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The Recent History of Discovery: An Example Search for “New” Physics
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How do we make the next discovery?
Model frameworks play a very important role 
SM has been our guide on a long road (1970’s–2010’s) 
 generation(s) of HEP physicists 
 How we’ve designed and organized our experiments 

But since 2012: 
 Is there new physics before EPlanck? (Einflation?) 
 No reliable model to drive our work 

What is beyond the Standard Model? 
 
What is most important for collider searches to do?

Mass resonances: J/Psi, upsilon, [W/]Z, […top, Higgs] 

Symmetry, 8/1/06 



SUSY as a guide?
Tempting familiarity 
 30 years of phenomenology 
 30 years of looking for it 
Nice properties 
 DM candidate (maybe) 
 “natural” (maybe) 

But these aren’t necessary and can be 
jettisoned under experimental duress 

Having a model in mind is better than 
nothing: 

a well-studied framework allows 
more systematic approaches 

but SUSY is not as predictive as SM, 
and it is far from the only possibility 

No evidence that SUSY is correct
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Conley et al. / Eur.Phys.J. C71 (2011) 1697 
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Large scale observations: cosmology and galactic 
astronomy firmly establish dark matter as fact


ΛCDM: rotation curves, CMB, simulations of galactic 
evolution, grav. lensing, … 
e.g. early CMB observations established CDM at 
>25σ (WMAP 9-year results: Ωch2=0.1138 ± 0.0045) 

Particle physics fails to explain this

Contrast with motivations based on “naturalness” 
arguments / fine tuning arguments, unification at 
the Planck scale, dark matter candidates as an 
afterthought, solutions to the problems of particle 
theorists… 

This problem deserves a big effort


WIMP paradigm: dark matter sector talks to Standard 
Model particles through some sort of ‘weak’ interaction 

received the most attention, but  
far from the only possibility

Strongest Clues about BSM Particle Physics Come From Astronomy
Clowe et al: visible mass vs dark mass

Planck
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What do we know about dark matter?

• DM exists… 
• DM is not matter described by the 

Standard Model 
• DM interacts gravitationally 
• DM is colorless & electrically neutral 
• DM is stable on very long timescales 
• DM may not be strongly self-

interacting,  
nor must it have any non-
gravitational interactions with the SM 


• ΩDM ≈ 5 ΩM 
this leaves room for the ‘dark sector’ 
to match the complexity of the SM, 
and then some 

For collider searches, we need to 
systematically explore models that fit 
these facts. 

What does?
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See also Kathryn Zurek’s colloquium 
on non-WIMP models next week
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Indirect Detection Direct Detection Colliders

11

A very general approach: assume there is an interaction between DM 
and SM, and it occurs at an ~inaccessible energy scale 

The same diagram describes DM-nucleon scattering, pp collisions,
… 

Look at low-energy behavior: a 4-fermion contact interaction with a 
single parameter M* 

If the interaction occurs through a heavy s-channel resonance,  
M*= M/√(gq gdm), 

Systematically search collider data for all renormalizable possibilities: 

DM: real/complex scalar, Majorana/Dirac fermion 

Lorentz structure: scalar, pseudo-scalar, vector, axial-vector, etc.

Complementarity and Effective Field Theory

Goodman et al. (PRD 82 116010)
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The consequences?

1. DM must be pair produced 
2. “MET+proton remnants” is indistinguishable 

from “backgrounds” 
3. We need to “tag” the collision with high pT ISR 
4. The Standard Model predicts what ISR occurs 

most often… 

➟   do a mono-jet search

q

q̄

χ

χ̄

g
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Missing Transverse Energy for EFT Signals in Monojet Analysis

Background estimation: 
Dominant background is Zvv+jets 
use transfer factors from W/Z control 
regions (see CR to the left) as data-
driven correction to MC  
(e.g. Z pT distribution) 

S. Schramm
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8 TeV Mono-jet Search: Results Eur. Phys. J. C (2015) 75:299

Achieves a total background uncertainty of 3–14%, depending on the transverse momentum; 
comes from theory (W/Z differences), CR statistics, object reconstruction unc. (jet/MET)

Leading Jet pT > 120 GeV
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8 TeV Mono-jet Result: Connecting EFT limits to Non-collider WIMP Searches
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8 TeV Mono-jet Result: Connecting EFT limits to Non-collider WIMP Searches
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Example: one CI operator

