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Predicted by the SM and discovered 
in 1995 by CDF and DØ
– mt =172.4 ± 1.2 GeV

Top-Higgs Yukawa coupling ≈ 1
– may help identify the mechanism of 

EWSB and mass generation
– may serve as a window to new physics 

that might couple preferentially to top

Why Study the Top Quark?

Successful Tevatron top quark program
– High precision measurements for the top quark mass, top pair production 

cross section and decay properties

Some basic quantities still unmeasured: spin, width, lifetime
Single top quark production predicted by the SM, had not been 
observed till now



4

Single Top Production

Probe of the Wtb interaction with no 
assumption on the number of quark 
families or unitarity of the CKM 
matrix

Cross sections sensitive to beyond-
the-SM processes
– s-channel: 

• Resonances: heavy W’ boson, 
charged Higgs boson, Kaluza-Klein 
excited WKK, technipion, etc.

– t-channel
• flavor-changing neutral currents

– Fourth generation of quarks

s-channel

σSM = 1.12 ± 0.05 pb

t-channel 
σSM = 2.34 ± 0.13 pb

Single top cross sections from Kidonakis and Vogt, PRD 68, 114014 (2003) for mt =170 GeV
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Experimentally very challenging

Simple counting experiment 
cannot extract the signal 
from the overwhelming 
background
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Experimentally very challenging
Same final state as WH
– Backgrounds are the same
– Test of techniques to 

extract small signal from a 
large background
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Evidence for Single Top Production

Signal Significance Cross Section
Expected Observed Measured

DØ (0.9 fb-1) PRL 98, 181802 (2007) 
2.3σ 3.6σ 4.7±1.3 pb

|Vtb| = 1.31 + 0.25 - 0.21

CDF (2.2 fb-1) PRL 101, 252001 (2008)
4.9σ 3.7σ 2.2 ± 0.7 pb

|Vtb| = 0.88 ± 0.12± 0.07

Status as of March 3, 2009

Observed significance is a measure of 
how likely it is to measure the cross 
section in the absence of signal



8

Culmination of a Long History
DØ

• Search: PRD 63, 031101 (2000)
• Search: PLB 517, 282 (2001)
• Search: PLB 622, 265 (2005)
• W’: PLB 641, 423 (2006)
• Search: PRD 75, 092007 (2007)
• Evidence: PRL 98, 181802 (2007)
• FCNC: PRL 99, 191802 (2007)
• W’: PRL 100, 211802 (2007)
• Evidence: PRD 78, 012005 (2008)
• Wtb: PRL 101, 221801 (2008)
• Wtb: PRL 102, 092002 (2009)
• H+: (PRL) arXiv:0807.0859
• Observation: (PRL) arXiv:0903.0850

CDF
• Search: PRD 65, 091102 (2002)
• W’ PRL 90, 081802 (2003)
• Search: PRD 69, 052003 (2004)
• Search: PRD 71, 012005 (2005)
• Evidence: PRL 101, 252001 (2008)
• FCNC: (PRL) arXiv:0812.3400
• W’: (PRL) arXiv:0902.3276
• Observation: (PRL) arXiv:0903.0885

DØ Evidence paper
PRL “Editor’s Suggestion”
110 SPIRES citations
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Dataset
DØ has >5 fb–1 on tape Many thanks to the Fermilab Accelerator Division!

This analysis uses 2.3 fb–1 of data collected from 2002 to 2007
–Full Run IIa dataset, 1.1 fb-1 (20% increase w.r.t. 2006 analysis)
–Run IIb dataset, 1.2 fb-1 

DØ Layer Zero
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FINAL STATE CONTAINS:
One high-pT isolated electron or muon
Large missing transverse energy
A b-jet from the top quark decay (t→Wb→lνb)
A second b-jet or a light jet

Analysis is performed in 24 channels:
– Run IIa or Run IIb
– e or mu
– 2, 3 or 4 jets
– 1 or 2 b-tags

Event Selection

ET/
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Changes in Event Selection

Logical OR of many trigger conditions (was lepton + jets)
Leading Jet η acceptance increased to 3.4 (was 2.5)
Non-leading Jet pT cut reduced to 15 GeV (was 20 GeV)
Muon pT cut reduced to 15 GeV (was 18 GeV)
Loosened the b-jet identification criteria for the 2 tag case
HT,       not aligned with lepton or leading jet

Signal acceptance
– s-channel  tb = (3.7 ± 0.5) %
– t-channel tqb = (2.5 ± 0.3) %

Signal acceptance 
increased by 18% 
compared to 2006

ET/
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Signal and Background Models

Top pair backgrounds modeled using ALPGEN
– PYTHIA for parton hadronization
– Parton-jet matching algorithm used to avoid double-

counting final states
– Normalized σ = 7.91pb from Kidonakis and Vogt, 

PRD 68, 114014 (2003) for mt =170 GeV
– Uncertainties +7.7% −12.7% includes theory, PDF 

and mass shift to (172.4±1.2) GeV

Single top quark signals modeled 
using SINGLETOP 
– Based on COMPHEP
– Reproduces NLO kinematic 

distributions
– PYTHIA for parton hadronization
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Signal and Background Models (Cont.)

