  0.08± 0.06 ±0.97 -119.6 fb
ZZ  0.04± 0.11 ±0.88 -12.6 fb

7 TeV CMS measurement (stat,stat+sys) 
8 TeV CMS measurement (stat,stat+sys) 
13 TeV CMS measurement (stat,stat+sys) 

CMS measurements
 theory(NLO)vs. NNLO 
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๏ Recent searches have been performed for new resonances decaying to dibosons in 
the WW, WZ, and ZZ final states.

๏ Since we are looking for rare new phenomena, these searches benefit from using 
final states in which at least one W or Z decays hadronically.

Searches for diboson resonances
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The standard CMS jet 
reconstruction uses an anti-kT 

algorithm with R=0.4

For a new particle with 
mX~1TeV → ∆Rqq~0.4

Since we wouldn’t be able distinguish 
the two jets, we do the opposite: we 

reconstruct jets with R=0.8 to contain 
the full decay (fat jet)
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Identifying W and Z bosons in hadronic decays
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Pruning removes particles 
consistent with soft and large 
angle radiation from the jet 

constituents → improves mass 
resolution

Jet Mass

N-Subjetiness

Variable 
measures how 

well the 
constituents are 
aligned with 2 

momentum axes

W boson QCD Jet
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Search for X → Z(→ℓℓ)V(→qq)
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An overview of the current situation
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Excited quarks

t* → tg S=3/2

t* → tg S=1/2

b* → tW KL=1

b* → tW KR=1

b* → tW k=k=1

Observed limit 95%CL (TeV)
0 0.4 0.8 1.2 1.6 2

Vector-like quark single production                                                                                                                              

T → tH cWb)=1.5

T → tH cZt=2.5

T → tH cWb=1.5

T → tH cZt=2.5

T → tZ cWb=1.5

T → tZ c(Zt)=1.5

B → bZ c(Wt)=1.5
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Y→ tH c(Wb)=1.0

Observed limit 95%CL (TeV)
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B → bZ 

B → tW 
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T → bW 

Observed limit 95%CL (TeV)
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CMS has performed a 
very large number of 
searches in diboson 
final states (VV, VH, 
HH, Vγ, γγ, …)

Some fluctuations 
drew a lot of attention!

But no observation was 
convincingly consistent with 
a new particle directly 
produced at the LHC
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Where do we go from now?

๏ From now on, the LHC will start collecting much more integrated luminosity but 
the energy will not surpass 14 TeV

๏ If no New Physics is discovered directly, how can we best use the LHC data to 
discover physics at very large scales?

17

It is possible to learn 
about particles that are 
not directly observable.
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The EFT approach to New Physics
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๏ Any Beyond Standard Model physics can be thought of as modifications of 
the interactions containing only SM fields

๏ How to determine the hierarchy between the modifications and classify 
all possible modifications?

๏ How to enforce the SU(3)xSU(2)xU(1) symmetry at low energies?

๏ How to derive a self-consistent check of this approach?

๏ How to calculate higher-order (loop) corrections?

๏ If we can answer yes to all these questions: SM test → New Physics Search

W± 

Fermi four-
fermion theorySM model
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ψ

ψ

ψ ψ ψ

ψ ψ

W+ 

W- 
ψ

ψ
W+ 

W- 

ψ
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X

Any beyond SM 
theory

Interactions with 
only SM fields
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Hierarchy: The SM Effective Field Theory
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W± 

ψ

ψ

ψ

ψ ψ ψ

ψ ψ

D=4 D=4

The SU(2)xU(1) symmetry at low 
energy relates the effect of the 
operators in different channels

All terms written with SU(2)xU(1) 
covariant fields and derivatives. 

Preserve symmetry.

D=6

Classify the effect of any beyond SM 
model using operators with D > 4

For large scales E/Λ ≪ 1, only operators 
with lower mass dimension will matter.
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Classification : the curse of dimensionality
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๏ 14 operators, 18 parameters

๏ 1 operator, 7 parameters

๏ 59 operators, 2499 parameters [arXiv:1312.2014]

๏ 4 operators, 408 parameters (all violate B number) [arXiv:1405.0486]

๏ 30 operators (all violate L number, 7 violate B number) [arXiv:1410.4193]

๏ 993 operators [arXiv:1510.00372]

The 2499 parameters in D=6 can be reduced to a bit more than 50 assuming 
flavor symmetry and CP conservation

Existing measurements are limited to 2 operators. We can do better!
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Self-consistency checks
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Since dibosons processes 
can have very high energy, 
we can easily go outside 
the validity region of the 

EFT approach. 