Some lessons: 
• Once the WIMP mass is below several 

hundred GeV (the scale of the cuts on MET 
and jet pT), the search is insensitive to the 
WIMP mass—can continue the ~same limit 
below 1 GeV 

• The mono-jet search is insensitive to 
differences in the CI Lorentz structure  
which matter a lot for direct-detection 
searches 

These nicely complement the non-collider 
searches
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8 TeV Mono-jet Result: Connecting EFT limits to Non-collider WIMP Searches
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Example: one CI operator

The search is probing CI scales 
at LHC-scale (and cut-scale) energies. 
It can be sensitive to the internal structure 
of the interaction… M*= M/√(gq gdm)

Truncation: ignore component of 
predicted signal cross section not 
described by CI 

but this throws away information 
unique to high-energy searches!
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Now what?
Move to a larger set of 
more complex models, 

e.g. add a single new 
“mediator” 

SM-DM interaction 
mediated by SM particles 
(heavily constrained 
except for Higgs) or an 
additional new particle

Tim Tait

But this change opens up a much richer set of possibilities

“It is the production and the role of the mediator particle(s) which is of key importance in the 
collider searches for dark sectors; the actual dark matter is a derivative.” 
—Phys. Rev. D 91, 055009 (2015)
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Revisiting the consequences

1. DM must be pair produced 
2. “MET+proton remnants” is indistinguishable 

from “backgrounds” 
3. We need to “tag” the collision with high pT ISR 
4. The Standard Model predicts what ISR occurs 

most often… 

➟   do a mono-jet search

q

q̄

χ

χ̄

g

7 TeV results: Phys.Rev. D87 (2013) 9, 095013 

In this model, mono-jet is 
nearly the only colllider 
strategy
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Revisiting the consequences

1. DM must be pair produced 
2. “MET+proton remnants” is indistinguishable 

from “backgrounds” 
3. We need to “tag” the collision with high pT ISR 
4. The Standard Model predicts what ISR occurs 

most often… 

➟   do a mono-jet search

7 TeV results: Phys.Rev. D87 (2013) 9, 095013 

In this model, mono-jet is 
nearly the only colllider 
strategy

When the event “tag” can come from the interaction rather than ISR,  
then searches beyond mono-jets become much more important
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Recent LHC Seminar at CERN: “A historic accord”

Recent Seminar at Fermilab: “A historic accord”  

EPS conference summary talk: “a Run-1 highlight”

Theory participants: a new model for theory-exp. collaboration
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Much more left to do!

See New LHC Physics Centre at CERN, 
Dark Matter Working Group 
First Workshop Announced Soon  
(2nd Week of December at CERN)
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Mono-Higgs (Diphoton): Phys. Rev. Lett. 115, 131801 (2015)
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and even more Run 1 results that I don’t have time to zoom by….
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Invisible decays of the Higgs are rare in the 
SM (ZZ→4v) 

Can constrain invisible Higgs branching 
fraction through multiple search channels 

W/Z+H 
jj H 
mono-W/Z 
mono-jet 

BRinv<0.22 yields stringent constraints on 
certain types of WIMPs 

(if Higgs is the sole SM-DM mediator, 
if mDM < mH/2, and  
if no further theory is required)

arXiv:1509.00672

Simplified Models: Higgs as the light mediator
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Run 2….
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2015 pp data-taking has just ended 
4/fb recorded (25 ns + 50 ns bunch spacing) 

Latest ATLAS public results: LHCP, 80/pb

50x this dataset being analyzed now… stay tuned!
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ATLAS Mono-X in Run 2
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Many interesting dark matter searches 
underway—a sampling of summer 
performance plots
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Remember earlier?