Z+jets modeled using ALPGEN + PYTHIA
– Z+ heavy flavor corrected to theory, with ±20% uncertainty

Dibosons modeled using PYTHIA

W+jets modeled using ALPGEN 
– PYTHIA for parton hadronization
– MLM parton-jet matching avoids double-counting 

final states
– η(jets), Δφ(jet1,jet2), Δη(jet1,jet2) corrected to 

match data

QCD Multijet 
– Misidentified lepton, directly from data
– Switched to 10x larger background samples 

compared to 2006
– Kept small (~5%) with topological selection cuts
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W+jets and multijet  normalized using iterative template fits to data 
BEFORE TAGGING on three sensitive variables: pT(l),     , MT(W) 

Background Normalization

data
multijetmultijet

MC
jetsW

MC
bkgd

data
pretag jetsW

NSNSNN +=−
++

Normalization given by KS-weighted average
Uncertainty obtained from max. difference with 1-variable result

30 to 54% for multijet, 1.8 to 3.9% for W’s

ET/

S:B = 1:259

DØ DØ
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b-Jet Identification
Separate b-jets from light-quark and gluon jets to reject most 
W+jets background
DØ uses a neural network algorithm with seven input variables 
based on impact parameter and reconstructed vertex
Two operating points used in analysis:
– TIGHT (εb = 40%, εc = 9%, εl = 0.4%)
– LOOSE (εb = 50%, εc = 14%, εl = 1.5%)

Leading b-jet pT > 20 GeV
Define two exclusive samples
– EqOneTag: 1T, no L
– EqTwoTag: 2L (was 2T; ≈ 50% gain)

Uncertainties dominated by variation in data samples used to 
measure the efficiencies. 
Smaller contribution from MC sample dependence
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W + heavy flavor normalized to theory (MCFM-NLO)
– 1.47 (Wbb,Wcc), 1.38 (Wcj)

Additional empirical correction 
– derived from two-jet data and simulation: includes zero-tag events
– 0.95 ± 0.13 (Wbb, Wcc)

Uncertainties considered
– Data statistics ± 9%
– ± 40% single top cross section → ± 7% in SF
– ± 10% on the Wcj theory SF → ± 8% in SF
– Additional ± 10% Wbb/Wcc → ± 5% in SF

W + Heavy─Flavor Scale Factor

S:B = 1:21 in 1Tag
S:B = 1:15 in 2Tag

DØ DØ
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Data/MC 
agreement (for all 
channels 
combined)
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Expected and Observed Events
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Top Pairs
4 jets, 1 or 2 b-tagged jets
HT(l,     ,allJets) > 300 GeV

Cross Check Samples
Selected to test background model in regions dominated by one 
type of background: W+jets or Top Pairs

W + JETS
2 jets, 1 b-tagged jet
HT(l,     ,allJets) < 175 GeVET/ ET/

DØ DØ
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Systematic Uncertainties

Components that most affect 
the cross section measurement 
are shown in red

Other important contributions 
are shown in pink
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Analysis Strategy

Calculate discriminant functions that 
separate signal from background
– Boosted Decision Trees (BDT)
– Bayesian Neural Networks (BNN)
– Matrix Elements (ME)

Maximize signal acceptance
– Background model gives good representation of data in each of the 24 

independent analysis channels

Check discriminant performance using data control samples
Use ensembles of pseudo-data to test validity of methods
Cross sections measured using binned likelihood calculation 
of signal + background to data
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Multivariate Analyses: BDT & BNN

Boosted Decision Trees (BDT)
─ Recover events that fail criteria in cut-based analysis
─ Boosting averages the results over many trees, 

improving the performance 
─ Uses highest ranked common 64 variables

Bayesian Neural Network (BNN)
─ NN train on signal and background, producing 

one output discriminant
─ Bayesian NN average over many networks, 

improving the performance
─ Uses highest ranked 18-28 variables in each 

channel

Use common Object and Event Kinematics, Angular Correlations, Jet 
Reconstruction and Top Quark Reconstruction variables
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Discriminating Variables – BDT/BNN
OBJECT 

KINEMATICS

JET 
RECONSTRUCTION

ANGULAR 
CORRELATIONS

EVENT 
KINEMATICS

TOP QUARK 
RECONSTRUCTIONNew categories 

of variables 
added since 

2006 improve 
BDT & BNN 
performance

DØ DØ DØ

DØ DØ
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Multivariate Analyses: ME
Matrix Element (ME)
─ Method pioneered by DØ for the top quark 

mass measurement in Run I
─ Use the 4-vectors of all reconstructed leptons 

and jets
─ Use Feynman diagrams to compute an event 

probability density for signal and background 
hypotheses

─ Uses events with 2 and 3 jets only
─ ME for signal (tb & tqb) and background
─ Split the sample in high and low HT 