One proposal that we are pursuing is to 
explicitly remove very high energy 

events from the observable used to 
measure the EFT operators (similar to 

unitarization methods used in the past)

Toy example with W+H events
[plots from arXiv:1604.06444]
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๏ With the full SMEFT approach, we (experimentalists) can provide these tests and 
design measurements that will satisfy them.

๏ Provide results as a function of both the scale Λ and the coupling constant g* 
assuming the naive scaling

๏ Provide results removing high energy events (compared to the scale) from the 
the measurements.

๏ Provide results including only the interference between Standard Model and 
higher dimensional operators

22

Self-consistency checks

More important in 
weakly coupled theoriesMore important in strongly 

coupled theories

ni: number of SM fields
Allow to interpolate between 
limits for strongly and weakly 

coupled theories
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๏ No measurement available performed self-consistency checks, but some 
independent papers have considered our WW result.

๏ Today we will review the the EFT analysis of the WW and WZ cross section 
measurements at 8 TeV and some self-consistency checks performed by other 
authors.

Anomalous diboson production at CMS

๏ CMS has a large number of 
searches for anomalous 
production of diboson events.

๏ Almost all of these 
measurements use the 
language of Anomalous 
Couplings, without any 
comment on the hierarchy or 
on the classification of the 
modifications. The SMEFT 
analysis of the WW cross 
section is an exception.
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WW cross section at 8 TeV
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4.4 Comparison with Experimental Results

Even though both ATLAS and CMS experiments present their measurements as the inclusive

pp ! W+W� cross section, we have seen that the jet-veto e�ciencies they use to extrapolate

from the measured jet-veto cross sections to the quoted inclusive cross sections su↵er from the

large logarithms that are not properly resummed by the MC+PS generators. Since both what

they actually measured and what we calculated from SCET are the jet-veto cross section, not the

inclusive cross section, we first must undo the jet-veto e�ciencies from the inclusive cross sections

quoted by the ATLAS and CMS collaborations:

�veto
WW

= �
WW

⇥ ✏veto
WW

. (4.4)

To estimate the jet-veto e�ciency in W+W� production, both ATLAS and CMS experiments

rely on MC+PS simulations (will simply be referred to as “MC” from now on), with a data-to-

MC correction factor measured from Drell-Yan process in the Z peak region, so that the jet-veto

37

pT(ℓ) > 20 GeV
|η(e/μ)| < 2.5/2.4
MET > 20 GeV
pT(ℓℓ) > 30/45 GeV (different/same flavor)
m(ℓℓ)> 12 GeV 
|m(ℓℓ) - mZ| > 15 (same flavor only)
DY MVA veto (same flavor only)
min(projMET, projTkMET) > 20 GeV
Top-quark veto (b-quark jets + soft muons)
0 or 1 jet (pT > 30, |η| < 4.7)

Top quark, Drell 
Yan and non-

prompt 
backgrounds 
measured in 

data CR.
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WW cross section at 8 TeV

25

SM NNLO prediction: 59.8+1.3-1.1 pb [ Phys. Rev. Lett. 113 (2014) 212001 ]
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Variable Di↵erent-flavor Same-flavor
q`1 ⇥ q`2 < 0 < 0
p`T [GeV] > 20 > 20
min(proj. Emiss

T , proj. track Emiss

T ) [GeV] > 20 > 20

DY MVA -
> 0.88 in 0-jet
(> 0.84 in 1-jet)

|m`` �mZ | [GeV] - < 15
p``T [GeV] > 30 > 45
m`` [GeV] > 12 > 12
Additional leptons (p`T > 10 GeV) veto veto
Top-quark veto applied applied

Table 1: Summary of the event selection for the di↵erent-flavor and same-flavor
final states.

Coupling constant This result This result 95% interval World average
(TeV�2) (TeV�2) (TeV�2)

cWWW /⇤2 0.1+3.2
�3.2 [�5.7, 5.9] �5.5± 4.8 (from ��)

cW /⇤2 �3.6+5.0
�4.5 [�11.4, 5.4] �3.9+3.9

�4.8 (from gZ
1

)
cB/⇤

2 �3.2+15.0
�14.5 [�29.2, 23.9] �1.7+13.6

�13.9 (from � and gZ
1

)

Event category WW production cross section (pb.)

0-jet category
Di↵erent-flavor 59.7± 1.1 (stat.)± 3.3 (exp.)± 3.5 (th.)± 1.6 (lum.)
Same-flavor 64.3± 2.1 (stat.)± 4.6 (exp.)± 4.3 (th.)± 1.7 (lum.)