Move to a larger set of 
more complex models: 

SM-DM interaction 
mediated by SM particles 
(heavily constrained 
except for Higgs) or an 
additional new particle

Tim Tait

But this change opens up a much richer set of possibilities

“It is the production and the role of the mediator particle(s) which is of key 
importance in the collider searches for dark sectors; the actual dark matter is a derivative.” 
—Phys. Rev. D 91, 055009 (2015)
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Searches for dijets
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Dijet signals are already plentiful in the SM, 
and in many other BSM models 

Broken extended gauge symmetries, chiral 
color, axigluons, quantum black holes, KK 
bosons, composite quarks, … 

For an excellent review of dijet searches, see 
Harris & Kousouris, Int. J. Mod. Phys. 
A26:5005-5055, 2011

arXiv:1003.1698

S. Westhoff, J. Shelton

PRD 42 815
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Dobrescu, Yu Phys.Rev. D88 (2013) 035021
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Coupling-Mass Plane for a Leptophobic Z’ Model, circa 2013
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Dobrescu, Yu Phys.Rev. D88 (2013) 035021

C
ou

pl
in

g 
of

 n
ew

 p
ar

tic
le

 to
 q

ua
rk

s

New particle mass

Coupling-Mass Plane for a Leptophobic Z’ Model, circa 2013

Only probing SM-like couplings near

current LHC thresholds of M >~ 1 TeV 
(single jet unprescaled trigger)

Gap to be probed with 
more luminosity

Progress below 1 TeV

requires new strategy
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Roughly 2 years from 13/fb to 20/fb result! Why? 
Low mass was our primary focus


Combine all available prescaled single jet triggers 

Reconstruct unprescaled but delayed (parked) 
events during LS1 shutdown

ATLAS Strategy at 8 TeV

Phys. Rev. D. 91, 052007 (2015)
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ATLAS Dijets Searches at 13 TeV
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ATLAS Dijets Searches at 13 TeV
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Resonant analysis

Jet pT > 410, 50 GeV 
|y*| = |y1-y2|/2 < 0.6 
mjj > 1.1 TeV 

y* cut rejects forward-peaking 
t-channel QCD processes

Data-driven background fit

“BumpHunter”

most discrepant

region

2.91–3.17 TeV

(global p-value 0.78)
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ATLAS Dijets Searches at 13 TeV
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“Non-resonant” analysis

Jet pT > 410, 50 GeV 
|y*| = |y1-y2|/2 < 1.7

|yB| = |y1+y2|/2 < 1.1

mjj > 2.5 TeV Background shape from 


NLOJet++ / Pythia 8

with electroweak corrections

|y*| = < 0.6


At high mass, low chi:

NLO: up to 15%

EW: up to 3%


chi2 prob. 0.57

Shape comparison uses 
high y* region to confirm 
and normalize 
background prediction 
with forward-peaking t-
channel QCD processes



Highest pT jet 
in 80/pb: 2.5 TeV 

Propagation of single particle uncertainties to jets
Balance of high-pT jet 
with calibrated low-pT 

recoil system

Well-calibrated object 
vs probe jet: data/MC

Jet calibration and uncertainty



Highest pT jet 
in 80/pb: 2.5 TeV 

Propagation of single particle uncertainties to jets
Balance of high-pT jet 
with calibrated low-pT 

recoil system

Well-calibrated object 
vs probe jet: data/MC

Jet calibration and uncertainty
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ATLAS 13 TeV Dijet Limits, 80/pb
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Limits are Mth > 6.8 or 6.5 TeV (QBH or BlackMax)  
Run 1 limits were 5.6–5.7 TeV. 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Benefits of ATLAS/CMS Agreement on Models: Dijet Implications for SM-DM Mediators
Axial-Vector Z’, JHEP 1507 (2015) 089
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Mono-jet + Dijet Complementarity
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How to do even better?

Both MZ’> 1 TeV and MZ’< 1 TeV are unconstrained for plausible but lower gq    
Above 1 TeV, add luminosity 

Andreas Weiler & Gavin Salam, EPS 2015

"There's a lot more after this run, 
but this run is where it's going to 
happen quickest"  (Gavin Salam)
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Trigger bandwidth = Recorded event size x Recorded event rate

How to do even better?

A fixed resource Wherever we can reduce this then we can increase this by a lot!

Both MZ’> 1 TeV and MZ’< 1 TeV are unconstrained for plausible but lower gq    
Above 1 TeV, add luminosity 
Below 1 TeV, something else is needed

Level-1:  
custom hardware

Software HLT: 
20k cores

1 kHz to storage

40 MHz bunch crossing

100 kHz to HLT
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Trigger bandwidth = Recorded event size x Recorded event rate

How to do even better?

A fixed resource Wherever we can reduce this then we can increase this by a lot!

