An Introduction to the NuMI Project and the Minos Experiment

Robert Plunkett/Fermilab
NuMI Deputy Project Manager

Fermilab All Experimenters Meeting
6 October, 2003
Why this introduction?

• **Who we are**
 – Project, Collaboration and Laboratory

• **What we are doing**
 – Construction activities and timetable
 – Soudan operations

• **How we’ll be telling you about it.**
 – Preliminary schedule of presentations to this meeting.
The NuMI Project

• Build and commission a major beamline, including tunnels and surface buildings, and all beamline components, for long-baseline neutrino physics

• A new cavern and lab facilities at Soudan, Minnesota

• Two major detectors

• $170 M of net value

• Involvement and excellent support from all Fermilab Divisions and Sections
The MINOS Collaboration

Athens • Cambridge • College de France • ITEP-Moscow • Oxford • Protvino • Rutherford • Sussex • UCL • Argonne • Brookhaven • Caltech • Fermilab • Harvard • IIT • Indiana • Lebedev • Livermore • Macalester • Minnesota • Minnesota-Duluth • Pittsburgh • South Carolina • Stanford • Texas-Austin • Texas A&M • Tufts • Sao Paolo • Western Washington • UNICAMP/Campinas • Wisconsin

27 Universities, 4 National Laboratories, 6 Countries
More than 150 collaborators
MINOS Long-Baseline Experiment

Fermilab to Soudan, Minnesota

Far Detector: 5400 tons

Near Detector: 980 tons

Beam in 2003

Det. 1

Det. 2

Fermilab

10 km

730 km

Soudan

12 km
• **Major complicated conventional construction**

• **Three major installations in three different areas:**

 • Several hundred feet of accelerator enclosure—half of which is between two operating machines

 • Downstream end of carrier tunnel, Pre-Target and Target Areas--primary beam focus, entrance to decay tunnel

 • MINOS area—beam monitoring, ~1 KT hadron absorber and ~ 1 KT neutrino
Civil Construction of Two Buildings

MI65, gateway to the Target Hall, will be finished first.

Minos Service Building houses a 300 ft. shaft leading to the detector.
6m diameter excavated via Tunnel Boring Machine

Descends at 3.3 degrees – 6%

Now filled with decay pipe, shielding, and access passageway.
Beamline and Focusing Layout

vertical scale exaggerated!

target focusing horns decay tunnel

120 GeV primary Main Injector beam

2-horn beam adjusts for variable energy ranges

675 meter decay pipe for π decay
240 meter rock muon absorber
High and narrow to allow installation of target and horn systems and shielding.
Status of Horns

Horn Function:
Focus pions, which decay to neutrinos
Pulsed current: 205,000 Amps
Max. field: 3 Tesla

Status (both horns): ready!
fabrication complete
have been pulsed > 400k times each
magnetic field quality checked
vibration checked

Next steps:
Test fit onto support/alignment modules
Practice remote (hot) handling
Install in target hall May 2004
Magnet Installation in MI and “Stub” Underway

“Porch” Area, heading underground

Stub area, heading toward porch
Soudan Underground Laboratory

- Operated by U. of Minn. and Minnesota Dept. of Natural Resources
- Soudan Mine - tourist attraction during summer months
- 1 elevator shaft limits loads to 1m x 2m x 9m
Zoom View of MINOS Supermodule

- 8m Octagonal Tracking Calorimeter
- 486 layers of 2.54cm Fe
- 2 sections, each 15m long
- 4.1cm wide solid scintillator strips with WLS fiber readout
- Magnet coil provides $ \approx 1.3T$
- 5.4kt total mass
Completed Minos Far Detector

Two supermodules finished, energized Summer ’03

Operating on cosmic rays and atmospheric neutrinos
(Magnetic field allows event-by-event separation of antineutrinos)

Currently commissioning remote operations model
• Upgoing muon passing through about 3.5 m of the detector. \(p_\mu > 1.9 \text{ GeV/c} \)

• Magnetic field was not on at this time so no measurement of the momentum.
Layout View of MINOS Near Detector

Readout Electronics

90 m below ground
Cavern 46 m in length, ~ 10 m high
Access via ~ 6.5 m diameter shaft
Near Detector Plane Assembly Complete

Hole for Coil Insertion

Scintillator Strip Modules

Stored on racks in New Muon Lab
Installation equipment tested
Magnet coils delivered, ready
PMT systems (UK) delivered, ready
Minos Hall Outfitting

Detector Supports

Egress Passageway

Detector’s Eye View as it will be installed beginning spring 2004
Status of NuMI Project

- MINOS far detector complete.
 - Reading out with magnet.
- MINOS near detector main construction complete.
 - Electronics in use at CERN testbeams.
 - Auxiliary systems being assembled.
- Buildings and Outfitting at Fermilab nearing end.
 - Finished by 1/31/04, 10/20/03 for MI65 section.
- Beamline installation ongoing.
- Expect to begin commissioning at end of 2004.
Schedule of Future Presentations

• Beamline Installation in 2003 – status.
• Far Detector Running in Soudan
• Minos Near Detector status
• Characteristics of NuMI Neutrino Beam
• Beamline installation plans for 2004
• Collaboration on accelerator projects.

Sequence preliminary
Interval about every 2 weeks
Beam and Oscillation Signal

Low Energy
- Visible Energy, all identified CC
- Residual NC background

Medium Energy

Goals of choice of beam operating conditions

* Maximize signal
* Minimize systematics
* Optimize coverage for “appropriate” parameters
Decay pipe section coming underground

Interior of decay pipe
Beam Energy Options

Example spectra from varying horn positions

CC Events in MINOS 5kt detector

High ~ 15,000/yr (< 30 GeV)
Medium ~ 6200/yr (< 20 GeV)
Low ~ 1500/yr (< 15 GeV)
Oscillation Signals

High-statistics ratio of far/near spectra will provide dramatic evidence for oscillation, and effective tool for studying the effect
MINOS is first large underground detector with a magnetic field.

Will directly compare ν_μ and anti-ν_μ oscillations in atmospheric region.

More than 1000 total events expected in 24 kT-years

Competitive limits on CPT violation will be obtained.

Proposed veto shield to reduce cosmic ray backgrounds
Physics Goals of the Minos Experiment

Demonstrate oscillation behavior.

Using the CC rate and spectrum
(2-4% sys. Uncertainty per 2 GeV bin)
Look for “standard” oscillatory spectrum.

Using the NC/CC ratio.

Precisely Measure the oscillation parameters
\[\delta m^2 \text{ and } \sin^2 2\theta \]
CC energy distribution the principal tool here.

Gain information about the oscillation modes.
NC/CC to check for \(\nu_\tau \) vs. \(\nu_{\text{sterile}} \)
Identification of \(\nu_e \)

Near Detector reduces uncertainties,
provides normalization of rates.

Spectrometer provides powerful analysis tool