(W+jets and top quark pair dominated regions) 
improves the performance



25

Multivariate Analyses: ME

Added additional Matrix Elements since 2006
2jets: top pair, WW, WZ, ggg

3jets:top pair, Wugg

2-jet channels

tb tq

Wbb Wcg Wgg

3-jet channels

tbg tqb tqg

Wbbg
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Cross Check Samples and Linearity

BDT

ME

BNN

DØ DØ

DØ DØ

DØ DØ
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Multivariate Discriminant Outputs

Signal 
normalized to 
measured x-sec
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Statistical Analysis
Before looking at the data, we can calculate:

“expected p-value”: fraction of the ensemble of zero-signal 
pseudo-datasets that give a cross section at least as large as the SM 
value. 
– For a Gaussian distribution, convert p-value to give “expected significance”

With the data, we can calculate: 
“measured cross section”
“measured p-value”: fraction of the ensemble of zero-signal 
pseudo-datasets that give a cross section at least as large as the 
measured value
– For a Gaussian distribution, convert p-value to give “measured significance”
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Cross Section Measurement
Cross Sections are measured 

by building a Bayesian posterior 
probability density

For each analysis, the single 
top cross section is given by the 
position of the posterior density 
peak, with 68% asymmetric 
interval as uncertainty

Gaussian prior for systematic uncertainties
– Correlations of uncertainties properly taken into account

Flat prior in signal cross sections
Significance derived from background-only pseudo-datasets
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Cross Section Results
MVA σ±Δσ(pb) Expected 

Sensitivity
Observed 
Sensitivity

BDT 4.3 σ 4.6 σ
BNN 4.1 σ 5.2 σ
ME 4.1 σ 4.9 σ99.0

20.130.4 ±

95.0
79.074.3 ±
18.1
93.070.4 ±
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Combination of Results
Even though all MVA analyses use the same data, they are not 

100% correlated
– BNN&BDT are 75% correlated with each other,  60% with ME

We use a BNN to combine the three methods. The BNN takes as 
input variables the output discriminants of the individual methods

Expected sensitivity for the BNN Combination: 4.5 σ
BLUE combination (used in 2006) now presented as a cross check

CROSS CHECK SAMPLES AND LINEARITY
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Distributions for BNNComb > 0.9
OBJECT 

KINEMATICS

JET 
RECONSTRUCTION

ANGULAR 
CORRELATIONS

EVENT 
KINEMATICS

TOP QUARK 
RECONSTRUCTION

SINGLE TOP FINAL 
STATE

DØ DØ DØ

DØ DØ DØ



33



34



35

Combined Results

pb88.094.3),( ±=++→ XtqbXtbppσ

7105.2 −×=− valuep

(mt=170GeV)

Measured Significance = 5.03σ
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Cross Section Summary

MVA Expected
Signif.

Observed 
Signif.

BDT 4.3σ 4.6 σ

BNN 4.1σ 5.2 σ

ME 4.1σ 4.9 σ

BNNComb 4.5σ 5.0 σ
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CKM Matrix Element  Vtb

Weak interaction eigenstates and mass eigenstates are not the 
same: there is mixing between quarks, described by CKM matrix
General form of the Wtb vertex

Measurement assumes SM production mechanisms
─ Pure V–A and CP-conserving interaction (f1

R = f2
L = f2

R = 0)
• f1

L : strength of the left-handed Wtb coupling, is allowed to be anomalous

─ |Vtd|2 + |Vts|2 << |Vtb|2 (supported by CDF & DØ “ratio” measurements)
Does not assume 3 generations or unitarity of the CKM matrix
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Measurement of |Vtb|
Use the measurement of the single 
top cross section to make a direct 
measurement of |Vtb|:
– Calculate a posterior in |Vtb|2 

– Measure the strength of the V–A

2
tbV tqb)tb,( ∝σ

Additional theoretical uncertainties ( %)

tb+tqb

Top quark mass 4.2

Factorization Scale 2.4

PDF 3.0

αs 0.5

assuming f1
L =1 
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Conclusions
The DØ collaboration observes single top quark  
production in 2.3 fb-1 of Run II data

pb88.094.3),( ±=++→ XtqbXtbppσ

Direct measurement of |Vtb|

|Vtb f1
L| = 1.07 ± 0.12        

flat prior ≥ 0
0.78 < |Vtb| < 1 @ 95% CL  

0 ≤ flat prior ≤ 1

http://arxiv.org/abs/0903.0850 submitted to PRL

Measured Significance 5.03σ

http://arxiv.org/abs/0903.0850
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