Both MZ’> 1 TeV and MZ’< 1 TeV are unconstrained for plausible but lower gq    
Above 1 TeV, add luminosity 
Below 1 TeV, something else is needed

Active for most of 2015 data-taking. Stay tuned!

Reduced event size chain

All other single jet triggersLevel-1:  
custom hardware

Software HLT: 
20k cores

1 kHz to storage

40 MHz bunch crossing

100 kHz to HLT

Move analysis here
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Conclusions

Dark matter is a good motivation for new physics searches at 13 TeV 

Wide MET+X search program developed during Run 1 
→ Widening much further: more work focused on general DM phenomenology is needed! 

The ability to study the interaction between the dark sector and the SM is a strength of 
collider experiments  
→ building a better picture of these models and the constraints on them 
    is crucial to seeing how the LHC data can be most useful (see Z’ example) 

The LHC cannot conclusively discover dark matter! (only stability on collider timescales) 
→ but it may be able to tell us unique information about it



Additional Slides
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Experimental challenges: Jet Reconstruction
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C. Doglioni



Experimental challenges: Jet Calibration
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Experimental challenges: Jet Calibration
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At high pT, uncertainty on JES dominated by single particle 
uncertainties from test beam convoluted to jets 



Mono-W/Z (hadronic)

Tag with single ‘fat’ jet containing 
boosted W/Z decay subjets  
C/A-jet: R=1.2, pT > 250 GeV, |η| < 1.2 

Subjet kinematics consistent 
with W/Z decay 
BDRS (Butterworth, Davidson, Rubin, Salam) : 
  arXiv:0802/2470  
Total jet mass 50<Mjet<120 GeV 
Sub-jet pT balance (√y > 0.4) 

MET > 350, 500 GeV
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Mono-W/Z (hadronic) Results
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>95% of backgrounds to 
monojet search are Z->νν 
and W->lν 

Taken from leptonic W 
and Z control data 

Correct for lepton selection/
veto using MC ‘transfer 
factor’ 

Systematics improve with 
more statistics at high 
boson pT

Electroweak backgrounds
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58arXiv:1307.2253, arXiv:1402.1275



Looking directly for the light mediator

When the mediator is light, you can 
look for it directly 

Looking for something specific is 
generally a better strategy than 
looking for something vague… 

Coupling to quarks required for 
WIMP-nucleon interactions and 
production at colliders  
 => dijet signature 

Dijet contact search powerful in 
transition region between resonance 
and full contact interaction
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arXiv:1303.3348



Simplified: Light dark matter and leptophobic Z′

60L.-T. Wang et al.,  JHEP 07 182 (2012)

gZ’ = gD

mχ = 5 GeV 



Mono-Higgs

61arXiv:1312.2592 

EFT

Simplified Models

+ …



Dijet resonances
BumpHunt on smooth parameterization of dijet mass distribution 

Two-body decays to jets are a signature of many many models: Z’/W’, excited quarks (qg), 
diquarks, chiral color, axigluons, black holes, KK gravitons, ... 

 Example limits: mq* > 3.84 TeV, (sigma*A)Gaussian <~ 1 fb @ 4 TeV 
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ATLAS-CONF-2012-148
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“Typical Couplings”

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-148/


What would a discovery of dark matter look like?
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PRL 110 141102
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arXiv:1304.3706v1

http://arxiv.org/abs/1304.3706v1
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arXiv:1304.3706v1

http://arxiv.org/abs/1304.3706v1
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LUX  http://arxiv.org/abs/1310.8214

http://arxiv.org/abs/1310.8214


What would a discovery of dark matter look like?
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Not this (maybe?) 

Consistent results, from multiple types of complementary experiments, 
will be needed 

Some (but not all) results resemble light WIMP ~O(10) GeV , σ~few 
10-41 cm2 

What can the LHC say about this?



The Growing Importance of Jet Substructure
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Pile-up corrected jet substructure
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Pile-up corrected jet substructure
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FTK Example
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EF_b45_medium_4j45_a4tchad_L2FS + …

ATLAS-CONF-2014-005
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Rejection of fake jets is crucial 

Good efficiency

Good purity

Mono-jets: BEFORE CLEANING
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Model-agnostic Searches: How to Look for the Unexpected?
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Model-agnostic Searches: How to Look for the Unexpected?

What new physics are we looking for?