1-jet category
Di↵erent-flavor 59.1± 2.8 (stat.)± 6.0 (exp.)± 6.2 (th.)± 1.6 (lum.)
Same-flavor 65.1± 5.5 (stat.)± 8.3 (exp.)± 8.0 (th.)± 1.7 (lum.)

mℓℓ pT(leading ℓ)
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SMEFT analysis of the WW measurement
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SMEFT analysis of the WW measurement
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Variable Di↵erent-flavor Same-flavor
q`1 ⇥ q`2 < 0 < 0
p`T [GeV] > 20 > 20
min(proj. Emiss

T , proj. track Emiss

T ) [GeV] > 20 > 20

DY MVA -
> 0.88 in 0-jet
(> 0.84 in 1-jet)

|m`` �mZ | [GeV] - < 15
p``T [GeV] > 30 > 45
m`` [GeV] > 12 > 12
Additional leptons (p`T > 10 GeV) veto veto
Top-quark veto applied applied

Table 1: Summary of the event selection for the di↵erent-flavor and same-flavor
final states.

Coupling constant This result This result 95% interval World average
(TeV�2) (TeV�2) (TeV�2)

cWWW /⇤2 0.1+3.2
�3.2 [�5.7, 5.9] �5.5± 4.8 (from ��)

cW /⇤2 �3.6+5.0
�4.5 [�11.4, 5.4] �3.9+3.9

�4.8 (from gZ
1

)
cB/⇤

2 �3.2+15.0
�14.5 [�29.2, 23.9] �1.7+13.6

�13.9 (from � and gZ
1

)
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For strongly coupled theories (g*~4π) that produce cWWW, the limit is Λ~1.5 TeV (@95%CL)
For strongly coupled theories (g*~4π) that produce cB, the limit is Λ~700 GeV (@95%CL)
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Inclusive WZ cross section at 7 and 8 TeV
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71 < mZ < 111 GeV
W and Z BR from PDG

Inclusive cross section 

Event selection
pT(ℓ from W) > 20 GeV
pT(leading ℓ from Z) > 20 GeV
pT(subleading ℓ from Z) > 10 GeV
|η(e/μ)| < 2.5/2.4
71 < mZ < 111 GeV
MET > 30 GeV
m(ℓℓℓ’) > 100 GeV  (@ 8 TeV only)

Non-prompt 
backgrounds 
measured in 

data CR.
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๏ Fiducial region with pT(ℓ from W) > 20 GeV, pT(leading ℓ from Z) > 20 GeV, 
pT(subleading ℓ from Z) > 10 GeV, |η(ℓ)|<2.5, and 71 < mZ < 111 GeV is used to 
measure differential cross sections.

Differential WZ cross section at 7 and 8 TeV

29
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SMEFT analysis of the WZ measurement
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Reinterpretation of the CMS WW analysis
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๏ The 2D limits can be recast imposing different limits on mWW

๏ Limits are acceptable for cuts down to         
mWW ~ 1 TeV. Below that, the EFT 
interpretation is no longer valid.

๏ This is ok for strongly coupled theories 
producing cWWW (Λ~1.5TeV), but not cB 

(Λ~700GeV).

๏ The analysis was also recast using only the 
interference (weak couplings). The limits are 
much weaker, as expected.
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Ideas for the future

๏ The idea for the future is to perform a global analysis of Higgs and diboson 
measurements at the LHC.

๏ Even though the choice of basis for the D=6 operators should be equivalent 
(up to EOM), it is relevant for how these combinations will be performed in 
practice.

32

Warsaw SILH BSM primaries

EWPO

diboson

Higgs

Partially available 
at NLO

Traditional param.
Not easy UV matching

Easy UV matching
(SUSY, Comp Higgs, …)
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Interplay between diboson and Higgs
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๏ The combined analysis will substantially increase the sensitivity to the 
coefficients of the D=6 operators in SMEFT.

๏ The idea is to provide combined limits in the (g*, Λ) plane with different 
energy cuts. We are also working towards a robust determination of the 
uncertainties associated to D=8 operators and SMEFT NLO corrections.

[plots from arXiv:1304.1151]
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Conclusions

๏ Reviewed the importance of diboson measurements to understand the Standard 
Model.

๏ Presented the most recent CMS diboson cross section measurements at 13 TeV 
using the 2015 dataset.

๏ Presented some of the most recent CMS searches for diboson resonances at 13 
TeV using the 2015 and 2016 dataset.

๏ Discussed how precision measurements can be used to search for new physics at 
scales that cannot be probed directly at the LHC.

๏ Described the SMEFT analysis performed on the 8 TeV WW and WZ cross section 
measurements and the phenomenology analysis of these measurements.

๏ Listed some future plans for measurements, including strategies to combine 
multiple channels, and self-consistency checks of the SMEFT approach in these 
measurements.

34


